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A B S T R A C T

Side-channel attacks are a group of powerful attacks in hardware security that

exploit the deficiencies in the implementation of systems. Timing side-channel

attacks are one of the main side-channel attack categories that use the

time difference of running an operation in different states. Many powerful

attacks can be classified into this type of attack, including cache attacks.

The limitation of these attacks is the need to run the spy program on the

victim’s system. Various studies have tried to overcome this limitation by

implementing these attacks remotely on JavaScript and WebAssembly. This

paper provides the first comprehensive evaluation of timing side-channel

attacks on JavaScript and investigates challenges and countermeasures to

overcome these attacks. Moreover, by investigating the countermeasures and

their strengths and weaknesses, we introduce a detection-based approach,

called Lurking Eyes. Our approach has the least reduction in the performance

of JavaScript and WebAssembly. The evaluation results show that the Lurking

eyes have an accuracy of 0.998, precision of 0.983, and F-measure of 0.983.

Considering these values and no limitations, this method can be introduced

as an effective way to counter timing side-channel attacks on JavaScript and

WebAssembly. Also, we provide a new accurate timer, named Eagle timer,

based on WebAssembly memory for implementing these attacks.

c© 2020 ISC. All rights reserved.

1 Introduction

Among the attacks on hardware security, side-
channel attacks are one of the most powerful

attacks. These attacks are used to exploit the defi-
ciencies in the implementation of systems, regardless
of their theoretical flaws. These attacks are based on
leaked information from system implementation. One
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of the most common side-channel attacks is timing
side-channel attacks that use the time difference
of running an operation in different states. These
attacks are used to break cryptographic algorithms,
read the victim’s secret information, and fault inject-
ing. Cache attacks are a kind of timing side-channel
attacks in which the attacker steal the victim data
by CPU cache [1–3]. Although these attacks have
high power in extracting the victim’s cryptographic
key, there is an important limitation to them that
the attacker program must run on the victim’s sys-
tem. For this reason, since 2015, various studies have
implemented these attacks remotely, on JavaScript
and WebAssembly platforms [4, 5].
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Different countermeasures are proposed at three
levels of hardware, operating system, and software
to counter timing side-channel attacks on JavaScript
and WebAssembly. The hardware-level countermea-
sures [5–8] will generally be very costly because they
are usually associated with a change in architecture
and structure, but they will be very powerful. The
operating system level countermeasures [4, 8–10] are
also usually associated with structural changes. Also,
some methods of this level will deprive the user of the
benefits of some JavaScript features. The software
level’s countermeasures are very flexible and practi-
cal so in many related work, several countermeasures
are introduced [5, 9, 11–13]. Despite the benefits of
software methods, no effective method has been in-
troduced so far that it does not prevent the perfor-
mance of JavaScript. Such a countermeasure can be
implemented with a detection-based approach.

This work is the first survey and comprehen-
sive evaluation on timing side-channel attacks on
Javascript and WebAssembly platforms. The vari-
ous aspects of these attacks are investigated in this
paper. Moreover, in this word, we introduce: 1) a
new accurate timer, based on WebAssembly memory
timer, named Eagle timer, and 2) a method to de-
tect timing side-channel attacks on JavaScript and
WebAssembly, named Lurking Eyes.

Lurking Eyes is presented as an effective way to
counter timing side-channel attacks on JavaScript and
WebAssembly. To implement our approach, we have
investigated timing side-channel attacks implemented
in different ways on JavaScript and WebAssembly.
We then have extracted the features and functions
that lead us to detect these attacks. The evaluation
results show that Lurking Eyes has high accuracy and
does not impose any restrictions on the JavaScript.
Note that our detection method (Lurking Eyes) first
introduced in [14] and this work is an extended version
of [14].

The contributions of this paper can be summarized
as follows:

• The first comprehensive evaluation on Javascript
and WebAssembly timing side-channel attacks

• Presenting a new accurate timer, based on We-
bAssembly memory, named Eagle timer

• Introducing Lurking Eyes, a detection based
countermeasure for timing side-channel attacks
on JavaScript and WebAssemly. The Lurking
eye has an accuracy of 0.998, precision of 0.983,
and F-measure of 0.983.

In the following, first, we explain background such
as CPU cache, memory deduplication, speculative ex-
ecution, and JavaScript and WebAssemly platforms
in Section 2. Side-channel attacks, especially timing

side-channel attacks, are investigated in Section 3. In
Section 4, we perform an overview on the side-channel
attacks implemented on JavaScript and WebAssem-
bly. The challenges of timing side-channel attacks
are discussed in topics timers and eviction strate-
gies in Section 5 and Section 6. We introduce the
countermeasures for timing side-channel attacks on
JavaScript and WebAssembly in Section 7. Then, in
this section, to overcome the weaknesses of the pre-
vious countermeasures, we present and evaluate our
detection method, named Lurking Eyes. Finally, we
conclude and introduce future works in Section 8.

2 Background

In this section, a brief review of caches in modern
CPUs as a structure used in many side-channel at-
tacks is made. The concepts of memory deduplica-
tion and speculative execution are discussed, and fi-
nally, an overview of JavaScript and WebAssembly
languages is described.

2.1 CPU Cache

Calling data from memory is considered a bottle-
neck. To prevent this bottleneck, modern systems are
created hierarchically. This hierarchy is made up of
memories at different types, speeds, and capacities.

Modern processors use hierarchical caches. The
highest cache level (L1) is the nearest memory to the
CPU and is smaller and faster than the two others.
L1 usually consists of two caches: Instruction Cache
and Data Cache. Typically, in modern x86 CPUs, an
intermediate cache, named L2 is used. The third level
of cache (Last Level Cache: LLC) is shared between
all the cores of a multi-core chip and maintain both
instructions and data. The CPU to fetch data from
main memory, first, access the L1 cache, and if the
data were not at the L1, the request would be sent
down in the memory hierarchy to hit in the cache or
the main memory. L1 cache is usually indexed with
virtual addresses, and other levels are indexed with
physical addresses. To fetch data from memory, the
CPU checks the existence of data in the cache. If the
result is positive, it is called cache hit, otherwise, it is
called cache miss. Figure 1 shows the cache hierarchy.
The cache structure is the basis of many timing side-
channel attacks [1–3, 15–17].

2.2 Memory Deduplication

In many cases, especially when we have the same
operating system and several virtual machines, the
contents that are mapping from these virtual ma-
chines to the main memory are the same. Memory
deduplication merges these similar contents in the
main memory. The way memory deduplication works
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Figure 2. The process of memory deduplication

are to share memory by scanning through the main
memory and finding duplicate pages. Each duplicated
page is merged into one page and mapped into both
original locations. The process of memory deduplica-
tion is shown in Figure 2. When one of the processes
shared in one place tries to write into the shared
memory region, the Copy-on-Write page fault will
happen. Thus the operating system makes a copy of
that region [4, 18–20]. This page fault causes a time
difference in the run time and is used by the attacker
to steal private information. It is the basis of memory
deduplication attack.

