
ISeCure
The ISC Int'l Journal of
Information Security

July 2015, Volume 7, Number 2 (pp. 101–114)

http://www.isecure-journal.org

Efficient Implementation of LowTimeComplexity and Pipelined

Bit-Parallel Polynomial BasisMultiplier over Binary Finite FieldsI

Bahram Rashidi 1,∗, Reza Rezaeian Farashahi 2,3, and Sayed Masoud Sayedi 1
1Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran
2Department of Mathematical Sciences, Isfahan University of Technology, Isfahan, Iran
3School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

A R T I C L E I N F O.

Article history:

Received: 28 January 2015

First Revised: 23 June 2015

Last Revised: 8 August 2015

Accepted: 26 August 2015

Published Online: 2 September 2015

Keywords:
Bit-parallel Multiplier, Elliptic

Curve Cryptography, Trinomials,

Pentanomials, Pipelining.

A B S T R A C T

This paper presents two efficient implementations of fast and pipelined

bit-parallel polynomial basis multipliers over GF(2m) by irreducible

pentanomials and trinomials. The architecture of the first multiplier is based on

a parallel and independent computation of powers of the polynomial variable. In

the second structure only even powers of the polynomial variable are used. The

parallel computation provides regular and low-cost structure with low critical

path delay. In addition, the pipelining technique is applied to the proposed

structures to shorten the critical path and to perform the computation in two

clock cycles. The implementations of the proposed methods over the binary

extension fields GF(2163) and GF(2233) have been successfully verified and

synthesized using Xilinx ISE 11 by Virtex-4, XC4VLX200 FPGA.

© 2015 ISC. All rights reserved.

1 Introduction

E lliptic curve cryptography (ECC) is a mechanism
for implementing public-key cryptography. The

approach is built on the arithmetic of elliptic curves
over finite fields. ECC offers equivalent security with
smaller key sizes, compared to other asymmetric cryp-
tosystems such as RSA. The efficient implementation
of ECC is performed by applying efficient computa-
tional point multiplication algorithms. Moreover, the
curve operations are performed using arithmetic op-
erations in the underlying field. The ECC point mul-
tiplication mechanism can be categorized into three
main levels. First level is the finite field or Galois
field (GF) arithmetic which includes field addition,

I This article is an extended version of an ISCISC’2014 paper.
∗ Corresponding author.

Email addresses: b.rashidi@ec.iut.ac.ir (B. Rashidi),

farashahi@cc.iut.ac.ir (R. Rezaeian Farashahi),
m sayedi@cc.iut.ac.ir (S. M. Sayedi).

ISSN: 2008-2045 © 2015 ISC. All rights reserved.

field multiplication, field squaring, and field inversion.
Second level is the elliptic curve group operation, i.e.
point addition and point doubling. The third level is
the computation of the scalar multiplication or point
multiplication algorithm. The field multiplication is
the basic and the most important field operation in
finite fields and their applications in implementing
coding algorithms and cryptosystems.

In recent years, several hardware implementations
of the polynomial basis multipliers over binary finite
fields are presented [1–45]. In [1] a bit-serial poly-
nomial basis multiplier over binary extension elds is
proposed by Reyhani-Masoleh. It generates one bit
of the multiplication in each clock cycle with the la-
tency of one cycle. Chiou and Jeng [2] presented two
low latency systolic multipliers over GF(2m) based on
general irreducible polynomials and irreducible pen-
tanomials. They used a signal flow graph (SFG) to
represent the algorithm of multiplication over GF(2m).
Then, from SFG by suitable cut-set retiming, they
presented two low latency systolic structures for mul-

ISeCure

102 Efficient Implementation of Polynomial Basis Multiplier — B. Rashidi et. al.

tiplications over GF(2m) based on general irreducible
polynomials and pentanomials. In [5] a modification
of the original Karatsuba-Ofman algorithm, in order
to integrate the modular reduction inside the polyno-
mial multiplication step, is proposed by Cuevas-Farfan
et. al. The modular reduction is achieved by using par-
allel linear feedback registers. In [7] a non-redundant
Karatsuba-Ofman algorithm (NRKOA) with remov-
ing redundancy operations is presented by Chang et.
al. In [9], Rebeiro and Mukhopadhyay proposed a
novel hybrid Karatsuba multiplier which uses both
simple and general Karatsuba algorithms. Also, they
proposed a design for a masked multiplier based on
Karatsuba algorithm which requires fewer number of
gates. In [13] two novel low-latency digit-serial and
digit-parallel systolic multipliers over GF(2m) are pre-
sented by Pan et. al. In [15] Selimis et. al. proposed
a versatile bit-serial MSB multiplier for GF(2m) elds
that achieves a 50% increase on average in throughput
compared to other designs. In [16] a one-dimensional
array multiplier for performing multiplication in the
finite field GF(2m) is presented by Chiou et. al. A
linear feedback shift register is employed in their mul-
tiplier and a two-dimensional systolic array version
of the multiplier is included in their work. Lee et.
al., [17], presented a bit-parallel dual basis multiplier
using the modied Booths algorithm. Due to the advan-
tage of the modied Booths algorithm, and to reduce
space and time complexities, two bits are processed
in parallel. In addition, for realization of the multipli-
cation algorithm, they proposed a multiplexer-based
structure. Lee et. al. [25], presented time-dependent
and time-independent multiplication algorithms over
finite field GF(2m) by employing an interleaved con-
ventional multiplication and a folded technique. In [36]
authors presented a low-complexity digit-level serial
input parallel output (SIPO) Gaussian normal basis
multiplier, an improved digit-level parallel input se-
rial output (PISO) multiplier architecture, and a new
hybrid architecture by connecting the output of the
digit-level PISO multiplier to the input of the digit-
level SIPO multiplier. The hybrid multiplier architec-
ture performs double-multiplication with the same
number of clock cycles required for one multiplication.
The critical path delay in [36] for bit-parallel struc-
ture is logarithmically dependent on the type of the
Gaussian normal basis and operands length.

