Evaluation of Planet Factors of Smart City through Multi-layer Fuzzy Logic (MFL)


Department of Computer Science, National College of Business Administration & Economics, Lahore, Pakistan


Internet of Things (IoT) approach is empowering smart city creativities all over the world. There is no specific tool or criteria for the evaluation of the services offered by the smart city. In this paper, a new Multilayer Fuzzy Inference System (MFIS) is proposed for the assessment of the Planet Factors of smart city (PFSC). The PFSC system is categorized into two levels. The proposed MFIS based expert system can categories the evaluation level of planet factors of the smart city into low, satisfied, or good.


[1] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things: A survey. Computer networks, 54(15):2787–2805, 2010.
[2] Paolo Bellavista, Giuseppe Cardone, Antonio Corradi, and Luca Foschini. Convergence of manet and wsn in iot urban scenarios. IEEE Sensors Journal, 13(10):3558–3567, 2013.
[3] Luca Foschini, Tarik Taleb, Antonio Corradi, and Dario Bottazzi. M2m-based metropolitan platform for ims-enabled road traffic management in iot. IEEE Communications Magazine, 49(11):50–57, 2011.
[4] Peter Hall. Creative cities and economic development. Urban studies, 37(4):639–649, 2000.
[5] Renata Paola Dameri. Defining an evaluation framework for digital cities implementation. In International Conference on Information Society(i-Society 2012), pages 466–470. IEEE, 2012.
[6] AV Prasad. Exploring the Convergence of Big Data and the Internet of Things. IGI Global,2017.
[7] Akhil Rajendra Khare and Pallavi Shrivasta.Data mining for the internet of things. In Exploring the Convergence of Big Data and the Internet of Things, pages 181–191. IGI Global, 2018.
[8] Peleato B. and Stojanovic M. A mac protocol for ad hoc underwater acoustic sensor networks. In Proceedings of ACM International Workshop Under-Water Networks, pages 113–115, 2006.
[9] Goh Bee Hua. Smart Cities as a solution for reducing urban waste and pollution. IGI Global, 2016.
[10] Petrioli C., Petroccia R., and Stojanovic M. A comparative performance evaluation of mac protocols for underwater sensor networks. In Proceedings of MTS/IEEE OCEANSâAZ08, pages 1–10, 2008.
[11] Muhammad AsadUllah, Muhammad Adnan Khan, Sagheer Abbas, Atifa Athar, Syed Saqib Raza, and Gulzar Ahmad. Blind channel and data estimation using fuzzy logic-empowered opposite learning-based mutant particle swarm optimization. Computational intelligence and neuroscience, 2018, 2018.
[12] Ayesha Atta, Sagheer Abbas, M Adnan Khan, Gulzar Ahmed, and Umer Farooq. An adaptive approach: Smart traffic congestion control system. Journal of King Saud University-Computer and Information Sciences, 2018.
[13] Muhammad Adnan Khan, Sagheer Abbas, Zahid Hasan, and Areej Fatima. Intelligent transportation system (its) for smart-cities using mamdani fuzzy inference system. 2018.
[14] Muhammad Adnan Khan, Muhammad Umair, and Muhammad Aamer Saleem Choudhry. Ga based adaptive receiver for mc-cdma system. Turkish Journal of Electrical Engineering & Computer Sciences, 23(Sup. 1):2267–2277, 2015.
[15] Muhammad Umair, Muhammad Adnan Khan, and Muhammad Aamer Saleem Choudry. Ga backing to stbc based mc-cdma systems. In 2013 4th International Conference on Intelligent Systems, Modelling and Simulation, pages 503–
506. IEEE, 2013.
[16] Daniel Costa, Mario Collotta, Giovanni Pau, and Cristian Duran-Faundez. A fuzzy-based approach for sensing, coding and transmission configuration of visual sensors in smart city applications. Sensors, 17(1):93, 2017.
[17] Harpreet Singh, Madan M Gupta, Thomas Meitzler, Zeng-Guang Hou, Kum Kum Garg, Ashu MG Solo, and Lotfi A Zadeh. Real-life applications of fuzzy logic. Advances in Fuzzy Systems, 2013, 2013.
[18] Suman Sankar Bhunia, Sourav Kumar Dhar, and Nandini Mukherjee. ihealth: A fuzzy approach for provisioning intelligent health-care system in smart city. In 2014 IEEE 10th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pages 187–193. IEEE, 2014.
[19] Muhammad Usman, Muhammad Rizwan Asghar, Imran Shafique Ansari, Fabrizio Granelli, and Khalid A Qaraqe. Technologies and solutions for location-based services in smart cities: past, present, and future. IEEE Access, 6:22240–
22248, 2018.
[20] Peter Bosch, Sophie Jongeneel, V Rovers, HM Neumann, M Airaksinen, and A Huovila.

Citykeys indicators for smart city projects and smart cities. CITYkeys report, 2017.