2.3 Speculative Execution

Speculative execution can be considered as a key to
optimizing run-time efficiency used by modern CPUs.
Speculative execution results in increased efficiency
by guessing the probable execution path. The basis of
speculative execution is to predict the following path
of the program. The code of this path is executed
before it is identified whether it is the path that must
be executed now to prevent the delay of waiting for
doing the work after it is known that it is needed. If it
is determined that the work was not needed, after all,
the changes made by this path are reverted. Given
this feature and misdirecting the branch prediction
unit, we will leak some information through CPU
cache [7]. This is done by executing a specific code in

the victim program and misleading the branch unit.

2.4 JavaScript and WebAssemly Overview

JavaScript is a lightweight, dynamic, and object-
oriented language with a run-time evaluation that em-
powers the modern web on the client-side. JavaScript
codes, once received by the browser, will be compiled
and optimized by a just-in-time mechanism.

Today, JavaScript can be executed not only in the
browser, but also on the server, and generally on any
device that has a JavaScript engine. JavaScript en-
gine is a computer program that executes JavaScript
codes. The function of the JavaScript engine is read-
ing the script, converting it to the machine language,
and then running the machine code. JavaScript was
designed to run in a single-threaded environment.
Browser vendors introduced Web Workers to simulate
multi-threading. A web worker is a JavaScript that
is executed in the background, separate from other
scripts [21–24].

WebAssembly is a low-level and assembly-like lan-
guage that can be run in modern browsers, with per-
formance near to native codes. By compiling some
language codes like C/C++ and Rust to WebAssem-
bly, they can be executed on the web. The Chrome
70 release supports multi-threading for WebAssem-
bly, experimentally. JavaScript and WebAssebly plat-
forms have been used to implement remote timing
side-channel attacks due to their unique features.

2.5 WebAssembly Memory

WebAssembly memory is a resizable ArrayBuffer that
contains a linear array of bytes that can be read
or written. Note that the ArrayBuffer is an object
used to represent a fixed-length raw binary data
buffer [25]. The read and write process is performed
by WebAssembly low-level memory access instruc-
tions. WebAssembly memory is accessed by the We-
bAssembly.Memory object. One difference between
WebAssembly memory and JavaScript memory is the
ability to access bytes in memory rows in web assem-
bly directly.

3 Side-Channel Attacks

A bunch of common and powerful attacks in cryptog-
raphy, that exploits the information obtained from the
implementation of cryptography systems, is named
side-channel attacks [26–30]. This type of attack does
not have much attention to the theoretical defects of
algorithms. The first purpose of most of these attacks
is to find the secret cryptography key.

Side-channel information that is interesting in these
attacks consists of power consumption, electromag-
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netic radiation, execution time, and in fewer cases,
optic and acoustic information [26–28].

Generally, side-channel attacks are categorized into
two categories: active and passive. In active side-
channel attacks, we typically try to change the cryp-
tography system’s side entries, like power supply volt-
age and temperature, to generate errors in the system.
The effect of this error will be investigated on the
main and side circuits. On the contrary, passive side-
channel attacks don’t exploit side inputs and only
consider the side outputs of circuit.

In the following, we will focus on timing side-
channel attacks, especially cache attacks and Spectre
attack. There will also be some discussion about fault
attacks after that.

3.1 Timing Side-Channel Attacks

Timing channels are communication channels that
exploit time difference, to transmit information to
a receiver or decoder [31]. Implementations of cryp-
tographic algorithms usually run the calculations at
a fixed time. If this operation deals with secret pa-
rameters and results in a time difference, this time
difference can lead to information leakage. With the
precise statistical analysis of this time difference, the
victim’s secret information, including the private key,
can be obtained. DRAM-based attacks and Cache at-
tacks are two types of the most common side-channel
attacks. What is important in these attacks is to
recognize the presence or absence of certain data in
memory. Two basic elements of these attacks to reach
this goal are time measuring and cache eviction. Time
measuring is necessary to recognize cache hit from
cache miss in caches and row hit from row conflict in
DRAM. Cache eviction is the process of victim data
eviction from memory by calling several data with
specified addresses [1–3].

One of the main disadvantages of cache-based tim-
ing side-channel attacks is the necessity of running the
spy program on the victim’s system. In cache attacks,
the spy and victim should reside in one system or
even in one physical core. To overcome this limitation,
some researches have used JavaScript and WebAssem-
bly as two appropriate platforms [4–6, 12, 18, 32–36].
With these platforms, the spy program can easily run
in the victim system.

3.1.1 Cache Attacks

Cache Attacks are one of the well-known categories of
side-channel attacks that search to find information
about the memory locations that have been accessed
by a victim program [1, 2, 37–44]. Cache attacks
exploit this fact that the accesses of victim process

Attacker Attacker

Prime Access Probe

Victim

(c)(b)(a)

Figure 3. Prime+Probe Attack; (a) Priming the intended

cache set by attacker with the data that is suspected to be
accessed by victim, (b) Victim access to the intended cache

set, (c) Probing the cache sets again by attacker [50]

to memory an be monitored by a spy process, if a
cache is shared between them. These attacks initially
used L1 cache, so there was a need for co-residency
of attacker and victim on the same core, but recent
attacks have shifted from L1 cache to LLC that is
shared between all cores. So these attacks can be
performed between virtual machines [2, 3, 38, 45–49].

The basis of many memory-based attacks is check-
ing the time and detecting cache hit from cache miss;
if execution time is less than one threshold, it shows
the access of the victim to a specific data or code,
and this matter can result in cryptanalysis or user
behavior tracking.

One of the most fundamental cache attacks is the
Prime+Probe attack that first was implemented on
L1 cache in 2005 [1] and ten years later on LLC [2,
47]. The steps of this attack can be summarized as
follows (see Figure 3):

(1) Creating an eviction set for one or more related
set of cache and priming the cache set by an
attacker with the data that is suspected to be
accessed by the victim (Prime)

(2) Triggering victim operation by the attacker and
wait (Wait)

(3) Probing the cache sets again (Probe).

In addition to cross-core and cross-vm cache at-
tacks [29, 48, 51–53], cross-processor cache attacks
constitute another field of research that has been in-
creasing interest among researchers [54, 55].

3.1.2 Spectre Attack

Spectre is the serious security bugs found in modern
processors [7]. This attack is a method of reading
data from another program’s address space that runs
on the processor kernel. In the attack, by misleading
the branch prediction unit, a specific code is executed
in the victim’s program, and the attack will occur. In
this attack, the victim’s confidential information will
be leaked to the attacker.

Spectre is based on speculative execution. Given
this feature and misdirecting the branch prediction
unit, we will leak some information through CPU
cache [7]. The attacker then read this information
from the cache with a kind of flush+reload attack.
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So far, various forms of Spectre attack have been
published [56–58].

3.2 Fault Attacks

The idea of Fault Attack is originated from the sug-
gested methods of two papers [59, 60]. A fault attack
typically needs physical access to the victim device
and consists of stressing that device with an external
mean to generate errors so that these errors results in
a security fault in the system; in fact in the fault at-
tacks we are facing some intentional modifications to
expose the device, some out of specification physical
conditions, like high or low temperature and radia-
tion. However, software-induced physical fault attack
is also possible [61].

