
ISeCure
The ISC Int'l Journal of
Information Security

January 2022, Volume 14, Number 1 (pp. 83–104)

http://www.isecure-journal.org

Business-Layer Session Puzzling Racer: Dynamic Security Testing

Against Session Puzzling Race Conditions in Business Layer

Mitra Alidoosti 1,∗, Alireza Nowroozi 2, and Ahmad Nickabadi 3

1Malek-Ashtar University of Tehran, Tehran, Iran.
2IRIB University of Tehran, Tehran, Iran.
3Amirkabir University of Tehran, Tehran, Iran.

A R T I C L E I N F O.

Article history:
Received: February 10, 2021

Revised: June 30, 2021

Accepted: July 6, 2021

Published Online: September 6, 2021

Keywords:

Dynamic Testing, Vulnerability

Analysis, Web Application,
Business Process, Race Condition

Type: Research Article

doi: 10.22042/isecure.2021.
272808.637

dor: 20.1001.1.20082045.2022.

14.1.7.7

A B S T R A C T

Parallel execution of multiple threads of a web application will result in

server-side races if the web application is not synchronized correctly. Server-side

race is susceptible to flaws in the relation between the server and the database.

Detecting the race condition in the web applications depends on the business

logic of the application. No logic-aware approach has been presented to deal

with race conditions. Furthermore, most existing approaches either result in

DoS or are not applicable with false positive. In this study, the session puzzling

race conditions existing in a web application are classified and described.

In addition, we present Business-Layer Session Puzzling Racer, a black-box

approach for dynamic application security testing, to detect the business-layer

vulnerability of the application against session puzzling race conditions.

Experiments on well-known and widely used web applications showed that

Business-Layer Session Puzzling Racer is able to detect the business layer

vulnerabilities of these applications against race conditions. In addition, the

amount of traffic generated to identify the vulnerabilities has been improved

by about 94.38% by identifying the business layer of the application. Thus,

Business-Layer Session Puzzling Racer does not result in DoS.

c© 2020 ISC. All rights reserved.

1 Introduction

Today, web applications play an essential role in
our everyday life. They are used in all parts of

our life, including education, entertainment, tax, pur-
chase and bank transactions among others. Today, in
order to provide complicated operations and proper
user interface to the applications, complicated logic
is added to client-side pages. Due to exchanging es-
sential information, applications need to be secure

∗ Corresponding author.

Email addresses: Alidoosti@mut.ac.ir,
alirezanowroozi@iribu.ac.ir, Nickabadi@aut.ac.ir

ISSN: 2008-2045 c© 2020 ISC. All rights reserved.

and available (even at peak hours and during adver-
sary attack) [1–12]. Race condition is a class of time-
related vulnerabilities. Race condition occurs when
access to a common variable by various processes is
not managed correctly. The damage caused by race
condition includes bypassing constraints of the ap-
plication, like reusing voucher, privilege escalation
and DoS. Detecting race condition in a web applica-
tion is very difficult [13] and depends on the logic
of the web application [14]. That is because the race
condition is a probabilistic event which is state and
time-related. For the race condition to occur, the ap-
plication should be in a specific state and even the
operations should be done in a minimal timeframe

ISeCure

84 BLSPR: Dynamic Security Testing Against Session Puzzling Race Conditions in BL — Alidoosti et al.

known as “Race Window”. The race condition yields
unpredictable results and leads to an incorrect exe-
cution of the web application. Thus, detecting the
race condition is necessary. Applications should be
aware of the execution threads of the program and in
cases where several threads use a common object in
parallel the program should schedule the threads. In
general, two types of race condition might occur in
the application; server-side race and client-side race.
The server-side race is one of the most common race
conditions in the web applications occurring because
of flaws in the web application’s interaction with the
database [15]. The client-side race occurs due to flaws
in the server-client communication [16]. Research
Gaps: No logic-aware approach has been proposed to
detect synchronization problems in the web applica-
tions. The methods presented in [13, 14, 17–24] only
detect parts of the sever-side race condition and are
specific to a particular language. In addition, old test
methods cannot detect the client-side race. Recently,
some methods have been presented to detect parts of
the client-side race conditions [25–36]. However, each
of the above methods has its own shortcomings and
false positive. In this study, a black-box approach
called Business-Layer Session Puzzling Racer is pre-
sented for dynamic application security testing in
the business layer. The proposed method detects the
business-layer vulnerability of the application against
session puzzling race condition. The designed security
test scenarios are context-aware. Context-awareness
indicates that the designed scenarios are aware of the
business logic of the web application and intend to
detect the business-layer vulnerabilities of the web
application. The proposed method is independent of
the technology used in the web application and de-
tects vulnerabilities automatically. The innovations
of this study are as follows:

• Classifying various session puzzling race condi-
tions in the web applications;

• Defining various session puzzling race condi-
tions existing in the web applications;

• Presenting the black-box approach for the dy-
namic application security testing of the web
application to detect business-layer vulnerabili-
ties against session puzzling race conditions.

2 Related Work

2.1 Detecting Server-Side Race Conditions
in Web Applications

CompuRacer [13] has presented a systematic black-
box method for detecting race condition in the web
applications. The proposed method offers a list of
common vulnerabilities of the race condition in appli-
cations and a test method for detecting them. Compu-

Racer forwards a set of HTTP requests to the appli-
cation in parallel and detects vulnerabilities through
analyzing the received HTTP responses. Palleri et al.
[14] have proposed a dynamic method for detecting
the race conditions originating from the interaction
of the web application with the database. The pro-
posed method detects vulnerabilities in two steps. In
the first step, the report of the queries exchanged
between the application and the database is stored.
In the second step, the queries of the database are
analyzed and the related queries are detected.

2.2 Detecting Client-Side Race Conditions
in Web Applications

ARROW [35] has presented a static method to detect
client-side race conditions. ARROW first extracts the
“causal graph” of the application, which is tasked with
modeling happens-before relationships between run-
time events (for instance, DOM objects should be de-
veloped before invoking their event handlers). Then,
ARROW specifies the “Def-use” relationships that
would determine the variable/object codes and their
use. “Def-use” relationships are detected through in-
vestigating HTML codes and Java Script codes and
indicate the programmer’s expectation of the execu-
tion sequence of the program. Wherever there is a dif-
ference between the “causal graph” and the “Def-use”
relationships, the race condition is detected. RClassify
[36] detects harmful race conditions on the client-side
statically. In order to detect harmful race conditions,
race condition alarms are first received as input. For
each pair of events a and b, whose race condition
alert is received, RClassify first executes event a and
then event b. Then, it executes the events by revers-
ing the order. If different results are achieved from
the two executions, the variables of Java Script or
HTML DOM or . . . are different, which means that
harmful race condition is detected. EventRaceCom-
mander [37] has presented an automatic method to
resolve client-side race conditions statically; in other
words, it has presented a static approach for detect-
ing AJAX race conditions. The proposed method re-
solves the race condition vulnerability in the Java
Script web applications through controlling the events
and postponing event handlers. One of the imple-
mented policies is to postpone AJAX requests until
the response of the first AJAX request is received.
Adamsen [34] has presented a novel method for de-
tecting the race conditions occurring during the ini-
tialization phase of JavaScript web applications. The
proposed method detects vulnerabilities dynamically.
Such events occur due to uncertainty in the order of
executing the event handlers. The tools designed in
this paper, known as INITRACER, can detect the
events occurring in the initialization phase of the web

ISeCure

January 2022, Volume 14, Number 1 (pp. 83–104) 85

application. AJAXRACER [33] has presented a dy-
namic method to detect harmful AJAX race condi-
tions. The proposed method has two steps. In the
first step, the program is executed and event han-
dlers with common AJAX responses are detected. A
graph is provided for each event, which carries in-
formation about the event and its invocation. For
each two events with common Ajax response, two
execution modes are studied. First, the events are
executed serially without any time interference. In
the second mode, the events are executed with time
interference. Finally, the results are compared. If the
results are different, the application will be vulnera-
ble to the race condition. Petro et al. [28] formally
defined the relationship with a happens-before order
for the first time and designed WebRacer based on
these concepts to detect the client-side race dynami-
cally. Mutlu et al. [32] have presented a method for
detecting harmful race conditions on the client-side
(AJAX race) dynamically. Harmful race conditions
result in a persistent browser state or server change.
It detects race conditions that change sensitive vari-
ables (like client-side cookies, local storage, session
storage and HTML DOM). This detection method
checks the traffic obtained from the execution of the
application and analyzes whether or not the sensitive
variables receive different values at different execu-
tions. If different values are received a race condition
is detected. EventRacer [31] has proposed a dynamic
method for detecting race conditions in JavaScript
applications with the event concept. EventRacer de-
tects vulnerabilities, considering the events existing
in the application and defining happens-before rela-
tionships and a vector clock for the events.

3 Defining Race Condition and
Types of Race Condition

In the web applications, the race condition is divided
into two categories; server-side race and client-side
race. Server-side race conditions occur when different
processes access common data without proper syn-
chronization and at least one of them intends to write
on the common data. The race condition originates
from the bugs of programmers due to improper syn-
chronization [17, 18]. Server-side race condition occurs
when the operations are not atomic [21]. Client-side
race condition occurs because many of the JavaScript
web applications employ AJAX for server-client com-
munication. In addition, asynchronous requests (asyn-
chronous scripts, requests for receiving external re-
sources etc.) result in client-side race condition.

3.1 Defining Race Window

Race window is the duration of applying the race
attack vector to the application. If the attack vector

Figure 1. Race window

Figure 2. Condition required for server-side race to occur in
web application

occurs in the time window and the application is
vulnerable, the attack would be successful. “Server-
side race window” is defined as follows.

Definition 1 (Server-Side Race Window).
Race window in a process is the interval between
checking shared data and using them (performing
operations).

T1, T2 ∈ Time, T1 < T2

RW = { [T1, T2] in Process1 | the time between
checking shared data and using them (acting by
them) in a process }

Figure 1 shows the race window. If a process
changes the shared data during the race window, race
condition will occur in the web application. Figure 2
shows the condition required for the race condition
to occur.

