Considering Uncertainty in Modeling Historical Knowledge


Laboratoire de la Communication dans les Systémes Informatiques, Ecole nationale Supérieure d’Informatique, BP 68M,16309, Oued-Smar, Alger, Algérie.



Simplifying and structuring qualitatively complex knowledge, quantifying it in a certain way to make it reusable and easily accessible are all aspects that are not new to historians. Computer science is currently approaching a solution to some of these problems, or at least making it easier to work with historical data. In this paper, we propose a historical knowledge representation model taking into consideration the quality of imperfection of historical data in terms of uncertainty. To do this, our model design is based on a multilayer approach in which we distinguish three informational levels: information, source, and belief whose combination allows modeling and modulating historical knowledge. The basic principle of this model is to allow multiple historical sources to represent several versions of the history of a historical event with associated degrees of belief. In our model, we differentiated three levels of granularity (attribute, object, relation) to express belief and defined 11 degrees of uncertainty in belief. The proposed model can be the object of various exploitations that fall within the historian’s decision-making support for the plausibility of the history of historical events.


[1] Meroño-Peñuela A., Ashkpour A., Erp M., Mandemakers K., Breure L., Scharnhorst A., Schlobach S., and Harmelen F. Semantic technologies for historical research: A survey. In Semantic Web, number 6.6, pages 539–564, Lille, France, 2015.
[2] Beretta Francesco and Butez Claire-Charlotte. The SyMoGIH project and Geo-Larhra: A method and a collaborative platform for a digital historical atlas. In Digital Humanities 2014, Digital Humanities 2014. Conference Abstracts,
pages 117–119, Lausanne, Switzerland, July 2014. EPFL, Lausanne / UNIL, Lausanne.
[3] Kalus M. Semantic networks and historical knowledge management: Introducing new methods of computer-based research. volume 10, 2007.
[4] Doerr Martin. The cidoc crm - an ontological approach to semantic interoperability of metadata. Ai Magazine - AIM, 24, 01 2003.
[5] Hyvönen E., Lindquist T., Törnroos J., and Mäkelä E. History on the semantic web as linked data - an event gazetteer and timeline for world war i. In Geographical information systems 1, 2012.
[6] Ekkachai S.J. and Kulthida T. Development of semantic web for thai historical events. In Proceedings of the Doctoral Consortium at the 18th International Conference on Asia-Pacific Digital Libraries, and Asia-Pacific Forum of Information
Schools, 2016.
[7] Laubé Sylvain, Garlatti Serge, Querrec Ronan, and Rohou Bruno. Any-Artefact-O : an ontology developed for history of industrial cultural landscape. In 2nd Data for History workshop, Lyon, France, May 2018. Pôle histoire numérique
(Digital history department) of the LARHRA laboratory.
[8] Laubé S., Querrec R., Abiven M. M., and Garlatti S. Lab in virtuo : A intelligent virtual environment dedicated to history and heritage of industrial landscapes. In #dhnord2018: Matérialités de la recherche en sciences humaines et
sociales, Lille, France, 2018.
[9] Ollier-Pochart E. Les écritures de l’histoire dans les romans québéquois de la décennie 1980-1990. 2012.
[10] Granda Shirley. Critique et analyse des bases de données sur les catastrophes naturelle pour la caractérisation des évènements hydrométéorologique a forts impacts socio-économiques. PhD thesis, Laboratoire d’Études des Transferts 

en Hydrologie et Environnement (LTHE), Bâtiment OSUG-B, Domaine universitaire, BP 53, 38041 Grenoble cedex 09, 2014., 2014.
[11] Boonstra Onno, Breure Leen, and Doorn Peter. Past, present and future of historical information science. Historical Social Research/Historische Sozialforschung, pages 4–132, 2004.
[12] Reix R. Systèmes d’information et management des organisations. In 2ème édition. Vuibert, 1998.
[13] Pornon H. Sig la dimension géographique du système d’information. In InfoPro, Dunod, 2011.
[14] Devillers Rodolphe. Conception d’un système multidimensionnel d’information sur la qualité des données géospatiales. PhD thesis, Université de Marne la Vallée, 2004.
[15] Bédard Y. Uncertainties in land information systems databases. In The Proceedings of Eighth International Symposium on Computer-Assisted Cartography (AutoCarto 8), pages 175–84, 1987.
[16] Deitrick Stephanie A. Uncertainty visualization and decision making: Does visualizing uncertain information change decisions. In Proceedings of the XXIII International Cartographic Conference, pages 4–10, 2007.
[17] Fisher Peter F. Models of uncertainty in spatial data. In Geographical information systems 1, pages 191–205, 1999.
[18] De Runz Cyril, Herbin Eric, Frederic Piantoni, and Michel Herbin. Towards handling uncertainty of excavation data into a gis. In Proceedings of the 36th CAA Conference, volume 2, page 6, 2008.
[19] Desjardin E., Nocent O., and De Runz C. Prise en compte de l’imperfection des connaissances depuis la saisie des données jusqu’à la restitution 3d. established by: Mauro Cristofani and Riccardo Francovich, (supplemento 3):385–396,
[20] Engel Pascal. Les croyances. In D. Kambouchner, Les notions de philosophie, Gallimard, volume II, pages 9–101, 1995.
[21] Wilson N. Systèmes d’information et management des organisations. In Kohlas J., Moral S. (eds) Handbook of Defeasible Reasoning and Uncertainty Management Systems. Handbook of Defeasible Reasoning and Uncertainty Management Systems, volume 5. Springer, Dordrecht, 2000.