Rowhammer is a software-induced hardware fault
that is effective on DRAM chips. The increasing in-
tensity of DRAM ICs conduces smaller memory cells
that can save less charge. This is the cause of lower
margins related to operational noise and increases
the electromagnetic interaction rate between cells,
making data loss more likely. As a result, some an-
noying errors have been observed, originated from
interfering of cells, and arrival of random changes in
bits values stored in the affected memory cells. In
Rowhammer, as a hardware trust problem, the adver-
sary accesses DRAM cells frequently to make unau-
thorized changes in contiguous locations in the mem-
ory [6, 62–64, 64, 65]. The single-sided and double-
sided Rowhammer and their description are shown
in Figure 4.

4 Timing Side-Channel Attacks on
JavaScript and WebAssembly
Performs

JavaScript language is an appropriate platform for
performing timing side-channel attacks because it pro-
vides the possibility of performing attacks remotely
and independent of the CPU and operating system.
Also, JavaScript is enabled by default in modern
browsers. It was suggested to use WebAssembly lan-
guage to improve the level of timing side-channel
attacks on JavaScript [4–6, 32].

Two common elements of timing side-channel at-
tacks on JavaScript and WebAssembly are time mea-

suring and cache eviction. These operations are per-
formed in native attacks by native instructions like
clflush and rdtsc, but it is impossible to execute na-
tive code in sandboxed JavaScript. On the other hand,
there is no access to files and system services, and no
notion of pointers in this language [4, 6]. The meth-
ods to overcome these limitations are investigated in
Section 5 and Section 6. Before that, we will investi-
gate timing side-channel attacks on JavaScript and
WebAssembly.

Cache Attack on JavaScript. In 2015, [5] presented
the first practical cache attack on the JavaScript plat-
form. This attack is performed on LLC. They imple-
mented the Prime+Probe attack on JavaScript and
exploit it to track the user behavior, like the websites
that user browses. Although the paper claimed that
tracking user behavior is more related to the nature
of the remote cache attack, it is important to know
that this attack cannot break the cryptographic keys.

In 2018, [34] improved the level of remote cache
attacks to cryptographic key extracting. This attack
can extract cryptography keys from the ElGamal
and RSA and even Curve25519 Elliptic Curve Diffie-
Hellman. This attack needs to have higher accuracy
than previous ones. To reach this accuracy to attack
ElGamal and ECDH, they used PNACL and Web As-
sembly platforms. The attack consists of two phases:

(1) Online phase: The goal of this phase is to collect
tracks of victim access to precomputed multipli-
ers. To perform this phase, we must open a web
page in browser for PNACL code and another
page for running ecryption operation. Eight ran-
dom cache sets must be selected and be moni-
tored in parallel. Finally, the Prime+Probe cy-
cle must be run in each cache set, and also, the
process must be iterated.

(2) Offline phase: Processing the collected tracks
to extract the key is the aim of the offline phase.
At first, the adversary determines which tracks
correspond with the memory accesses to pre-
computed multipliers. Then matches the tracks
with the algorithm and recognizes the limita-
tions on the tracks-based possible sequence. Fi-
nally combines the limitations and finds the
order of accesses to multipliers.

In 2019, [36] presented a website fingerprinting
attack through the cache occupy channel that works
in two scenarios:

(1) Cross-tab scenario: A scenario like what be
mentioned about [5] and [4] attacks that use
a website with malicious JavaScript and the
process of learning the intended websites, while
the malicious website is open.
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(2) Cross-network scenario: In this scenario, the ad-
versary is considered an on-path attacker that
can inject intended JavaScript code into the
pages. To clarify, assume a user with a session
over an unsecured connection for his ordinary
and non-secret works and another session for
over a secured connection for his secret and sen-
sitive works. An attacker can alter the ordinary
session’s traffic and as a result understand what
are being doing in other sessions.

This attack monitors the whole cache, despite the
previous ones that focused on special sets of the cache.
Though cache occupancy was later used in [45] in
native code for covert channels, this paper is the first
work that uses the cache occupancy channel with a
degraded precision timer.

Another JavaScript-based cache attack was in-
troduced in [66] that exploit the conflict of ASLR
and caching. ASLR is the one important first line
of defense against memory attacks and has an im-
portant role in many countermeasures. [66] showed
that ASLR in modern cache-based architectures con-
flicts with caching, what they called AnC. Relying
on initial access to memory, implementing AnC in
JavaScript is practical. In this attack, an attacker can
derandomize the virtual addresses of code and victim
data by tracking the cache lines that store the inputs
of page table for address translation within itself.

Page deduplication attack on JavaScript. In
2015, [4] presented the first practical page dedupli-
cation attack on JavaScript. By performing this at-
tack, we can determine which programs are running
and specify the special activity of the user, like de-
termining the web pages that are now open in the
user browser. This attack was eligible for any system
supporting page deduplication.
The base of the mentioned attack is similar to the
method presented in [67], but this time in JavaScript.
The steps of the general native method of memory-
deduplication attack are as follows:

(1) Filling a page with the data that an adversary
suspects to find in the memory of victim’s ma-
chine

(2) Waiting for deduplicating similar pages with
the hypervisor of operating system

(3) Trying to write to the page again and measuring
the time

(4) Detecting whether a copy-on-write page fault
has been occur or not

Reproducing these steps in JavaScript includes the
following steps:

(1) Page filling with the data we expect to find in

victim system: Common browsers (chrome and
firefox) run a call to their internal malloc when
allocating a large array in JavaScript, so allo-
cating a large array in JavaScript is done like
native code.

(2) Waiting until the operating system or hypervi-
sor deduplicates our array : As regards that we
don’t have any assumption of how much does it
take to occur page deduplication, the proposed
method is to write the same values in a sim-
ilar location on destination page in a regular
frequency.

(3) Time measurement : In the last step, it is neces-
sary to measure the time to determine whether
page deduplication has been done or not.

The concentration of the previously introduced
memory deduplication attack on JavaScript and the
similar ones in native code ([3, 16, 20, 48, 67, 68]) was
to discover whether a certain page exists in victim
system or not. In 2016, [18] showed that the power of
the deduplication side channel is much more. This pa-
per showed that memory deduplication could enable
an adversary to expose arbitrary data from memory
and to read/write arbitrary memory address.

Rowhammer attack on JavaScript. In
2016, [6] presented a pure implementation of rowham-
mer attack in JavaScript. It was the first hardware
fault injection attack on JavaScript. It is plausible to
perform both one-sided and double-sided rowhammer
attack on JavaScript. The basis of the operation
performed in this attack is to use a large array and
change bits through this array.

Keystroke attacks on JavaScript. Implement-
ing the idea of keystroke attacks on JavaScript is
another interesting field, both for attacks and coun-
termeasures. In 2017, [33] presented the first gen-
eral keystroke attack on JavaScript that target other
browser tabs, processes, and programs. URL and user
classification, and also detecting touch screen inter-
actions are feasible by using this attack. The basis
of this attack is the possibility of keystroke detec-
tion through side channel, according to correspond-
ing risen interrupt. This idea had been implemented
formerly with native code. If a process falls into an
interrupt, a significant difference will be observed in
its execution time. This difference is attributed to
the interrupt management by the operating system.
Specially I/O interrupts (like our investigating inter-
rupt: keystroke interrupt) cause peak observation in
time tracking. The mentioned attack consists of two
phases:

(1) Online phase: In this phase, the interrupt timing
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attack on JavaScript (that explained above) will
be run.