3.2 Detected Race Conditions

One of our innovations is stating the varieties of
session puzzling races in the web application. We show
varietes of session puzzling race conditions in the web
application in Table 1. Naming and categorizing are
all our innovations. We describe them in details as
follows.

3.3 Session Puzzling Race

“Session puzzle” refers to a type of web application vul-
nerability that can be detected and misused through
applying the race vector at the application level. Such
attack vectors have no malicious input. In other words,
the session puzzle occurs due to the uncontrolled cre-
ation and population of sessions or using identical
session-identifier value at the entry points of the ap-
plication [26]. The only condition for the existence of
vulnerability of “session puzzle” is that there are at
least two entry points of the application with iden-
tical session-identifier value and the attack vector is

ISeCure

86 BLSPR: Dynamic Security Testing Against Session Puzzling Race Conditions in BL — Alidoosti et al.

applied in the race window. The objectives of the
adversary in the session puzzling race are as follows:

• Bypassing authentication mechanism and im-
personating legal users;

• Privilege escalation of the malicious user;
• Passing the conditional steps in multi-step pro-

cesses even if proper constraints are considered
in the code level.

Various types of “Session Puzzling Races” are de-
scribed as follows.

3.3.1 Log-in Session Puzzling Race

The guest user tries to log-in to one or more user ac-
counts in parallel. If the sessions are not synchronized
properly in the server, parallel log-ins to multiple user
accounts simultaneously affect each other. For two
different user accounts, that raises puzzled sessions,
followed by confidentiality violation. Simultaneous
log-in to one user account in parallel violates integrity
because parallel operations are performed via two dif-
ferent sessions on one user account. These operations
might interfere with each other. Simultaneous log-out
is also studied, but no example is found in the web
applications. Log-in Session Puzzling Race is shown
in Figure 3. It should be noted that Alice performs
the first process and Bob performs the second process.
According to Figure 3, the first process (P1) and the
second process (P2) can be described as follows:

P1: WRITE (P1, usernameAlice)→ CHECK (P1, usernameAl-

ice) → ACT (P1, log-in) or USE (P1, log-in)

P2: WRITE (P2, usernameBob) → CHECK (P2, username-

Bob) → ACT (P2, log-in) or USE (P2, log-in)

The race window of this attack vector can be de-
scribed as follows:

RW= { [T1, T2] in P1 | T1: when P1 completes WRITE (P1,

usernameAlice) , T2: before P1 starts ACT (P1, log-in) or USE

(P1, log-in) }

The occurrence condition of “Log-in Session Puz-
zling Race” is as follows:

WRITE (P2, usernameBob) occurs in Race Window

3.3.2 Authentication-Bypass Session
Puzzling Race

This attack vector can bypass the authentication
mechanism by creating a race condition and using the
“session puzzling” attack vector. In order to misuse
this type of vulnerability, all entry points of the web
application with the same session-identifier value are
detected. In other words, if the application creates
the session-identifier value based on username, the
page with user authentication and the page without
user authentication that only receives the username

Figure 3. Log-in Session Puzzling Race

can have the same session-identifier value. In this
attack, user1 is authenticated at one entry point and
at another entry point that can be accessed by the
public, and only a username is received, user2 enters
his username. Here, since the session identifier of
user2, either authenticated or not authenticated, is
the same, user1 can see the profile of user2. Therefore,
we have logged in to the profile of user2 without
authentication.

“Authentication-Bypass Session Puzzling Race” is
shown in Figure 4. According to Figure 4, the first
and second processes may be described as follows:

P1: WRITE (P1,usernameAlice)

P2: WRITE (P2,usernameBob)

The race window of this attack vector can be de-
scribed as follows:

RW= { [T1, T2] in P1 | T1: when P1 completes writing (after

log-in) , T2: before P1 logs out }

The condition for “Authentication-Bypass Session
Puzzling Race” to occur is as follows:

WRITE (P2,usernameBob) occurs in Race Window

3.3.3 User-Impersonation Session Puzzling
Race

This attack vector is like “authentication-bypass ses-
sion puzzling race” with the difference that both en-

ISeCure

January 2022, Volume 14, Number 1 (pp. 83–104) 87

Table 1. Varieties of Session Puzzling Race Conditions in web application

Server-Side Race Session Puzzling Race

Log-in Session Puzzling Race

Authentication-Bypass Session Puzzling Race

User-Impersonation Session Puzzling Race

Privileged-Escalation Session Puzzling Race

Flow-Enforcement-Bypass Session Puzzling Race

Figure 4. Authentication-Bypass Session Puzzling Race

try points with the same session-identifier value have
an authentication mechanism. The second difference
is that the value overwritten in the session identifier
should belong to a valid user. “User-Impersonation
Session Puzzling Race” is shown in Figure 5. Accord-
ing to Figure 5, the first and second processes can be
described as follows:

P1: WRITE (P1, usernameAlice)

P2: WRITE (P2, usernameBob)

The race window of this attack vector can be de-
scribed as follows:

RW= { [T1, T2] in P1 | T1: when P1 completes writing (after

log-in) , T2: before P1 logs out }

The condition for “User-Impersonation Session Puz-
zling Race” to occur is as follows:

WRITE (P2,usernameBob) occurs in Race Window

Figure 5. User-Impersonation Session Puzzling Race

3.3.4 Privilege-Escalation Session Puzzling
Race

Since user roles and privileges are usually stored in the
session-identifier value, “session puzzling” escalates
the privilege by changing the session-identifier value,
and therefore the user can access the contents to
which he had not access before.

Since the client does not usually initialize the privi-
leges, finding the entry point, which provides the pos-
sibility to change the value of the role-related session-
identifier, is difficult. One of these entry points is
role-specific contents which might be able to change
their session-identifier value.

In order to use session puzzling for privilege esca-
lation, the adversary should be authenticated (or use
authentication-bypass mechanisms) before access to
the entry points of the application whose role-related
variable has the same session storage with the en-
try point with a lower privilege. This may stem from

ISeCure

88 BLSPR: Dynamic Security Testing Against Session Puzzling Race Conditions in BL — Alidoosti et al.

Figure 6. Privilege-Escalation Session Puzzling Race

the implementation flaws or the existence of limited
points in the application to which the privilege is not
applied correctly.

“Privilege-Escalation Session Puzzling Race” is
shown in Figure 6. According to Figure 6, the first
and second processes can be described as follows:

P1: WRITE (P1, usernameAlice and isAdminNo)

P2: WRITE (P2, usernameBob and isAdminYes)

The race window of this attack vector can be de-
scribed as follows:

RW= { [T1, T2] in P1 | T1: when P1 completes writing (after

log-in) , T2: before P1 logs out }

The condition for “Privilege-Escalation Session
Puzzling Race” to occur is as follows:

WRITE (P2, usernameBob and isAdminYes) occurs in Race

Window

The other way to escalate privileges is as follows:
The administrator tries to change roles and privileges
of some users and administrators in parallel. If the
sessions are not synchronized properly in the server,
parallel requests simultaneously affect each other and
cause escalation of the privilege of the user. There-
fore, he can access the data which he could not before.
The administrator performs this vulnerability and
the tester is not eager to check this because the ad-
ministrator user can apply more harmful operations.

Indeed, it can be considered as an internal attack vec-
tor for applying harmful operations without formal
privileges and without an operation report of the user
being recorded.

3.3.5 Flow-Enforcement-Bypass Session
Puzzling Race

One of the most interesting capabilities of the session
puzzling is the flow enforcement in multi-step pro-
cesses. Some conditional multi-step processes are as
follows: password recovery process (the conditional
step is responding the question in which the adver-
sary should know the answer that the user has given
to the question in the registering process), financial
transactions process (entering specifications of the
user’s bank account), and permission grant processes
(authenticating the user for completing the operation
again). In order to enforce the flow by session puz-
zling, at least two multi-step processes with identi-
cal flow flags should be executed simultaneously. It
should be mentioned that the counter for the steps of
these two processes should be the same. For instance,
in order to bypass the step of entering the informa-
tion of the bank account in the financial transaction
process, the user registration, which is a multi-step
process (it is a process without conditional step), is
executed simultaneously. If the flags of these two pro-
cesses are the same, the conditional step (entering
information of the bank account) can be bypassed.

In general, both multi-step processes (one process
must be conditional and the other unconditional)
should be executed simultaneously, but the adversary
should execute the unconditional multi-step process
first and then use its flags to bypass the conditional
step in the conditional multi-step process. In addi-
tion, the counter for the steps of the two processes
should be the same. A common multi-step process in
unconditional and unrestricted applications is user
registration.

“Flow-Enforcement-Bypass Session Puzzling Race”
is shown in Figure 7. The steps of “Flow-Enforcement-
Bypass Session Puzzling Race” are as follows:

Assumption 1: The user registration process and
password recovery process have the same flags, and in
addition, the lengths of both processes are the same.

Assumption 2: Alice and Bob have the same level
of access.

(1) The first process consists of the user’s regis-
tration process in order to create and initial-
ize the flags and stop them until the last step
(P1:WRITE (P1, flags));

(2) The second process is to start the password
recovery process (P2: WRITE (P2, flags));

(3) Continue with the user registration process and

ISeCure

January 2022, Volume 14, Number 1 (pp. 83–104) 89

Figure 7. Flow-Enforcement-Bypass Session Puzzling Race

complete it (P1:WRITE (P1, flags));
(4) The user registration process flags are used in

this process to pass the conditional step in the
recovery password process. Therefore bypassing
the conditional step in the recovery password
process (by changing the URL to success status)
and finally Bob can change the password in the
password recovery process.