(2) Offline phase: The collected measurements
will be processed and analyzed in this phase.
During this time, an attacker can perform
thousands of tracks to extract victim typing
behavior. The approach of K-NN is used in the
classification of this work.

Timing attack on shared event loops. Event-
driven programming is a common pattern for GUIs,
web clients, and server-side and network program-
ming. Central components of event-driven program-
ming are event loops. [12] in 2017, showed that
shared-event loops are vulnerable to side-channel
attacks. The method of attack is that an adversary
process monitors the pattern of other processes’
loops usage by entering the events to the queue and
measuring their dispatch time.

GPU-based attack On JavaScript. The graph-
ics processing unit (GPU), scaling the number of
processor cores and memories, is an integral part of
today’s computers that is employed to accelerate a
variety of applications such as image rendering [35].
Nevertheless, in 2018, [35] showed that GPU could
be used to speed up microarchitectural attacks. The
leaked information gives us the possibility of perform-
ing timing side-channel attacks are possible.

JavaScript template attack. In the following,
in 2019, [32] presented the first fully-automated
approach to track user behavior based on browser
properties. For this purpose, a template for each
environment must be built.

Spectre attack on JavaScript. In 2019, in the
same paper that Specter attack was first published,
the JavaScript-based implementation of Specter was
also presented [7]. Like a number of other JavaScript-
implemented timing side-channel attacks, this at-
tack uses a large array for the eviction process and
SharedArrayBuffer for time measuring.

Table 1 shows the timing side-channel attacks im-
plemented in JavaScript and WebAssembly over time.

In the following, two main building blocks and chal-
lenges of these attacks, time measuring and eviction,
will be explained in Section 5 and Section 6.

5 Timers in JavaScript and
WebAssembly

To solve the challenge of timing in this platform, the
first idea was to use Performance.now() function [4, 5].
After that, browsers reduced the precision of this func-
tion; thus, various researches have been carried out to
introduce some alternative implicit timers [9, 11, 69].
These timers use several web features to measure time
without having the primary timer function. They can
be considered in either blocking or free-running mode.
The first category runs independently of the rest of
the code in parallel, and the second category, if imple-
mented, blocks the rest of the code. As the most pre-
cious implicit timers, free-running message passing,
using SharedArrayBuffer, and using WebAssembly
memory can be mentioned.

Message passing is a JavaScript mechanism based
on setting message listeners up for one script. This
method of time measuring uses a counter thread with
postMessage function. The precision of this method
in the free-running mode is 15 ms. The method of
using SharedArrayBuffer is an extension of message
passing by web workers. SharedArrayBuffer is the
JavaScript object that presents a fixed-length data
buffer, and its ownership can be shared between mul-
tiple web workers. In this method, a worker increases
the counter value, and the main worker is responsi-
ble for reading the value of this counter as a timer.
Note that the precision of this method in 2 ns. The
last method is based on WebAssembly memory in the
shared mode and has a similar function and precision
to the previous method. A comprehensive review of
represented timers is shown in the Table 2.

In addition to timing methods, some general tech-
niques were presented in [9, 11]. These techniques are
the basis for using these methods. The idea of one
of these techniques, named Clock Interpolation, is to
fine-tune the unit of measurement of an inaccurate
timer (major clock) by a more accurate timer (minor
clock). This process is done in two phases: Learning
and Timing. Another technique, named Edge Thresh-
olding, is used when there is no need for accurate time
stamps and it is sufficient to distinguish between the
time of a function with short running time (ffast) and
a function with long running time (fslow). Figure 5
and Figure 6 illustrate these two techniques.

In the following, we will introduce our timer and
show that this timer and SharedArrayBuffer are the
most powerful and accurate timing solutions for ex-
ecuting side-channel attacks, and their accuracy is
equal to each other.
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Table 1. Timing Side-Channel Attacks on JavaScript and WebAssembly

Attack
Feature Used

Cache
Memory

dedup.
DRAM

I/O

interrupts

JS event

loop
GPU

Web

features

Spec.

execution

Cache Attacks [6, 34] X

Page Deduplication Attacks [18, 40] X X

Rowhammer Attack [6] X

Keystroke Attack [33] X

Event Loop Based Attack in Event-Driven

Programming [12]
X

GPU-Based Attack [35] X

Fully Automated Attack [32] X

Spectre Attack [7] X X

Known

Target = 
[1+(8–4)/8] major 

Major 
Clock

Minor 
Clock

1 major = 
8 minor

Learning Phase Timing Phase

Figure 5. Clock-interpolation technique

padding

fslow

ffast

padding

Clock edge

time

padding

padding

Figure 6. Edge-Thresholding technique

5.1 Eagle Timer: A New Precious Timer
Based on WebAssembly Memory

The timing method presented in this paper is based
on WebAssembly memory, named Eagle timer. We-
bAssembly memory can be shared by setting its
shared flag. Eagle timer used WebAssembly memory
is shared, and a web worker increments the counter

Table 2. A review of timers introduced in JavaScript and
WebAssembly

Timer
Type

Feature Used
Explicit Implicit

Performance.now() [5] X A JS native API

clock-gettime() [34] X A system API

TIME ELAPSED EXT [35] X An OpenGL extension

TIMESTAMP EXT [35] X An OpenGL extension

Video Parsing [69] X Parsing a document

ApplicationCache [69] X File size

Service Worker [69] X A web feature

Script Parsing [69] X Script src attribute

Timeouts [9] X A JS function

Message Passing [9] X A JS API

Message Channel [9] X A JS API

CSS Animation [9, 11] X A CSS ability

SharedArrayBufer [9, 11] X A JS API

Video Frame Data [11] X A JS ability

WebSpeech API [11] X A JS API

WebVTT [9, 11] X A JS API

A Rate Limited Download [11] X Download rate

Cooperating Iframes/Popups

from Same Origin [11]
X Iframes/Popups

clientWaitSync() [35] X A WebGL2’s function

getSyncParameter() [35] X A WebGL2’s function

uniformly, and at the same time, the main worker
reads the value of this counter and uses it as a timer.
Figure 7 shows the mechanism used in this timing
method.

The accuracy of this timing method is the same as
that of using SharedArrayBuffer. Despite the differ-
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Main WorkerTimer Worker

Increasing 
the counter

Reading the 
counter value

                   

Counter ++
Time = New Counter Value –

Previous Counter Value

WebAssembly Memory

Figure 7. WebAssembly memory based timer

ences between WebAssembly memory and JavaScript
memory, it works similarly to SharedArrayBuffer
when shared. The timer provided is a method par-
allel to the method of using SharedArrayBuffer but
in the WebAssembly platform. This is why it can be
claimed that these two timers with an accuracy of 2
ns are the most accurate timers that have been used
so far for timing side-channel attacks on JavaScript
and WebAssembly.

With the introduction of WebAssembly, after sev-
eral years, Google Chrome browser in its version 70,
WebAssembly support for multi-threading capability
was experimentally tested and exposed to the review
and report of developers. Despite the explanations
provided, there is no complete and reliable document
on the details of how multi-threading works on We-
bAssembly, and even contradictory contents are pub-
lished about it. For this reason, in order to understand
how this feature works in WebAssembly, in order to
implement a timer based on multi-threading capabil-
ity in WebAssembly, it was necessary to examine the
multi-threading capability in our work. What should
be briefly mentioned here is that it is not currently
possible to use this feature for timing. Further details
will be provided in Section 5.2.

5.2 Results

In this section, some results obtained from various
studies on timing methods in this paper are presented.
First, the precision of the most precious timers and
the status of different browsers’ support for these
timers are provided. Next, the possibility of measuring
time using the multi-thread feature in WebAssembly
will be discussed, and then, the possibility of running
the system’s APIs in WebAssembly will be examined.

To summarize the results of the investigations on
the accuracy of the timers, pay attention to this sec-
tion. The precision of the most precious timers is pro-
vided in Table 3 and the status of different browsers’
support for these timers are shown in Table 4.

To evaluate the feasibility timing based on multi-
threading capability in WebAssembly, we performed
various studies. After investigations and studies of var-

ious documents about this feature, as well as several
implementations of timing, based on multi-threading
capability in the WebAssembly, the result is that this
feature is now in the form of an initial version with
full multi-threading capability available. This means
that one cannot expect accurate time measurements
by two threads running in parallel. However, the evi-
dence suggests that full multi-threading capability is
likely to be introduced in future versions, and if that
happens, given the risks ahead, the timer based on it
will be one of the most accurate timers available that
can be used for timing side-channel attacks.

We will now look at the possibility of executing sys-
tem’s APIs in WebAssembly. In 2018, the article [34]
claimed that there is no access to the system’s APIs
on WebAssembly. For this reason, system timing in-
structions such as clock gettime cannot be accessed
on this platform. However, our research shows the op-
posite. In this way, in WebAssembly, such instructions
can be accessed without any restrictions. However,
it is obvious that the accuracy of these instructions,
due to browsers’ policies, is reduced to the timers’
accuracy in JavaScript. Thus, although the accuracy
obtained from these instructions is not such that they
can be used to implement timing side-channel attacks
on JavaScript and WebAssembly, the claim made in
the paper [34] will be rejected with the experiments
performed in our work.

6 Eviction Strategies in JavaScript
and WebAssembly

Cache Eviction is the process of filling memory with
new data to evict the data that we expect to flush
from the cache [9]. We face the challenge of cache
eviction in JavaScript because we do not have access
to processor ISA like clflush, and we have no notion
of pointers.

The L1 cache specifies the set assignment of the
lower bits of its virtual address [1]. Assuming that the
attacker knows his own variables’ virtual addresses, [5]
in 2015, it is straightforward to create cache set in
the L1 cache. However, it was a problem that the set
assignment for variables in the LLC is done by refer-
ence to their physical addresses that many processes
do not have access to them. [2] in the same year, pro-
posed to assume that the system is running in large
page mode that 21 lower bits of physical and vir-
tual addresses are similar and it is possible to decide
higher bits by using an iterative algorithm. However,
it still was not a comprehensive solution because it
does not work on 4K page mode that only 12 bits of
physical and virtual addresses are similar.

The mapping method of physical addresses to cache
set indices was discovered by [66], in 2013. According
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Timer Message Passing Message Channel SharedArrayBuffer Beased WebAssembly Memory Based

Precision 15 µs 30 µs 2 ns 2 ns

Table 3. The Precision of Different Timers

PC Mobile Execution Environment

Safari Opera
Internet

Explorer
Firefox Edge Chrome

Samsung

Internet

Safari

on iOS

Opera

for Android

Firefox

for Android

Chrome

for Android

Android

webview
Node.js

Message Passing

Enabled
47

Enabled

10

Enabled
Enabled

12

Enabled
Enabled Enabled Enabled

44

Enabled
10 Enabled Enabled Enabled

Message Channel

5

Enabled

10.6

Enabled

10

Enabled

41

Enabled
Enabled

4

Enabled

1.0

Enabled

5.1

Enabled

11

Enabled

41

Enabled

18

Enabled

4.4

Enabled
Enabled

SharedArrayBuffer

10.1-11

Disabled
Not Supported Not Supported

57

Need to be configed

16-17

Disabled

68

Enabled
Not Supported

10.3-11

Disabled
Not Supported

57

Need to be configed

60-63

Disabled

60-63

Disabled

8.10.0

Enabled

WebAssembly.Memory

11

Enabled

44

Enabled
Not Supported

52

Enabled

16

Enabled

57

Enabled

7.0

Enabled

11

Enabled

43

Enabled

52

Enabled

57

Enabled

57

Enabled

8.0.0

Enabled

Table 4. Final conclusion on supporting state of different browsers from the most precious timers for timing side-channel attacks on

JavaScript and WebAssembly

to this research, by accessing to 8MB contiguous
of physical memory, we can invalidate all of cache
sets. To localize it in a JavaScript environment, [5]
proposed to an 8MB array in virtual memory. Also,
they present an iterative algorithm to identify each
set of the cache.

After that, [6] in 2016, showed that it is possible
to trigger hardware faults by performing fast cache
eviction on all architectures. It was the first compre-
hensive probe on cache eviction strategies. A cache
eviction strategy accesses to the addresses of an evic-
tion set in a special access pattern. The introduced
method of this paper consists of two phases:

(1) Offline Phase: In this phase, the attacker finds
the most consistent eviction strategy for his
accessing machines, between many strategies
for different platforms, considering the criteria
eviction rate, execution time, hit rate, and miss
rate.

(2) Online Phase: Attacker targets an unknown
system.

In windows, physical pages are handed out based
on cache sets. The addresses that are 128KB apart
usually map into the same cache set. [18] in 2016,
used this feature to find the cache eviction sets for
memory locations that we expect to hammer.

7 Countermeasures

In this section, we review presented countermeasures
for timing side-channel attacks on JavaScript and We-
bAssembly. These countermeasures can be generally
categorized into three levels of hardware, operating
system, and software. These three levels of attacks are

described in Section 7.1 to Section 7.3. After explain-
ing and evaluating the previous methods in section
Section 7.4, we present our detection-based method
for these attacks, called Lurking Eyes in section Sec-
tion 7.5.

7.1 Hardware Level Countermeasures

These methods are mainly concerned with the low-
est level of abstraction used to confront timing side-
channel attacks on JavaScript and WebAssembly.
These countermeasures try to changes the structure
and architecture of processors. These methods have
more cost and overhead than the other two-level meth-
ods, but in many cases, if implemented, they have a
high ability to counter attacks [5–8]. In the following,
we will introduce these methods:

1. Changes to the way physical memory ad-
dresses are mapped to cache lines. To confound
the attacks like what was mentioned in [5], that are
based on direct use 6 of the lower 12 address bits to
select a set of cache, as an impressive countermea-
sure, we can change the way that physical memory
addresses are mapped to cache lines [5].

2. Move to an exclusive cache micro-
architecture. It will be infeasible to evict entries
from the L1 cache when we move to an exclusive
cache [5]. Therefore, using exclusive Caches will
be more difficult to implement cache attacks on
JavaScript and WebAssembly.