According to Figure 7, the first and the second
processes are unconditional multi-step process and
conditional multi-step process respectively. They can
be described as follows:

P1: WRITE (P1,flags)

P2: WRITE (P2,flags)

P1: WRITE (P1,flags)

The race window of this attack vector can be de-
scribed as follows:

RW= { [T1, T2] in P2 | T1: when P2 starting, T2: before P2

reaches to sensitive phase }

The condition for “Flow-Enforcement-Bypass Ses-
sion Puzzling Race” to occur is as follows:

WRITE (P1, flags) occurs in Race Window

4 Business-Layer Session Puzzling
Racer

In order to evaluate security of the application against
race conditions, Business-Layer Session Puzzling

Racer is proposed. Business-Layer Session Puzzling
Racer employs dynamic web application security
testing in the business layer to detect the vulnerabil-
ity of the application against race condition attacks.
Figure 8 depicts the Business-Layer Session Puzzling
Racer overview. Business-Layer Session Puzzling
Racer is situated as a proxy between the web appli-
cation and the web server. Business-Layer Session
Puzzling Racer comprises three main steps as follows:

(1) Finding the business processes of the applica-
tion;

(2) Detecting processes prone to race condition in
the business layer of the application;

(3) Applying race condition test scenarios in the
business-layer of the web application and evalu-
ating the results.

The normal user scans the web application se-
quentially and traffic of the normal user is stored.
Business-Layer Session Puzzling Racer first extracts
the user navigation graph. Then, from the generated
graph, the business processes of the web application
are extracted. Then, the business processes prone to
race condition attack are detected. Finally, the race
condition testing scenario is applied to the business
layer according to the detected critical processes.
Figure 9 shows the Business-Layer Session Puzzling
Racer architecture. Each step is described in details
hereunder.

4.1 Finding Business Processes of the Web
Application

In order to detect the business process of the web
application, the user navigation graph should be ex-
tracted first. Then, the generated graph should be
used to detect the business processes. We discussed
extracting business processes in the web applications
in our previous work BLProM [1, 2] in details. Fig-
ure 10 depicts the steps involved in BLProM.

4.1.1 Extracting User Navigation Graph

Business-Layer Session Puzzling Racer first extracts
the user navigation graph from the stored traffic.
Figure 3 depicts the steps involved in extracting the
user navigation graph. The steps are as follows:

(1) Preprocessing the raw input data;
(2) Detecting the web pages of the web application

existing in the stored traffic;
(3) Clustering the web pages;
(4) Extracting the user navigation graph.

Preprocessing raw input data. Business-Layer
Session Puzzling Racer sanitizes data to eliminate
unnecessary items. In this study, only HTTP requests
and HTTP responses are needed; nonetheless, the

ISeCure

90 BLSPR: Dynamic Security Testing Against Session Puzzling Race Conditions in BL — Alidoosti et al.

Figure 8. Business-Layer Session Puzzling Racer overview

Figure 9. Business-Layer Session Puzzling Racer overview

HTTP responses having a successful status code 200
are needed. Business-Layer Session Puzzling Racer
eliminates the responses having unsuccessful codes
and their corresponding requests. In addition, in this
study, only the GET and POST requests are needed.

Detecting web-application pages existing in
the stored traffic. Each web page of the web appli-
cation can be modeled as a pair (request set, response
set). The request set is a set of HTTP requests sent
for loading the page. The response set is a set of
HTTP responses sent for loading the page.

A user’s stored traffic contains the main HTTP
requests for loading the webpage as well as the sec-
ondary requests meant to load files of the page. To
model the pages existing in the HTTP traffic as a
pair (request set, response set), first the main re-
quests in the HTTP traffic are detected. The HTTP
traffic based on the main detected requests is then
divided into blocks. Each block includes the main re-
quest and the HTTP traffic between the two main
requests. All the requests and responses in the same
block represent the request and response sets of a
page. Business-Layer Session Puzzling Racer consid-
ers a request as the main request if its referer header
is different from the referer of the next request. In

addition, the first request existing in the traffic is con-
sidered as the main request because the first traffic
does not have a referer. It should be mentioned that
the referer header is a header of the HTTP request
that represents the URI address of the previous page
visited by the user.

Thus far, web-application pages have been mod-
eled as a pair (request set, response set). The main
response in the response set of each page should also
be detected. The main responses have a content-type
header with a text/html value. The main response is
of text/html type. Furthermore, if the last response
of the traffic is the main response, the last HTTP
request will be considered as the main request. There-
fore, each page of the web application is modeled
as a pair (request set, response set), and the main
requests and responses are marked.

Clustering web pages. In this step, Business-Layer
Session Puzzling Racer clusters the web pages. The
purpose of clustering is to place similar web pages
in one cluster. Each cluster represents one node of
the user navigation graph. Therefore, the infinite
development of the graph is avoided.

Each pair (request set, response set) shows one page
of the web application. To extract the optimal user

ISeCure

January 2022, Volume 14, Number 1 (pp. 83–104) 91

Figure 10. BLProM: Black-box approach to detect web application business process

navigation graph, similar pages should be identified
and subsequently clustered. In the user navigation
graph, the nodes represent the unique pages of the
web application and the edges serve as connection
between the pages. In our context, two pages are
considered to be similar when the user can perform
similar actions on them. For instance, consider two
pages with a button. The button on the first page
is “continue,” and the button on the second page is
“save.” These two pages are different because the user
performs different actions on them.

Because the final goal of Business-Layer Session
Puzzling Racer is to detect vulnerabilities, clustering
identifies similar pages based on the goal of Business-
Layer Session Puzzling Racer. The input fields and
hyperlinks facilitating interaction with the applica-
tion are critical points in detecting vulnerabilities.
Therefore, HTML elements that have critical points
are considered for detecting similar pages. These el-
ements include buttons, inputs, and anchors exist-
ing in each page. In addition, in the web-application
pages, the position of images is related to the logic of
the page. Therefore, the position of image is another
important element in detecting similar pages.

Definition 2 (Similar Pages). Two pages are con-
sidered to be similar if the user is able to perform
the same actions on them and the positions of im-
portant HTML elements in the pages are the same.
Important HTML elements include buttons, inputs,
anchors, and images existing in each page.

Definition 3 (Similar Pages). Pages whose struc-
tures are the subsets of another page in terms of im-
portant HTML elements are similar to the reference
page.

BLDATS identifies similar pages by comparing the
feature vectors of two pages with each other. The fea-
ture vector of each page is the DOM path of impor-
tant HTML elements existing in the page. Business-
Layer Session Puzzling Racer considers every two
pages with the same feature vector as similar pages
and puts them in one cluster. The algorithm used to
identify similar pages is described in Section 5.1.

Extracting user navigation graph. In this step,
Business-Layer Session Puzzling Racer first extracts
the graph edges that connect clusters. Each cluster
represents a unique web-application page. Each clus-
ter has a set of similar pages, each of which containing
a URI and a referer field. Therefore, each cluster has
a set of URIs and a set of referers, both of which are
associated with the pages existing in that particular
cluster. To find graph edges, the URI set of each clus-
ter is compared to the referer set of other clusters.
If they have at least one member in common, they
will connect to each other. Assume that the URI set
of cluster C1 shares members with the referer set of
clusters C2 and C3. In that case, one can move from
C1 to C2 and C3 (C1 → C2 and C1 → C3); in other
words, C1C2 and C1C3 are graph edges.

Definition 4 (User Navigation Graph). This
graph is represented by tuple 〈C0, C,E〉. Here, C de-

ISeCure

92 BLSPR: Dynamic Security Testing Against Session Puzzling Race Conditions in BL — Alidoosti et al.

notes the set of graph nodes, C0 the initial (first)
node of the graph, E the set of graph edges.

C0 ⊆ C;E ⊆ C × C

4.1.2 Detecting Business Processes in Web
Application

In this step, Business-Layer Session Puzzling Racer
first identifies the final nodes in the user navigation
graph, and it then detects business processes. The
steps to detect business processes are depicted in Fig.
4. We now define the web-application process, final
node, and business process.

Definition 5 (Web-Application Process). A
process P in a web application is a sequence of edges
in the user navigation graph, such as E1, E2, . . . , Ek

that
Ei ∈ E ; Ei = Ci−1Ci.

Definition 6 (Final Node in the User Naviga-
tion Graph). The final node F is the node such that
when a web application reaches it, then the business
process is completed.

By investigating HTTP responses, the final node
can be identified. For instance, when a product is
purchased, an expression such as “thank you for your
purchase” is shown. By identifying a set of such
expressions and searching for these expressions in
the response messages, the final node can be deter-
mined. The keywords used to identify the final node
are thanks, congratulations, successfully, log off, and
search results among others. In addition, some but-
tons are good indicators for identifying the final node.
The page after save button, the page after create
button, and the page after submit button are some
examples in this context.

Definition 7 (Business Process in the Web Ap-
plication). A business process BP in the web ap-
plication is a process that meets at least one of the
following requirements:

(1) The beginning node of the process is the initial
node of the user navigation graph (C0), and
the ending node of the process is the final node
of the user navigation graph (F);

(2) If the process passes the beginning node once
again and if the process length is greater than
2. (If in a process, the user returns to the be-
ginning node and if the length of the loop is
greater than 2, it is a business process).

4.2 Detecting Critical Business Processes
in the Web Application

The proposed method uses the outputs of the BL-
PRoM to perform the black-box test on the business

layer of the web application and takes the identified
business processes as input. Business-Layer Session
Puzzling Racer goes through the following two stages:

(1) Identifying race condition attack-prone pro-
cesses in the business layer of the application;

(2) Performing the black-box test on the business
layer and checking the results.

In order to identify the processes susceptible to the
race condition attack, or what we herein refer to as
critical processes, one must identify the business pro-
cesses whose pages exhibit particular trace patterns.
The trace patterns corresponding to different race
conditions are discussed here. These processes are
vulnerable to the race condition attack. Algorithm
1 shows the pseudocode for identifying the critical
processes (vulnerabilities to race condition attack in
the application).