3. Increasing the refresh rate. Increasing the
memory refresh rate is a solution for Rowhammer
attacks. However, it is not in a good status from
the point of view of performance, also is inadequate
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to protect against attacks on all modules of DRAM
[6, 62].

4. TRR and pTRR. The process of refreshing
neighboring rows when a row get accessed more than
a threshold number (what the features Pseudo Target
Row Refresh (pTRR) and Target Row Refresh (TRR)
do) is a countermeasure with good condition in terms
of overhead for Rowhammer attacks [6]. Note that
this is a good overhead compared to other hardware
methods. Otherwise, the overhead of hardware-level
methods is generally higher than other level methods.

5. Using ECC memory. Using Error-correcting
code memory (ECC memory) is another way (though
unreliable) to protect against Rowhammer attacks [6].
ECC memory is a type of memory that can detect
and correct n-bit data corruption in memory.

6. Isolated cache. It means to separate caching
PT (Page Table) entries from data cache relieve AnC
(As mentioned earlier, AnC is the title for conflict
of ASLR in modern cache-based architectures with
caching). It is very expensive and in conflict with the
goal of ASLR to provide an inexpensive first line of
defense [8].

7. Time warp. Time Warp idea is originated
from [70] and was mentioned in [8] as a countermea-
sure for timing side-channel attacks. It reduces the
timers’ accuracy, and distinguishing between differ-
ent microarchitectural events becomes hard. An al-
gorithm that schedule CPU instructions indifferent
to timing differences from hardware components pro-
tects us from timing cache attacks as a result [71].

8. Halting wpeculative execution. If the spec-
ulative execution gets halted, the vulnerability of the
conditional branch will be avoided. This method is
applicable to Spectre attack, but there are some seri-
ous problems, for example a method that works for
all processors or system configurations, and it greatly
reduces the performance level [7].

7.2 Operating System Level
Countermeasures

These countermeasures are related to the operating
system and have a higher level of abstraction and less
performance overhead than hardware-level counter-
measures [4, 8–10]. In the following, introduce these
methods will be explained:

1. Disabling memory deduplication. The only
general effective way to prevent memory deduplica-
tion attacks is Disabling memory deduplication. Other
ways somehow hurt the efficiency or are not practi-
cally implementable [4]. It should be noted that be-
cause of memory deduplication applications, disabling

 Real keyKernel

Library

/dev/input/event*

 Fake key

libgtk / libinput

Hidden 
window

Application 
windowWidget

Figure 8. KeyDrown countermeasure layers

it can hurt performance, so this countermeasure is
not taken seriously by developers and private clouds.

2. Cache coloring. To quarantine an application
from the rest of the system, we can partition the LLC.
This countermeasure imposes performance limitations
on both operating system and application [8].

3. KeyDrown. KeyDrown is a 3-layer defense
mechanism against keystroke timing attacks. The
mechanism is represented by [72] and is implemented
on X86 and ARM by responding to three requirements
and a very low performance overhead:

(1) Minimizing the accuracy of side-channel: The
F-Score (a measure of a test’s accuracy) has to
be reduced to the amount that the adversary
does not benefit from side-channel.

(2) Reducing statistical features in password input:
The adversary must need a huge and impractical
number of tracks to access the F-Score of current
attacks.

(3) Implementation security: The countermeasure
must not have an identifiable code path or data
access pattern to assure not to leak the infor-
mation.

As shown in Figure 8 we are faced with three layers.
The first layer job is injecting fake interrupt. Each
real key interrupt gets combined with many fake in-
terrupts. As a result, the real key will be unidenti-
fiable. This makes the keystroke interrupt density
uniform and independent of the real key. The first
layer manages two types of interrupts: Hardware in-
terrupts from input devices and Input interrupts. The
second layer protect the input library of the user
against Flush+Reload attacks. For every keystroke
event received from the kernel, a random keystroke
will be sent to a hidden window. In the third layer,
the real password input field will be protected against
Prime+Probe attacks by accessing the base buffer
when a real or fake key arrives.

4. Thread affinity to the same CPU core.
It is a countermeasure to prevent parallelism and
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asynchronous time measurement innovations, and it
means to have thread affinity, for threads with shared
memory, to the identical core of CPU. Note that this
method has a severe destructive effect on performance,
also by using it, the web workers application will
become fruitless [9].

5. Lessening the level of aggressiveness of
OS allocator in near-out-of memory. This coun-
termeasure has been represented for Rowhammer at-
tacks. For optimization, the large physical memory
frames being allocated by the operating system. The
same frame is not allocated for page tables, kernel
pages, and user pages, except in near-out-of memory
(the last few kilobytes of physical memory). If the
level of aggressiveness of OS allocator in near-out-of
memory become less, performing double-sided ham-
mering will become infeasible. However, it is more dif-
ficult to prevent single-sided hammering, as, among
the borders of regions, the hammering is feasible [9].

7.3 Software Level Countermeasures

This level of countermeasures is the highest level
of abstraction. These methods can be divided into
two categories: Browser and JavaScript architecture
related [12, 13] and Timer related [5, 9, 11, 12].

7.3.1 Browser and JavaScript Architecture
Related Methods

What we will study in this part are the countermea-
sures that are dependent on the features of browser
and JavaScript architecture.

1. Full isolation. We should look for providing
cross-process navigations, cross-process interactions
of JavaScript and out-of-process iframes with low
overhead to satisfy the effort of multi-process archi-
tecture of Chrome to use a different renderer for cross
origins. However, there is an unanswered question:
how to handle the process limit of the system [12]?

2. CPU throttling. It is a method that Chrome
v55 represented in the form of an API to throttle the
functions of a background page when they exceed a
predefined threshold that determines how much CPU
a background page is permitted to use [12]. Although
affecting background tabs that wants to spy on the
main thread of renderer, it cannot prevent spying
on iframes, popups, I/O thread of the host process
among shared workers, and background tabs with the
audio task. Also the time that pages will be throttled
after that (10 seconds) is too long to prevent the
attacks mentioned in [12].

3. JavaScript Zero. One of the most important
software level countermeasures is JavaScript Zero that
was presented in [13]. This method is, in fact, a generic

fine-grained permission model that can operate at
several levels of rigidity, including off, low, medium,
high, and paranoid. Each of these levels subject to the
permission of user, restrict, or disable some features
of JavaScript. These features are: memory addresses,
accurate timing, multithreading, shared data, and
sensor API. The design of JavaScript Zero is based on
an abstract layer between the JavaScript engine and
the provided interface for JavaScript developers. The
function of this layer is to protect functions, interfaces,
and object features. The middle layer in the face of
each transaction can perform four different actions:
block, allow, modify, or allow after user permission.
JavaScript Zero seems to be the most appropriate way
to deal with timing side-channel attacks on JavaScript
until now. Table 5 shows the policies correspond to
the protection levels of JavaScript Zero for Google
chrome browser.

7.3.2 Timer Related Methods

One of the most fundamental topics in implementing
timing side-channel attacks of JavaScript is repre-
senting alternative timers instead of a native timer,
therefore dealing with these timers to prevent such
attacks, is one of the most interesting types of coun-
termeasures against timing side-channel attacks on
JavaScript and WeAssemly. In this part, we will have
a glance at the timer related countermeasures.