Algorithm 1 CriticalProcessDetection
Input: : TrP as a set of trace pattern
BP as a set of business processes in the web application

Output: CrP as a set of critical process

1: procedure CriticalProcessDetection

2: Algorithm CriticalProcessDetection

3: Begin
4: Let CrP= Ø; //set of web application critical processes
5: Let i=0; //counter for business processes in BP
6: Let j=0; //counter for web pages in a business processes

7: for each business process in BP do

8: for each web pages in the business processi do
9: if (web pagej has a trace pattern in TrP)

10: CrP ← business processi

11: done;
12: j=j+1;

13: done;

14: i=i+1;
15: done;

16: end

17: end procedure

4.2.1 Required Definitions

HTML-element-start[e,o,i]: Marks the start of an
HTML element, where e is the event index, o is the
DOM element along with its attributes, and i con-
tains some information on the HTML element (e.g.
VISIBLE refers to visibility of the element while
WRITABLE declares that the element is neither read-
able nor inactive).

{...}ji: shows the combination of the HTML element
for the indicated numbers, where i and j are the min-
imum and maximum counter for repetitions, respec-
tively.

ISeCure

January 2022, Volume 14, Number 1 (pp. 83–104) 93

4.2.2 Detecting Critical Processes of
“Log-in Session Puzzling Race”

Under this race condition, the critical process consists
of logging in the user account. The following trace
pattern is defined to identify the business processes
that log-in the user account.

Figure 11 shows the trace pattern characterizing
a user log-in page. According to this pattern, any
page of the application that contains an HTML form
with two writable input elements and one button
element is recognized as a user log-in page. In the Log-
in Session Puzzling Race condition, the shared data
refers to the user name. The writing in the user name
occurs in a page of the application with the trace
pattern shown in Figure 11, where all input fields
are filled in. The use name checking operation and
then acting operation occurs once the log-in button
in the trace pattern described in Figure 11 is clicked.
By definition, the race condition time window spans
between the writing and acting of the user name.

4.2.3 Detecting Critical Processes of
“Authentication-Bypass Session
Puzzling Race”

Critical processes in “Authentication-Bypass Session
Puzzling Race are all business processes with the au-
thentication mechanism (log-in processes shown in
Figure 11) and business processes without authentica-
tion that can be accessed by public. It should be men-
tioned that the processes which can be accessed by
public should receive a username at the entry point;
we call these process public-entry-point processes. For
example, password recovery and user registration pro-
cesses are public-entry-point process. According to
Figure 12, pages existing in these processes have an
HTML button or clickable input labeled as “recovery
password”, “register”, “forgot password” and “sign
up”. If such buttons exist in the page of a process,
the process can be public-entry-point process.

4.2.4 Detecting critical process of “User-
Impersonation Session Puzzling Race”

The trace pattern for detecting the critical process of
“User-Impersonation Session Puzzling Race” is similar
to “Authentication-Bypass Session Puzzling Race”.

4.2.5 Detecting critical process of
“Privilege-Escalation Session Puzzling
Race”

In order to detect the critical process of “Privilege-
Escalation Session Puzzling Race”, “write parameter”
and “write process” should be defined first.

Definition 8 (Write Parameter). Assume that
the application W includes a set of web pages WP
where each web page is a pair of (REQ request set,
RESP response set). Each request using GET or
POST method can have parameters that are called
Parameters and are represented with PP. Parameter
PP is called the write parameter if its value is stored
in a table in the dataset for each request sent to load
the page.

Definition 9 (Write Process). The write process
is the business process where at least one of the web
pages of the process has the “write parameter”.

The pseudo-code for extracting the “write processes”
in the web application is shown in Algorithm 2. For
all existing business processes in the web application
(line 5), all pages of the process are checked (line 6);
if at least, one of the pages has the write parameter
(line 7), the business process of interest is the write
process (line 8).

Algorithm 2 ExtractWriteProcess
Input: : BP as a set of business processes of the web application
Output: CrP as a set of web application Write processes

1: procedure ExtractWriteProcess

2: Algorithm ExtractWriteProcess

3: Begin
4: Let CrP= Ø; //set of web application critical processes

5: Let i=0; //counter for business processes in BP

6: Let j=0; //counter for web pages in a business processes
7: for each business process in BP do

8: for each web pages in the business processi do

9: if (web pagej has Write Parameter)
10: CrP ← business processi

11: GOTO here;

12: done;
13: j=j+1;

14: done;
15: here:
16: i=i+1;

17: done;
18: return CrP;

19: end

20: end procedure

4.2.6 Detecting Critical Process of
“Flow-Enforcement-Bypass Session
Puzzling Race”

The critical processes of “Flow-Enforcement-Bypass
Session Puzzling Race are multiple step processes
which are limited (sensitive multi-step processes) and
the processes which are not limited (simple multi-step
processes).

Definition 10 (Sensitive Multi-Step Process).
“Sensitive multi-Step process” is the “write process”
which performs sensitive operations on the system
or the user account and includes qualifying steps to

ISeCure

94 BLSPR: Dynamic Security Testing Against Session Puzzling Race Conditions in BL — Alidoosti et al.

{〈 Log-inPattern 〉 := {〈 HTML-element- start[ej,oinput,VISIBLE,WRITABLE] 〉} 2n 〈 HTML-element-
start[ek,obutton | Oa,VISIBLE,CLICK, “log” | “sign”]〉 n=2 }

Figure 11. Trace pattern of Log-in

{〈 public-entry point Pattern 〉 := 〈 HTML-element- start[ek,obutton | Oa,VISIBLE,CLICK, “recovery
password”| “forgot password”| “register”| “sign up”| “New Customer”]〉}

Figure 12. Trace pattern of public-entry point

check if the initiating entity has the proper identity
or permission.

It should be mentioned that the “sensitive multi-
step process” has a minimum length of 2.
Definition 11 (Simple Multi-Step Process).
“Simple multi-Step processes” is the “write pro-
cess” whose length is at least 2 and which is not a
“sensitive multi-step process”.

The pseudo-code for detecting the critical processes
of “Flow-Enforcement-Bypass Session Puzzling Race”
is shown in Algorithm 3 Lines 9 to 13 detect “sen-
sitive multi-step processes” in the web application.
The common sensitive multi-step processes of the ap-
plication include password recovery, payment process
and the process which required authentication for the
rest of the operations. Therefore, when write opera-
tions have a minimum length of 2 (line 9) and one of
the pages of the process has at least one of “recovery
password”, “forgot password”, “cash” and “payment”
keywords, or at least two pages of the process have
Log-in-DOM (line 10), the mentioned process is a
sensitive multi-step process (line 11).
Lines 14 to 18 define the race window of the ”sensi-
tive multi-step processes”. The race window of the
mentioned processes spans from the start of the pro-
cess (finishing step 1) to the qualifying step (the step
where there is at least one of the keywords) (line 16).
Lines 20 to 25 detect the “simple multi-step pro-
cesses”. Each write process which has a minimum
length of 2 (line 21) and it is not a “sensitive multi-
step process” (line 22) is a “simple multi-step process”
(line 23).

4.3 Applying Critical Business Processes of
the Web Application and Evaluating
Results

At this stage, Business-Layer Session Puzzling Racer
applies to the identified critical processes toward
the web application and the results are checked to
detect the possible vulnerabilities of the application.
In general, the identified critical processes were in-
voked by two threads in both “normal” and “race
condition-prone” modes. In the “normal” mode, the
two threads were invoked successively, where the
second thread was only invoked once the first thread
came to completion. In the “race condition-prone”
mode; however, the second thread invoked at some

time within the time window of the first thread.
Then we compare the outputs of critical process in
the two modes to check for potential vulnerabilities
of the application. Later, this stage of Business-Layer
Session Puzzling Racer is thoroughly explained for
each of the mentioned modes. A pseudo code for
identifying race conditions are given in Algorithm 4.
Of course, there are differences in the details for each
type of the race mode.

4.3.1 Detecting “Log-in Session Puzzling
Race”

The pseudo-code for detecting the vulnerability of web
application against “Log-in Session Puzzling Race” is
shown in Algorithm 5. For each log-in process (line 3),
two threads called the thread1 with CR user account
and thread2 with user account CR’ (line 4 and 5)
are created. The first and the second threads were
first executed in race-prone mode and then in normal
mode. In race-prone mode thread2 is executed in the
race window of the thread1 (line 7) and then the
final node of second thread is captured and saved
to S1 (line 8). Then two threads are executed in
normal mode; first thread2 is executed completely
then thread1 is executed (line 11) and the final node
of thread2 is captured and saved in S2 (line 12). If
S1 and S2 are not same (line 13) the application
is vulnerable because both processes with different
credentials log-in to the same account.

4.3.2 Detecting “Authentication-Bypass
Session Puzzling Race”

After detecting the critical processes, the log-in pro-
cess is executed with the identity of user1 and then
the public-entry-point process is continued until it
reaches the step to enter the username and username
of user2. In other words, the second process (the
public-entry-point process) is executed in the race
window of the first process (log-in process). If the first
process is now logged in to user 2 profile, it means
that we manage to bypass the user 2 authentication
mechanism. It is explained by the fact that the web
application uses identical session-identifier values for
both authenticated and non-authenticated users.
The pseudo-code for detecting the vulnerability of
web application against “Authentication-Bypass Ses-
sion Puzzling Race” is shown in Algorithm 6 which

ISeCure

January 2022, Volume 14, Number 1 (pp. 83–104) 95

Algorithm 3 Flow-Enforcement-Bypass-Session-PuzzlingRaceDetection
Input: : WrP as a set of write processes of the web application

LGP as a set of web application Log-in processes KEYWORD1={“recovery password”, “forgot password”, “cash”, “payment”, . . . }
KEYWORD2={“register”, “sign up”, “New Customer”, . . . } Output: Detecting if the web application is vulnerable or not

1: procedure Flow-Enforcement-Bypass-Session-PuzzlingRaceDetection

2: Algorithm Flow-Enforcement-Bypass-Session-PuzzlingRaceDetection

3: Begin
4: Let SenP= Ø; //set of web application sensitive multi-step processes

5: LetSimP= Ø; //set of web application simple multi-step processes

6: let i=1; // counter for write processes in WrP
7: let j=1; // counter for web page in BP

8: let k=1; // counter for simple multi-step processes in SimP

9: let l=1; // counter for sensitive multi-step processes in SenP
10: // detecting sensitive multi-step processes in the web application

11: for each write process in WrP which its length ¿=2

12: if (at least one of web pages in the write processi has KEYWORDS1 or at least two pages in the write processi has log-in
DOM)

13: SenP ← write processi;
14: i++;

15: done;

16: //detecting race window of sensitive multi-step processes
17: for each sensitive multi-step processes in SenP

18: race window of sensitive multi-step processl is from second webpage of the process (finishing step 1) to the qualifying step

(the step which has at least one of the KEYWORDS1)
19: l++;

20: done;

21: let i,j=0;
22: // detecting simple multi-step processes in the web application

23: for each write process in WrP which its length ¿=2

24: if (write processi is not a sensitive multi-step process)
25: SimP ← write processi;

26: i++;
27: done;

28: end

29: end procedure

Algorithm 4 RaceConditionDetection
Input: : CrP as a set of web application critical processes
Race windows (RW) of all critical processes in CrP Output:

Detecting if the web application is vulnerable or not

1: procedure RaceConditionDetection

2: Algorithm RaceConditionDetection

3: Begin
4: let i=1; // counter for critical processes in CrP

5: for each critical process in CrP do

6: let thread1 , thread2= critical processi;
7: // execute thread1 and thread2 in “race-prone mode”

and save results

8: //ignore changes in race-prone mode and return
threads in their initial node

9: // execute thread1 and thread2 in “normal mode” and
save results

10: // analyzing results for detecting web application

vulnerabilities
11: i=i+1;

12: done;
13: end
14: end procedure

is derived from the pseudo-code of Algorithm 4. for
each log-in process is called the first thread (lines
5), and for each public-entry- point process which
is called the second thread (line 7), the first and
the second thread are executed such that the write

operation (entering username and sending it) of the
second thread occurs in the race window of the first
thread (line 9). Then the current page of the first
thread is refreshed (line 10). If the current page of
the first thread is different before and after being
refreshed (line 11), the application is vulnerable.

4.3.3 Detecting “User-Impersonation
Session Puzzling Race”

The approach for detecting “User-Impersonation Ses-
sion Puzzling Race” is similar to “Authentication-
Bypass Session Puzzling Race” that is shown in Al-
gorithm 6.

4.3.4 Detecting “Privilege-Escalation
Session Puzzling Race”

The pseudo-code for detecting the vulnerability of
the web application against “Privilege-Escalation
Session Puzzling Race” is shown in Algorithm 7 that
is derived from pseudo-code of Algorithm 4. For each
“log-in process” which is called as the first thread (line
4 and 5) and for each “write process” that is called the
second thread (line 6 and 7), the first and the second
threads are executed such that the write operation of

ISeCure

96 BLSPR: Dynamic Security Testing Against Session Puzzling Race Conditions in BL — Alidoosti et al.

Algorithm 5 Log-in-Session-Puzzling-RaceDetec-
tion
Input: : CrP as a set of web application critical processes

At least two valid credentials (CR, CR’)
Race windows (RW) of all critical processes in CrP

Output: Detecting if the web application is vulnerable or not

1: procedure Log-in-Session-PuzzlingRaceDetection

2: Algorithm Log-in-Session-PuzzlingRaceDetection
3: Begin

4: let i=1; // counter for critical processes in CrP

5: for each critical process in CrP do
6: let thread1 = critical processi with credential CR;

7: let thread2 = critical processi with credential CR’;

8: // execute thread1 and thread2 in “race-prone mode”
and save results

9: execute thread1 and thread2 so that WRITE(thread2,
Content) in RWthread1;

10: S1=screenshot of final node of thread2

11: //ignore changes in race-prone mode and return
threads in their initial node

12: // execute thread1 and thread2 in “normal mode” and

save results
13: execute thread2 completely then execute thread1 com-

pletely

14: S2=screenshot of final node of thread2
15: if(S1 not equal S2)

16: critical processi is vulnerable to Log-in-Session-
Puzzling Race;

17: i++;

18: done;
19: end

20: end procedure

the second thread occurs in the race window of the
first thread (line 8), and then the current page of the
first thread is refreshed (line 9). If the current page
of the first thread before and after being refreshed is
different (line 10), the application is vulnerable.

4.3.5 Detecting “Flow-Enforcement-Bypass
Session Puzzling Race”

Algorithm 8 shows vulnerable processes to “Flow-
Enforcement-Bypass Session Puzzling Race”. For
each “simple multi-step process”, known the first
thread (line 4, 5), and for each “sensitive multi-step
process”, known as the second thread (line 6, 7),
if thread1 and thread 2 have the same length (line
8), the first thread is executed before reaching the
last step (line 9) and the second thread is executed
until reaching the sensitive step (line 10). The first
thread is completed in the race window of the second
thread (line 11). If the second thread can be finished
by enforcing the sensitive step (line 12), these two
threads are vulnerable (line 13).

5 Implementation

First, a normal user starts crawling the web applica-
tion sequentially and in-depth but its traffic is saved.

Algorithm 6 Authentication-Bypass-Session-Puzz-
lingRaceDetection
Input: : CrP as a set of web application log-in critical processes
and public-entry point critical processes
At least two valid credentials (CR, CR’)

Race windows (RW) of all critical processes in CrP

Output: Detecting if the web application is vulnerable or not

1: procedure Authentication-Bypass-Session-

PuzzlingRaceDetectionn
2: Algorithm Authentication-Bypass-Session-

PuzzlingRaceDetectionn

3: Begin
4: let i=1; // counter for log-in critical processes in CrP

5: let j=1; // counter for public-entry-point critical pro-
cesses in CrP

6: for each log-in critical process in CrP do

7: let thread1 = log-in critical processi with credential
CR;

8: for each public-entry point critical process in CrP do

9: let thread2 = public-entry point critical processi with
credential CR’;

10: // execute thread1 and thread2 in “race-prone mode”

and save results
11: execute thread1 and thread2 so that WRITE(thread2,

CR’) in RWthread1;
12: Refresh current node of thread1

13: if(current node of thread1 before and after refreshing

are not identical)
14: thread1 and thread2 are vulnerable ;

15: j++;

16: done;
17: i++;

18: done;

19: end
20: end procedure

According to the user roles, a user can have different
levels of access; therefore, depending on the levels of
access different user navigation graphs may be ob-
tained. In this research, the normal user has the user
access level and navigates the authorized pages. The
normal user crawls all different parts of the applica-
tion that are allowed to navigate. If the user reaches
the page without a hyperlink, he/she can return to
the homepage of the application and crawl with other
hyperlinks.
The user’s HTTP traffic is given as input to the BL-
ProM module and the web application business pro-
cesses are extracted. The business processes identified
by BLProM are then examined to select processes
with critical race conditions. Business-Layer Session
Puzzling Racer uses the MITMProxy server to in-
teract dynamically with the application and receive
HTML and JavaScript source files.
Business-Layer Session Puzzling Racer uses the Pro-
tractor test framework so that it can load the se-
lected business process in the Google Chrome browser
through a proxy and then identify critical processes
through the defined conditions. Finally, the results
are saved and photographed. In other words, the final
page of the process is photographed.

ISeCure

January 2022, Volume 14, Number 1 (pp. 83–104) 97

Algorithm 7 Privilege-Escalation-Session-Puzzling-
RaceDetection
Input: : BP as a set of business processes of the web application

LGP as a set of web application Log-in processes
At least one valid credentials (CR)

WrP as a set of web application Write processes(that have
public entry point or by credential CR)

Privilege-Escalation-Session-Puzzling Race windows (RW) of

all log-in processes in LGP
Output: Detecting if the web application is vulnerable or not

1: procedure Privilege-Escalation-Session-
PuzzlingRaceDetection

2: Algorithm Privilege-Escalation-Session-
PuzzlingRaceDetection

3: Begin

4: let i=1; //counter for Log-in processes in LGP

5: let j=1; //counter for write processes in WrP
6: for each Log-in process in LGP

7: let thread1 = Log-in processi with credential CR;
8: for each write process in WrP

9: let thread2= write processj;

10: execute thread1 and tread2 so that WRITE(thread2,
CR) in RWthread1;

11: Refresh current node of thread1

12: if(current node of thread1 before and after refreshing
are not identical)

13: thread1 and thread2 are vulnerable ;

14: j++;
15: done;

16: i++;

17: done;
18: end

19: end procedure

The identified critical processes are performed twice
to assess the vulnerabilities (once in normal mode
and in the other time in race-prone mode) and the
results are photographed. Photos of each step are
compared by using the LooksSame library. If the pho-
tos are different, the web application is vulnerable.
It should be noted that Business-Layer Session Puz-
zling Racer does not consider the difference in a pixel
(x, y) in both normal and race-prone modes to avoid
false positive. Moreover, to determine the sameness
of photos in the two modes, some parts of the two
photos are displayed in bold.
Business-Layer Session Puzzling Racer can detect the
application load completion. The process is executed
for each detected business to determine the loading
completion of the entire process of pages. Some ap-
plications are never loaded because they use a timer
and some web application loading is not completed
because of the timer. Web applications whose pages
have slideshows which are changed automatically ev-
ery few seconds are a case in point. In such situations,
Business-Layer Session Puzzling Racer does not con-
sider timer events that exceed the threshold value
when loading the application pages. The assessments
showed that the implementation of this policy does
not affect the performance of Business-Layer Session
Puzzling Racer; however, this policy prevents false

Algorithm 8 Flow-Enforcement-Bypass-Session-
PuzzlingRaceDetection
Input: : WrP as a set of write processes of the web application
LGP as a set of web application Log-in processes
SenP as a set of web application sensitive multi-step processes

SimP as a set of web application simple multi-step processes

Output: Detecting if the web application is vulnerable or not

1: procedure Flow-Enforcement-Bypass-Session-
PuzzlingRaceDetection

2: Algorithm Flow-Enforcement-Bypass-Session-
PuzzlingRaceDetection

3: Begin

4: let k=1; // counter for simple multi-step processes in
SimP

5: let l=1; // counter for sensitive multi-step processes

in SenP
6: for each simple multi-step process in SimP

7: let thread1 = simple multi-step processk;

8: for each sensitive multi-step processes in SenP
9: let thread2= sensitive multi-step processl;

10: if(thread1 and thread2 have same length)

11: execute thread1 except last step;
12: execute thread2 and pause execution before sensitive

step
13: continue executing thread1 and complete so that

WRITE(thread1, flags) in RWthread2 ;

14: if(thread2 can reach to its final node with skipping
sensitive step)

15: thread1 and thread2 are vulnerable ;

16: done;
17: else continue;

18: j++;

19: done;
20: i++;

21: done;

22: end
23: end procedure

positives when photos are compared. Besides, GIF
animations are ignored to avoid false positives.