1. Access limitation to the timers. One of
the basic initial reactions to the timer primitives in
JavaScript is restricting access to these timers. We
can achieve this in two ways: Catching User Permis-
sion or Validation By a Third-party (for instance
downloading from authentic stores) [5].

2. Heuristic profiling. It is another approach to
detect and prevent the investigated attacks. This idea
has come from [73] and is adapted to timing side-
channel attacks by [5]. It means the detection of the
profiling-like behavior from executing code and modi-
fying its response by JavaScript runtime. It is effective
because the attack’s measurements access memory
in an especial template, and modern JavaScript run-
times split a hair the runtime performance of code.

3. Reducing the explicit timer’s resolution.
After publishing the paper [5] and introducing the first
cache attack on the JavaScript platform, browser ven-
dors lowered the resolution of performance.now() [8,
9, 12]. Although this reaction had an immediate ef-
fect on performing such attacks, it leads to many
other timer primitives to overcome this limitation.
Somehow we can consider the timers reviewed in this
paper as a reaction to this limitation.

4. Fuzzy time. The concept of Fuzzy Time was
brought up in [11] as an idea like [74] that can be
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Table 5. The policies correspond to the protection levels of JavaScript Zero in Google chrome browser [13]

Prevention Level / Feature Memory addresses Accurate Timing Multithreading Shared data Sensor API

Off No Action No Action No Action No Action No Action

Low Buffer ASLR Ask from user No Action No Action No Action

Medium Array preloading Timestamp with low resolution Delay on message Slow SharedArrayBuffer Ask from user

High Non-deterministic array Fuzzy time Web worker polyfill Disable Fixed value

Paranoid Array index randomization Disable Disable Disable Disable

adapted to the browsers to make them trusted, to
reduce the clocks resolution and the bandwidth of
timing channels. As a proof of possibility, the Fuzzyfox
(a Firefox with the implemented fuzzy time idea on
it) was introduced in this paper. They claimed that
this concept could mitigate all clocks.

5. Fermata is what they described it as a theoret-
ical design for browsers to reduce the resolution of all
timers. The accuracy of all clocks in Fuzzyfox should
be lowered to provide a resolution no less than a pre-
defined threshold. In the ideal case, the effectiveness
of this idea is significantly obvious [11].

6. Increasing the latency of message pass-
ing. It is a compromise to overcome the problems
of sThread Affinity countermeasure. It should not
have a destructive effect on applications with low- to
moderate-bandwidth [9].

7. Rate limiting. [12] introduced this approach
for one of its counters. It means to impose a threshold
on the rate of posting tasks into an event loop. Be-
cause of the performance overhead that this approach
imposed, we will have a problem with asynchronous
code.

A comprehensive review of the countermeasures,
their short description, and considerations are shown
in the Table 6.

7.4 A General Evaluation of
Countermeasures Up to Now

As mentioned, previous countermeasures can be cate-
gorized into three levels of hardware, operating sys-
tem, and software. Among these three levels, the hard-
ware level methods will generally be very costly to
implement because they are usually associated with
a change in architecture and structure. However, if
these methods can be implemented in practice, they
will have a more significant impact than two other
methods. In general, these methods are not reason-
able in many cases because of the high cost.

The methods introduced at the operating system
level are also usually associated with structural
changes. Also, some methods, like disabling memory

deduplication, will make a negative impact on the
system.

The countermeasures of software level are the most
innovative for researchers and developers because
these methods cost far less than the other two levels
methods, and also they have relatively high flexibil-
ity. Because of the mentioned features, this level of
confrontation with timing side-channel attacks can
attract more focus than other levels. As mentioned
before, JavaScript Zero, as a software method, can be
introduced as the most appropriate countermeasure
for timing side-channel attacks on JavaScript until
now. Despite its considerable advantages that were
mentioned in section 8.3, this method has several
drawbacks:

(1) To counter timing side-channel attacks,
JavaScript Zero focuses on restricting some
JavaScript features. Note that the presence of
these features is not a strong reason for timing
side-channel attacks. To ensure that an attack
occurs, several features must be examined
together.

(2) Restricting and disabling JavaScript features
deprives the user of the maximum performance
offered on a web page. In many cases, such
features are not the reason for a timing side-
channel attack.

(3) In some cases, to prevent an attack, there is
a need to ask the user. This solution does not
provide good feedback on user satisfaction, es-
pecially for regular users.

To overcome these challenges, we have implemented
a detection-based method in which there is no need
to disable useful JavaScript features. In the following,
we will explain this method in detail.

7.5 Lurking Eyes: a New Detection Based
Method

One of the most common methods to deal with ma-
licious attacks is detection-based methods. To pre-
vent side-channel attacks at the architecture level,
several detection-based methods have been proposed
so far [75–78]. There are also several detection-based
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Table 6. A comprehensive review of the countermeasures

Countermeasure

Level Focused Features

H.W. OS
S.W. Memory

arch.

Cache

arch.

Timers’

accuracy

Spec.

execution

Mem.

dedup.

OS

allocator

Statistical

features

Browser

PolicyBrowser

& JS Related

Timer

Related

Changes to The Way Physical Memory

Addresses Are Mapped to Cache Lines [6]
X X

Move to an Exclusive Cache Micro-

Architecture [5]
X X

Increasing The Refresh Rate [6, 62] X X

TRR and pTRR [6] X X

Using ECC Memory [6] X X

Isolated Cache [8] X X

Time Warp [8, 70, 71] X X

Halting Speculative Execution [7] X X

Disabling Memory Deduplication [4] X X

Cache Coloring [8] X X

KeyDrown [10] X X X

Thread Affinity to The Same CPU

Core [9]
X X

Lessening the level of aggressiveness of

OS allocator in near-out-of memory [9]
X X

Full Isolation [12] X X

CPU Throttling [12] X X

Javascript Zero [13] X X

Access Limitation to The Timers [5] X X

Heuristic Profiling [5, 73] X X

Reducing the Explicit Timer Resolution

[5, 9, 12]
X X

Fuzzy Time [11, 74] X X

Increasing The Latency of Message

Passing [9]
X X

Rate Limiting [12] X X

methods to deal with malicious JavaScript codes [79–
83]. However, no detection-based methods for timing
side-channel attacks on JavaScript and WebAssembly
have been provided so far. The approach presented in
this paper is a detection-based method, called Lurk-
ing Eyes, that is capable of detecting timing side-
channel attacks on the JavaScript and WebAssembly
platform within different web pages. As previously
mentioned, in our method, there is no need to disable
useful JavaScript features. In the following, we will
explain more about how this method works.