6 Experiment Results and Evaluation

In order to evaluate the proposed method, Business-
Layer Session Puzzling Raceris applied to different
benchmark applications. The experiments are ap-
plied to 6 open-source and well-known applications
that may be loaded offline. Table 2 shows the ap-
plications used for evaluations; Opencart v3.0.3.3
[46], Ror˙ecommerce [47], Lightning Fast Shop [48],
Broadleaf [49], MyBB v1.8.15 [50], Oxid v6.0.2-0 [51]
and Puzzlemall.
Our test bed has a web server (test target) and a
client (Business-Layer Session Puzzling Racersystem
and legal user). Web server and client are loaded on
a virtual machine. The web server and the client’s
profiles are shown in Table 3 . Six applications given
in Table 2 are installed on the web server and these
web applications are tested in the business layer.

The results of experiments performed on the se-
lected applications are shown in Table 4.

ISeCure

98 BLSPR: Dynamic Security Testing Against Session Puzzling Race Conditions in BL — Alidoosti et al.

Table 2. Selected web applications for evaluation

Application Language Web Deployment in Iran Web Deployments GitHub Stars as of 7/12/2020 Lines of Code

Opencart v3.0.3.3 [46] PHP 1,732 919,041 5,563 136,544

Ror ecommerce [47] Ruby (Rails) NA NA 1,199 17,224

Lightning Fast Shop [48] Python NA NA 524 25,163

Broadleaf [49] Java NA NA 1,385 163,012

MyBB v1.8.15 [50] PHP 116 9,520 699 15,689

Oxid v6.0.2-0 [51] PHP 56 5,899 185 23,126

Puzzlemall PHP NA NA 46 985

Table 3. Test bed profiles

OS: windows 8.1

VMware CPU: 1GHZ

VMware RAM: 1G

VMware OS: windows 7

Web server (test target)

OS: windows 8.1

VMware CPU: 1GHZ

VMware RAM: 1G

VMware OS: windows 7

Client (Semantic Web Racer machine)

Table 4 represents the vulnerabilities detected in
the selected applications. In Table 4, #attack re-
quest shows counter for http requests in the attack
scenario for specific vulnerability. #vul (E) shows
counter for the vulnerabilities existed in the vulnera-
ble web applications. #vul (D) shows the counter for
detected vulnerabilities by Business-Layer Session
Puzzling Racer. #TP and #FP shows counter for
true positive and false positive of Business-Layer
Session Puzzling Racer in detecting vulnerabilities.
If any of the selected web application does not have
the specific vulnerability, we state “Nothing found”
in Table 4. For Client-side Races, we prefer to find
them in real web sites because none of the selected
web applications were vulnerable to them. As shown
in Table 4 the average counter for attack requests
where Business-Layer Session Puzzling Racer is ap-
plied against the web application is 30.39. It shows
that Business-Layer Session Puzzling Racer does not
force any considerable traffic to the web application
and between 5 existed vulnerabilities in selected web
applications and websites, Business-Layer Session
Puzzling Racer detects all of them without any false
positive.

6.1 Performance evaluations

To evaluate the performance of Business-Layer Ses-
sion Puzzling Racer, we define the following perfor-
mance indicators.

• Accuracy: It denotes the precision of Business-

Layer Session Puzzling Racer in detecting vul-
nerabilities.

• Overhead: It is the average CPU usage, memory
usage, and bandwidth usage of the Business-
Layer Session Puzzling Racer system.

• Effectiveness: It signifies if Business-Layer Ses-
sion Puzzling Racer is able to detect vulnera-
bilities in real web applications.

To evaluate the accuracy of Business-Layer Session
Puzzling Racer, we used the following metrics: true
positive rate (TPR), false positive rate (FPR), false
negative rate (FNR), precision, and recall. The TPR,
recall, and precision of Business-Layer Session Puz-
zling Racer are 100%. The FPR and FNR of Business-
Layer Session Puzzling Racer are 0%, as they have
no false positive or false negative in detecting vulner-
abilities. To calculate the overhead of Business-Layer
Session Puzzling Racer, we used some metrics such
as memory usage, CPU usage, and bandwidth usage
of the Business-Layer Session Puzzling Racer system
during the execution time for detecting the vulner-
abilities of the selected web applications. The aver-
age CPU usage, average memory usage, and average
bandwidth usage of the Business-Layer Session Puz-
zling Racer system were 9.60%, 21.99%, and 56.552
KB/s, respectively.

To evaluate the effectiveness of Business-Layer Ses-
sion Puzzling Racer, we applied Business-Layer Ses-
sion Puzzling Racer to selected web applications that
are widely used in public. As we showed in Table 4
Business-Layer Session Puzzling Racer was able to
detect vulnerabilities without any false positive.

6.1.1 Comparison of Business-Layer Session
Puzzling Racer and ACIDRain

The main problem of ACIDRain [11] is because it as-
sumes that single-operation transactions cannot cre-
ate a race condition, it does not recognize all “update
race”, and “unique-identifier race” items, and most
of “limit-based race” items. Another problem with
ACIDRain is that after identifying transactions that

ISeCure

January 2022, Volume 14, Number 1 (pp. 83–104) 99

Table 4. Detected vulnerabilities in the selected web applications

Vulnerability Vulnerable Web application # Attack Requests # Vul (E) # Vul (D) #TP #FP

Log-in Session Puzzling Race Puzzlemall 10 1 1 1 0

Authentication-Bypass Session Puzzling Race Puzzlemall 6 1 1 1 0

User-Impersonation Session Puzzling Race Puzzlemall 6 1 1 1 0

Priviledge-Escalation Session Puzzling Race Puzzlemall 6 1 1 1 0

Flow-Enforcement-Bypass Session Puzzling Race Puzzlemall 11 1 1 1 0

Table 5. Time complexity and overhead complexity of Business-Layer Session Puzzling Racer

Vulnerability Vulnerable Web application CPU usage (%) Memory usage (%) Bandwidth usage (bps)

Log-in Session Puzzling Race Puzzlemall 7.21 16.85 16453

Authentication-Bypass Session Puzzling Race Puzzlemall 7.21 16.85 16453

User-Impersonation Session Puzzling Race Puzzlemall 7.21 16.85 16453

Privileged-Escalation Session Puzzling Race Puzzlemall 7.21 16.85 16453

Flow-Enforcement-Bypass Session Puzzling Race Puzzlemall 9.36 23.56 18798

Average 9.60 21.99 56552

are likely to be abnormal and lead to a race condition,
they run a parallel number of transactions to the ap-
plication to determine whether or not the detected
transaction really leads to a race condition. Apply-
ing a large number of transactions in parallel to the
application increases the likelihood of denial of ser-
vice attack to the application. The #Nework I/O and
#Concurrent Requests criteria were used to indicate
the increased likelihood of a denial of service attack.

Figure 13 and Figure 14 compare graphs gener-
ated by Business-Layer Session Puzzling Racer and
ACIDRain in terms of graph nodes and graph edges,
respectively. On average, the generated graph in
Business-Layer Session Puzzling Racer has improved
about 75.51% in terms of the number of graph nodes
and about 73.79% in terms of the number of graph
edges compared to ACIDRain. The generated graph
in ACIDRain is very large and non-optimal because
ACIDRain compares the timestamp of database query
and timestamp of API calls. If they are in the same
time interval, the desired API calls will generate the
database query. In this method, an API can be called
multiple times at specific intervals, all of which are
displayed independently in the abstract history graph
generated by ACIDRain and there is no mechanism
to prevent infinite graphs. As a result, the generated
graph is not optimal and can be infinitely expanded.

Another problem is that after the identification of
abnormal transactions that lead to a race condition,
ACIDRain runs a parallel number of transactions to
the application to determine if the detected trans-
action has really led to a race condition. Applying
a large number of transactions in parallel to the ap-

plication increases the likelihood of a denial of ser-
vice (DoS) attack. Figure 15 and Figure 16 uses the
#Nework I/O and #Concurrent Requests criteria
to indicate the increased likelihood of denial service
attack. Each criterion is explained as follows:

• Network I/O in KB/sec: Network I/O in KB/sec
criterion represents the amount of traffic ex-
changed during the Parallel execution of re-
quests.

• #Concurrent Requests: the number of concur-
rent requests indicates how many requests are
sent in parallel to the web application to make
the race condition in the web application.

As shown in Figure 15, the average traffic ex-
changed during parallel execution of requests in
ACIDRain and Business-Layer Session Puzzling
Racer is 15038.32 KB/sec and 844.49 KB/sec, re-
spectively. Thus, the Business-Layer Session Puzzling
Racer method has improved the exchanged traffic
by about 94.38%. The average number of parallel
requests sent to an application in ACIDRain and
Business-Layer Session Puzzling Racer is 31 and 2,
respectively. Thus, the Business-Layer Session Puz-
zling Racer method has improved the percentage of
requests by about 93.52%. Because ACIDRain sends
requests when executing requests without considering
the time window, it has to send more requests in
parallel to create a race condition.