7.5.1 Lurking Eyes Overview

As discussed in the evaluation of JavaScript Zero,
the existence of certain features in JavaScript is not
alone a strong reason for the occurrence of timing
side-channel attacks on the web page being investi-

gated. However, to ensure that an attack occurs, sev-
eral features need to be seen together. This is one
of the major disadvantages of JavaScript Zero be-
cause it restricts some of the functionality available
in JavaScript. As a result, the user will be deprived of
the optimal performance of a web page. Accordingly,
Lurking Eyes considers several features together and
identifies attacks based on them. The steps to inves-
tigate the occurrence of a timing side-channel attack
on a web page are as follows:

(1) Investigating HTML code of the indented web
page

(2) Extracting the JavaScript code used on the web
page

(3) Searching for the features that may indicate the
occurrence of a timing side-channel attack

(4) Announcing the result to the user
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HTML

Extracting the JavaScript code 

used on the web page

Searching for
the features

Announcing the result

Lurking Eyes

Figure 9. The process of investigating the occurrence of a
timing side-channel attack on a web page

This process is shown in Figure 9.

In this method, the JavaScript codes of the in-
tended web page can be extracted, whether internal
JavaScript codes or external ones. Our countermea-
sure can be implemented in a variety of languages.
Also, we can implement this method on a browser
extension for better efficiency. What we have used as
a practical example to evaluate this method is C#
language with a graphical environment for better use.

The attacks detectable in this method are mem-
ory deduplication and Spectre attacks. These attacks
can be detected in the three most important timing
methods: message passing in free-running mode, using
SharedArrayBuffer, and using WebAssembly memory.
These timers are thought to be most likely to use in
attacks. The probability of using other timers is very
low because the precision of other timers for use in
these attacks is ineffective.

The method of detecting malicious code for each
of these timers investigates the presence or absence
of some features and functions required to execute
a side-channel attack using that timer. The features
and functions are investigated in the JavaScript code
of the intended web page. Given the importance of
each feature and function investigated in the intended
attack, it is assigned a score. If the total score as-
signed to the features in a page’s JavaScript code
exceeds a predetermined threshold, that page is de-
clared a malicious page. We obtain these features and
functions by evaluating the attacks and replicating
them in different ways. By examining the acceptable
number of attacks, we ensured that using these fea-
tures for attacks is unavoidable in these attacks. We
set the threshold for each timing attack by investigat-
ing the main properties of timing attacks in a large
number of web pages. With these thresholds, we can
increase the accuracy of our detection method. Inves-
tigated features in our method consist of the below
list. Different features in this list are related to dif-
ferent timers.

(1) Using a large array
(2) Allocating and flushing to/from array
(3) Time measuring
(4) Message passing using PostMessage()
(5) Using web workers
(6) Using message listeners
(7) Delay instructions
(8) Defining SharedArrayBuffer
(9) Defining WebAssembly.Memory

(10) Iterating the operation

The attack alert is displayed to the user on several
levels due to the variety of features. Warnings to a
certain level are not a reason for malicious code, but if
they exceed a predetermined threshold, then the web
page is considered malicious. There are several levels
of certainty for introducing a page as a malicious
page. In total, we propose Seven levels of alert for
this method:

(1) Benign code and no timing side-channel attack
(2) Very very low probability of malicious code
(3) Very low probability of malicious code
(4) Low probability of malicious code
(5) Possibility of malicious code
(6) High probability of malicious code
(7) Definite probability of malicious code

The attacker can deceive the application in various
ways due to the nature of detection-based methods
that require the investigation of code on the web page.
We have tried to identify as many different methods
of deception as possible and to provide them with
a solution. Examples of these methods of deception
can be the use of upper and lowercase letters, the use
of different commands that are equivalent, and the
extra spacing between words.

7.5.2 Evaluation

In this section, we evaluate the detection method pre-
sented in this article, using different evaluation met-
rics. Since no such approach has been proposed so far
to deal with side-channel attacks on JavaScript and
WebAssembly platforms, and this paper presents the
first detection-based approach to these attacks, There
is no prior relevant work to compare. We provide a
report on the evaluation metrics for this countermea-
sure.

Before reporting the result of our work, it is worth
mentioning that if a page without a malicious code
is correctly detected as a secure page, it is consid-
ered a true negative (TN) and otherwise a false pos-
itive (FP). Also, if the malicious page is correctly
identified, it is a true positive (TP) and otherwise is
called false negative (FP). F-measure is also one of
the most essential and standard metrics used to eval-
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Table 7. Statistics of pages reviewed by Method Lurking Eyes

Number of Web Pages Reviewed 3350

Number of Benign Web Pages 3230

Number of Malicious Web Pages 120

Number of True Negatives 3226

Number of True Positives 120

Number of False Negatives 0

Number of False Positives 4

Table 8. Evaluation metrics of Lurking Eyes

Evaluation Metric Equivalent Expression Value

False Positive Rate FP/(FP+TN) 0.001

False Negative Rate FN/(FN+TP) 0

Accuracy (TP+TN)/(TP+TN+FP+FN) 0.998

Error Rate (FP+FN)/(TP+TN+FP+FN) 0.001

Specificity TN/(TN+FP) 0.998

Precision TP/(TP+FP) 0.967

Recall TP/(TP+FN) 1

F-measure 2/[(1/Precision)+(1/Recall)] 0.983

uate detection-based methods. F-measure is obtained
from two other metrics: Precision and Recall. The for-
mula for the metrics evaluated is available in Table 8.

The total number of pages examined in this project
is 3350 pages. These pages are mainly selected from
the top websites presented in Alexa and Majestic and
have tried to select websites from different categories.
The method of choice in Majestic is in order, and in
Alexa, thematic. Of the total pages reviewed, there
are 3230 benign and 120 malicious pages. Of the 3230
malicious pages, 3226 pages were correctly, and 4
pages were incorrectly classified. Also, 120 malicious
pages (97 pages with memory deduplication attack
code and 23 pages with Spectre attack code) were
correctly identified as malicious pages. A summary
of the presented statistics is shown in Table 7. A
comprehensive evaluation of the proposed method,
using seven different metrics, is shown in Table 8. This
method gives acceptable results with an accuracy of
0.998, precision of 0.983, recall of 1, and F-measure
of 0.983.

Note that our detection-based method can be im-
proved to examine JavaScript events dynamically
(online). Moreover, the attacker may recognize our
detection-based method in the target system and use
tricks to bypass this approach. Therefore, to overcome
this challenge, machine learning based approaches
can be applied as future work.

8 Conclusion and Future Works

In this paper, we explained side-channel attacks, es-
pecially timing side-channel attacks. We then looked
at how the challenges of these attacks can be ad-
dressed by implementing them on JavaScript and We-
bAssembly. In the following, we had an overview of
the side-channel attacks implemented on JavaScript
and WebAssembly. The challenges of implementing
these attacks on JavaScript were also discussed in two
general sections: time measuring and eviction strate-
gies. In the timers section, in addition to introducing
and evaluating previous works, we presented a timer
based on WebAssembly memory, named Eagle timer.

In the following, we discussed the countermeasures
for timing side-channel attacks on JavaScript and
WeAssembly. These countermeasures were introduced
at three levels of hardware, operating system, and
software. After that, we introduced and evaluated
our method, named Lurking Eyes. This method gives
acceptable results with an accuracy of 0.998, precision
of 0.983, recall of 1, and F-measure of 0.983.

As future works, to improve the detection method
presented in this study, we can supplement this
method by using machine learning methods or by
considering JavaScript events running on a web page,
reducing the probability of error. Also, about timing
methods, if the full multi-threading capability version
of WebAssembly is introduced in the future, it may
be possible to present an accurate timer based on it.
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