6.2 Comparison of Business-Layer Session
Puzzling Racer and ACIDRain

Figure 17 compares the Business-Layer Session Puz-
zling Racer and the INITRACER in terms of average

ISeCure

100 BLSPR: Dynamic Security Testing Against Session Puzzling Race Conditions in BL — Alidoosti et al.

Figure 13. Comparison of average number of graph nodes pro-
duced by Business-Layer Session Puzzling Racer and ACIDRain

Figure 14. Comparison of average number of graph edges pro-
duced by Business-Layer Session Puzzling Racer and ACIDRain

Figure 15. Comparison of average Network I/O in Busi-

ness-Layer Session Puzzling Racer and ACIDRain

of vulnerability detection time. Business-Layer Ses-
sion Puzzling Racer goes through three stages; identi-
fication of business processes, identification of critical
processes, and application of critical processes; to in-
vestigate the results. The INITRACER goes three
stages; namely, the observation mode, adverse mode,
and validation mode. On average, it took 88.81s for
the INITRACER to identify the vulnerabilities, while
Business-Layer Session Puzzling Racer required, on
average, only 23.9s for the same purpose. This is

Figure 16. Comparison of average number of parallel requests

in Business-Layer Session Puzzling Racer and ACIDRain

Figure 17. Comparison of average vulnerability detection time
in Business-Layer Session Puzzling Racer and INITRACER

rooted in the fact that INITRACER loads the appli-
cation several times during the identification stage to
search for critical sequences, extending the vulnera-
bility identification time and hence lowering its effi-
ciency. In contrast, Business-Layer Session Puzzling
Racer receives, as input, the user’s HTTP traffic and
analyzes it to identify the critical processes. Once
the critical process was identified, the application is
launched only once in the normal mode and once in
the race condition-prone mode.

6.3 Comparison of Business-Layer Session
Puzzling Racer and ACIDRain

Figure 18 compares Business-Layer Session Puzzling
Racer to AjaxRacer in terms of the time required
to identify the vulnerabilities to user-event ajax
race condition. The Business-Layer Session Puzzling
Racer took an average of 18.93s to identify the vul-
nerabilities while the AjaxRacer could perform the
same in no better than 589.53s on average. This
indicates that Business-Layer Session Puzzling Racer
could exhibit the same level of accuracy in 96.78%
less time. The reason the AjaxRacer detection time
is high stems from the fact that for each of the Ajax
events in the application, it first generates a separate
graph and then evaluates the event for security.

ISeCure

January 2022, Volume 14, Number 1 (pp. 83–104) 101

Figure 18. Comparison of average vulnerability detection time

in Business-Layer Session Puzzling Racer and AjaxRacer

7 Conclusion

In this study, various session puzzling race conditions
are studied and types of session puzzling race condi-
tions existing in the applications are defined. More-
over, the black-box method (Business-Layer Session
Puzzling Racer) is proposed for the dynamic applica-
tion security testing of the web application in the busi-
ness layer. The proposed approach detects business-
layer vulnerabilities of the web application against
various session puzzling race conditions. Furthermore,
Business-Layer Session Puzzling Racer does not result
in DoS attack on the web application and improves
the vulnerability detection traffic by about 94.38%.
In future works, we intend to extend the proposed ap-
proach to identifying server-side and client-side race
conditions with a view to detecting various types of
race conditions.

References

[1] Mitra Alidoosti, Alireza Nowroozi, “BLProM:
Business-layer Process Miner of the web appli-
cation”, International Conference on Informa-
tion Security and Cryptology, 2018.

[2] M. Alidoosti, A. Nowroozi, A. Nickabadi, “BL-
ProM: A Black-Box Approach for Detecting
Business-Layer Pro cesses in the Web Appli-
cations”, Journal of Computing and Security,
vol.6, no.2, pp.65-80, july 2019.

[3] M. Alidoosti, A. Nowroozi, and A. Nickabadi,
“Evaluating the Web-Application Resiliency to
Business-Layer DoS Attacks,” ETRI Journal ,
vol.42, no.3, 2019. doi:10.4218/etrij.2019-0164.

[4] E. Brattli Sørensen, Jingyue Li, “A Literatu re
Review and Practitioner Survey on Using Vul-
nerability Detection Tools to Defend Against
Access Control Vulnerabilities,” Technical Re-
port, Department of Computer Science, Nor-
wegian University of Science and Technology,
December 2019

[5] S. Zeller, N. Khakpour, D. Weyns, D. Deogun,

“Self-Protection Against Business Logic Vulner-
abilities,” IEEE/ACM 15th International Sym-
posium on Software Engineering for Adaptive
and Self-Managing Systems, Seoul, South Ko-
rea, May 2020.

[6] F. Nabi, J. Yong, and X. Tao, “A Novel Ap-
proach for Component based Application Logic
Event Attack Modeling,” International Journal
of Network Security, vol.22, no.3, pp.437-443,
May 2020.

[7] Y. Chen, L. Xing, Y. Qin, X.Liao, X. Feng
Wang, K. Chen, W. Zou, “Devils in the Guid-
ance: Predicting Logic Vulnerabilities in Pay-
ment Syndication Services through Automated
Documentation Analysis,” In28th USENIX Se-
curity Symposium Security, pp. 747-764, 2019.

[8] M. Ghorbanzadeh, HR. Shahriari, “Detecting
application logic vulnerabilities via finding in-
compatibility between application design and
implementation,” IET Software, vol. 14, no. 4,
pp. 377-88, Mar 2020.

[9] H. Homaei, HR,. Shahriari, “Seven years of soft-
ware vulnerabilities: The ebb and flow,” IEEE
Security & Privacy, vol. 15, no. 1, pp. 58-65,
Feb 2017.

[10] H. Homaei, HR,. Shahriari, “Athena: A frame-
work to automatically generate security test
oracle via extracting policies from source code
and intended software behaviour.” Information
and Software Technology, vol. 1, no. 107, pp.
112-24, Mar 2019.

[11] M. Monshizadeh, P. Naldurg, VN. Venkatakr-
ishnan, “Vulnerabilities for web applications us-
ing logic patcher,” In Sixth ACM Conference
on Data and Application Security and Privacy,
pp. 73-84, Mar 2016.

[12] Deepa G, Thilagam PS, Praseed A, Pais AR,
“DetLogic: A black-box approach for detecting
logic vulnerabilities in web applications. Jour-
nal of Network and Computer Applications,”
Vol.109, no.1, pp. 89-109, May 2018

[13] RJ. Emous, “Towards systematic black-box test-
ing for exploitable race conditions in web apps”,
Master’s thesis, University of Twente.

[14] R. Paleari, D. Marrone, D. Bruschi, M. Monga.
“On race vulnerabilities in web applications”. In-
International Conference on Detection of Intru-
sions and Malware, and Vulnerability Assess-
ment , Springer, Berlin, Heidelberg. pp. 126-
142, July 10 2008.

[15] W.G. Halfond , J. Viegas , A. Orso,: “A Classi-
cation of SQL-Injection Attacks and Counter-
measure”s. In: Proceedings of the IEEE Inter-
national Symposium on Secure Software Engi-
neering, Arlington, VA, USA ,March 2006.

[16] CERT: Advisory CA-2000-02: “Malicious

ISeCure

102 BLSPR: Dynamic Security Testing Against Session Puzzling Race Conditions in BL — Alidoosti et al.

Table 6. Comparing related works

Research Article Analysis type Analysis approach Type of vulnerability Type of approach Weakness

INITRACER [34] Dynamic Three phase detection Only 3 race vulnerability automatic Only Ajax races during web
page initialization

CompuRacer [13] Dynamic BY sending parallel request Has checklist of vulnerabilities Systematic not automatic DoS attack and make web ap-

plication unavailable

AJAXRacer [33] Dynamic By triggering special Ajax

events in two modes and com-

paring them

Only 3 category of races automatic Only Ajax races after web page

initialization

WebRacer [28] Dynamic By detecting happens-before re-

lations

Only some of Ajax races automatic Only formally define happens-

before relations

ARROW [35] Static By detecting happens-before re-

lations and Def-use relations

Only some of Ajax races automatic It has false positive

RClassify [36] Static Recognizing harmful races from

receiving alerts

Only some of Ajax races automatic It only classifies harmful and

harmless races

Paleari et al. [14] Dynamic By monitoring interaction be-

tween database and web appli-

cation

Only data base races automatic It needs to define proper input

and interleaving

EventRaceCommander [37] Static Repairing Ajax Races by post-

poning user/system events

Only Ajax races automatic It has false positive

Mutlu et al. [32] Dynamic Analyzing dataflow of sensitive

variable in different scripts

Only one Ajax race automatic Ignore harmful races in web ap-

plication initialization

EventRacer [39] Dynamic Analyzing happens-before rela-

tions and defining vector clock

for events

Only four Ajax race automatic Reports over-whelming counter

for harmless races

Table 7. Comparing previous studies in terms of detecting vulnerabilities

Log-inSessionPu-
zzlingRace

Authentication-BypassSession
PuzzlingRace

User-Impersonation
SessionPuzzlingRace

Privilege-Escalation
SessionPuzzlingRace

Flow-Enforcement-Bypass Ses-
sionPuzzlingRace

INITRacer [34] × × × × ×

CompuRacer [13]
√

× × × ×

AJAXRacer [33] × × × × ×

WebRacer [28] × × × × ×

ARROW [35] × × × × ×

RClassify [36] × × × × ×

Paleari et al. [14] × × × × ×

EventRaceCommander × × × × ×

Mutlu et al. [37] × × × × ×

EventRacer [32] × × × × ×

DetLogic [41] ×
√ √

× ×

Business-LayerSessionPuzzlingRacer
√ √ √ √ √

HTML Tags Embedded in Client Web Requests”
,2002.

[17] Netzer RH., Miller BP., ”What are race condi-
tions?: Some issues and formalizations”, Pro-
gramming Languages and Systems, vol.1, no.1,
pp.74-88, 1992.

[18] E. Pozniansky and A. Schuster, “Efficient on-
the-fly data race detection in multihreaded C++
programs”, Proceedings of the Symposium on
Principles and Practice of Parallel Program-
ming, June 11-13, 2003, San Diego, Canada.

[19] D. Dean and A. J. Hu, ”Fixing races for fun and
profit: how to use access(2)”, USENIX Security
Symposium, vol.2, no.14, 2004.

[20] E. Tsyrklevich and B. Yee, ”Dynamic detec-
tion and prevention of race conditions in file ac-

cesses”, USENIX Security Symposium, vol.17,
2003.

[21] M. Bishop and M. Dilger, “Checking for Race
Conditions in File AccessesComputing Sys-
tems”, vol. 9, no. 2, pp. 131-152, 1996.

[22] PA. Emrath, S. Ghosh, DA. Padua, “Detecting
nondeterminacy in parallel programs”. IEEE
Software, vol.9 no.1, pp:69-77, Jan 1992.

[23] C. Flanagan, SN. Freund, “Detecting race con-
ditions in large programs”. InProceedings of
the 2001 ACM SIGPLAN-SIGSOFT workshop
on Program analysis for software tools and en-
gineering, pp. 90-96, Jun 2001.

[24] SV.Adve, MD. Hill, BP. Miller, RH. Netzer,
“Detecting data races on weak memory systems”.
ACM SIGARCH Computer Architecture News.

ISeCure

January 2022, Volume 14, Number 1 (pp. 83–104) 103

Vol. 19, no.3 , pp. 234-243, May 1991.
[25] Shin Hong, Yongbae Park, and Moonzoo Kim.

“Detecting Concurrency Errors in Client-Side
JavaScript Web Applications”.In Proc. 7th
IEEE International Conference on Software
Testing, Veriication and Validation, 2014.

[26] James Ide, Rastislav Bodik, and Doug Kimel-
man.” Concurrency Concerns in Rich Internet
Applications. In Proc. Workshop on Exploiting
Concurrency Eiciently and Correctly, 2009.

[27] CS. Jensen, A. Mùller, V. Raychev, D. Dim-
itrov, and M.T. Vechev. 2015. “Stateless Model
Checking of Event-Driven Applications”. In
Proc. 30th ACM SIGPLAN International Con-
ference on Object-Oriented Pro-gramming, Sys-
tems,. Languages, and Applications , 2015

[28] B. Petrov,M. Vechev, M. Sridharan, J. Dolby.
“Race detection for web applications”. InACM
SIGPLAN Notices , Vol. 47, No. 6, pp. 251-262,
June 2012.

[29] W. Wang, Y. Zheng, P. Liu, L. Xu, X. Zhang,
and P. Eugster. “ARROW: Automated Repair
of Races on Client-Side Web Pages”. In Proc.
25th International Symposium on Software Test-
ing and Analysis , 2016.

[30] Y. Zheng, T. Bao, and X. Zhang, “Statically Lo-
cating Web Application Bugs Caused by Asyn-
chronous Calls”. In Proc. 20th International
Conference on World Wide Web, 2011.

[31] V. Raychev, M. Vechev, M. Sridharan. “Effec-
tive race detection for event-driven programs”.
InACM SIGPLAN Notices ,Vol. 48, No. 10, pp.
151-166,. October 2013

[32] E. Mutlu, S. Tasiran, B. Livshits. “Detecting
JavaScript races that matter”. InProceedings
of the 2015 10th Joint Meeting on Foundations
of Software Engineering, pp. 381-392, August
2015.

[33] CQ . Adamsen, A. Møller A, F. Tip. “Prac-
tical AJAX race detection for JavaScript web
applications”. InProceedings of the 2018 26th
ACM Joint Meeting on European Software En-
gineering Conference and Symposium on the
Foundations of Software Engineering, 2018.

[34] CQ . Adamsen, A. Møller A, F. Tip. “Practical
initialization race detection for JavaScript web
applications”. Proceedings of the ACM on Pro-
gramming Languages. Vol. 1, issue. OOPSLA,
October 2017.

[35] W. Wang, Y. Zheng, P. Liu, L. Xu, X. Zhang,
and P. Eugster. “ARROW: Automated Repair
of Races on Client-Side Web Pages”. In Proc.
25th International Symposium on Software Test-
ing and Analysis , 2016.

[36] L. Zhang, C. Wang. “RClassify: classifying race

conditions in web applications via deterministic
replay”. InProceedings of the 39th International
Conference on Software Engineering , pp. 278-
288, 2017.

[37] CQ. Adamsen, A. Møller, R. Karim, M. Srid-
haran, F. Tip, K. Sen. “Repairing event race
errors by controlling nondeterminism”. In2017
IEEE/ACM 39th International Conference on
Software Engineering (ICSE) ,pp. 289-299, May
2017.

[38] S. Chen.” Session Puzzling and Session
Race Con-ditions”, 2011. [Online]. Avail-
able: http://sectooladdict.blogspot.com/
2011/09/session-puzzling-and-session-

race.html.
[39] R. Veselin, M. T. Vechev, and Manu Sridharan.

“ Efective Race Detection for Event-Driven Pro-
grams”. InProc. 28th ACM SIGPLAN Interna-
tional Conference on Object Oriented Program-
ming Systems Languages, 2013.

[40] S. Ramachandran. “Web metrics: Size and
counter for resources”. https://developers.
google.com/speed/articles/web-metrics.
Last updated: 26 May 2010.

[41] Deepa G, Thilagam PS, Praseed A, Pais AR.
DetLogic: A black-box approach for detecting
logic vulnerabilities in web applications. Jour-
nal of Network and Computer Applications.
Vol.109, no.1, pp. 89-109, May 2018.

[42] R. Abbott, J. Chin, J. Donnelley, W. Konigs-
ford, S. Tokubo, and D. Webb, “Security Anal-
ysis and Enhancements of Computer Operating
Systems,” National Bureau of standards Wash-
ington, D.C., Technical report, 1976.

[43] M. Jadon. (2018) Race Condition Bug In
Web App: A Use Case. [Online]. Available:
https://medium.com/@ciph3r7r0ll/race-

condition-bug-in-web-app-a-use-case-

21fd4df71f0e.
[44] W. E. Howden, “Reliability of the Path Anal-

ysis Testing Strategy,” IEEE Transactions on
Software Engineering, no. 3, pp. 208–215, 1976.

[45] Hallvord Reiar Michaelsen Steen.
2009. Websites playing timing roulette.
https://hallvors.wordpress.com/

2009/ 03/07/websites-playing-timing-

roulette/. (2009).
[46] OpenCart. https://www.opencart.com/.
[47] ror˙ecommerce. https://github.com/

drhenner/ror_ecommerce.
[48] Shop, Lightning Fast. https://github.com/

diefenbach/django-lfs.
[49] Commerce, Broadleaf. https://github.com/

BroadleafCommerce/BroadleafCommerce.
[50] MYBB. https://mybb.com/.
[51] oxid. www.oxid-esales.com.

ISeCure

http://sectooladdict.blogspot.com/2011/09/session-puzzling-and-session-race.html
http://sectooladdict.blogspot.com/2011/09/session-puzzling-and-session-race.html
http://sectooladdict.blogspot.com/2011/09/session-puzzling-and-session-race.html
https://developers.google.com/speed/articles/web-metrics
https://developers.google.com/speed/articles/web-metrics
https://medium.com/@ciph3r7r0ll/race-condition-bug-in-web-app-a-use-case-21fd4df71f0e
https://medium.com/@ciph3r7r0ll/race-condition-bug-in-web-app-a-use-case-21fd4df71f0e
https://medium.com/@ciph3r7r0ll/race-condition-bug-in-web-app-a-use-case-21fd4df71f0e
https://hallvors.wordpress.com/2009/ 03/07/websites-playing-timing-roulette/. (2009)
https://hallvors.wordpress.com/2009/ 03/07/websites-playing-timing-roulette/. (2009)
https://hallvors.wordpress.com/2009/ 03/07/websites-playing-timing-roulette/. (2009)
https://www.opencart.com/
https://github.com/drhenner/ror_ecommerce
https://github.com/drhenner/ror_ecommerce
https://github.com/diefenbach/django-lfs
https://github.com/diefenbach/django-lfs
https://github.com/BroadleafCommerce/BroadleafCommerce
https://github.com/BroadleafCommerce/BroadleafCommerce
https://mybb.com/
www.oxid-esales.com

104 BLSPR: Dynamic Security Testing Against Session Puzzling Race Conditions in BL — Alidoosti et al.

Mitra Alidoosti received the B.S.
and M.S. degrees in computer engi-
neering from the Department of Com-
puter Engineering, Iran University
of Science and Technology, Tehran,
Iran, in 2009 and 2012, respectively.
Currently, she is working toward
the Ph.D. degree in computer engi-

neering at Malek-e-Ashtar University of Technology,
Tehran, Iran. Her research interests are computer
network security, VoIP and SIP security, and web-
application security.

Alireza Nowroozi is a freelance
consultant who advises government
and private-sector-related industries
on information technology. He has
four-year experience as an academic
staff and an IT post-doctoral posi-
tion with Sharif University of Tech-

nology, Tehran, Iran. He is a specialist in artificial
intelligence, cognitive science, software engineering,
and IT security, and he is a co-founder of four IT
startups.

Ahmad Nickabadi received the
B.S. degree in computer engineer-
ing in 2004, and the M.S. and Ph.D.
degrees in artificial intelligence in
2006 and 2011, respectively, from
Amirkabir University of Technology,
Tehran, Iran. He is currently an as-

sistant professor with the Department of Computer
Engineering, Amirkabir University of Technology. His
research interests include statistical machine learning
and soft computing.

ISeCure

	1 Introduction
	2 Related Work
	2.1 Detecting Server-Side Race Conditions in Web Applications
	2.2 Detecting Client-Side Race Conditions in Web Applications

	3 Defining Race Condition and Types of Race Condition
	3.1 Defining Race Window
	3.2 Detected Race Conditions
	3.3 Session Puzzling Race

	4 Business-Layer Session Puzzling Racer
	4.1 Finding Business Processes of the Web Application
	4.2 Detecting Critical Business Processes in the Web Application
	4.3 Applying Critical Business Processes of the Web Application and Evaluating Results

	5 Implementation
	6 Experiment Results and Evaluation
	6.1 Performance evaluations
	6.2 Comparison of Business-Layer Session Puzzling Racer and ACIDRain
	6.3 Comparison of Business-Layer Session Puzzling Racer and ACIDRain

	7 Conclusion