The focus of this paper is to provide a high-speed
design and implementation of bit-parallel filed multi-
plier over binary finite fields in polynomial basis by ir-
reducible trinomials and pentanomials. Therefore, two
structures are proposed, the first architecture is based
on a parallel and independent computation of powers
of the polynomial variable. Moreover, in the second
structure only even powers of the polynomial variable

are used. The parallel computation provides regular
and low-cost structure with low critical path delay.
The pipelining technique is applied to the proposed
structures to shorten the critical path. The rest of this
paper is organized as follows. Section 2 provides the
proposed architectures of two pipelined bit-parallel
multipliers which have regular and parallel structures
with low critical path delays. The pipelining technique
is used to speed up the hardware implementations
of the structures. The results and comparisons with
other architectures are given in Section 3. The paper
is concluded in Section 4.

2 ProposedStructures forBit-Parallel
Binary Finite Field Multiplier

Binary finite fields of order 2m are the extension fields
of GF(2) denoted by GF(2m). The elements of a binary
field can be represented using a polynomial basis. The
binary field GF(2m) is constructed by an irreducible
polynomial P (x) over GF(2) of degree m, given by

P (x) = xm + pm−1x
m−1 + · · ·+ p2x

2 + p1x
1 + p0

Then, every element of GF(2m) is represented by a
polynomial of degree at most m− 1 and with coeffi-
cients over GF(2), i.e, by a polynomial

A(x) = am−1x
m−1 + am−2x

m−2 + · · ·+ a1x
1 + a0

The polynomial A(x) is simply given by its coefficients
in GF(2) as them-bit number [am−1, am−2, · · · , a2, a1, a0],
that is the binary representation of the corresponding
element in GF(2m).

The addition of two elements of the binary field is
the usual addition of the two polynomials over GF(2).
That is the addition of their coefficients modulo 2,
performed by XOR-ing. The multiplication in GF(2m)
is performed by the usual multiplication of the poly-
nomials over GF(2) and then reduction module the
polynomial P (x).

2.1 Proposed Structure of the Bit-parallel
Multiplier (Method 1)

Here, we explain how to perform multiplication of two
elements of GF(2m) in more details. Let A(x), B(x)
be two binary polynomials of degree at most m− 1,
representing these elements. Then,

A(x)B(x) =

(
m−1∑
i=0

bix
i

)
A(x) mod P (x)

= (bm−1x
m−1 + · · ·+ b1x+ b0)A(x) mod P (x)

= bm−1x
m−1A(x) mod P (x) + · · ·+

b1xA(x) mod P (x) + b0A(x) mod P (x)

There is a recursive method to compute xiA(x), for
i = 0 to m − 1. Suppose for some positive integer
i we already obtained xi−1B(x). Then, to compute

ISeCure

July 2015, Volume 7, Number 2 (pp. 101–114) 103

xiA(x), we write xiA(x) = x(xi−1A(x)). If the lead-
ing term of xi−1A(x) has degree at most m− 2, then
the degree of xiA(x) is at most m − 1. So, in this
case to obtain the m-bit representation of xiA(x), it
is only needed to make the left shift bit operation on
the m-bit representation of xi−1A(x) and concatenate
with a single bit ‘0’ as the least significant bit. More-
over, if the leading term of xi−1A(x) is xm−1, then we
have xiA(x) = xm+ lower degree terms. In this case
a reduction mod P (x) is required to be done. There-
fore, we compute xiA (x)modP (x) sequentially using
xkA (x)modP (x), for k = 0 to i− 1. Figure 1 shows
the sequence computation of multiplication by powers
of the polynomial variable x using a block multiplica-
tion by x.

Figure 1. Sequence computation of multiplication by powers
of xbased on multiplication by x.

Algorithm 1 provides the sequential multiplication
of two elements of GF(2m) represented by polyno-
mial A(x) and B(x). In addition, the schematic of
this multiplication performed by sequential shift and
reduction operations is shown in Figure 2.

Algorithm 1 Sequential shift and reduction multi-
plication in GF(2m)

Input: Binary Polynomials A(x), B(x) of degree at most m−1.
Output: C(x) = A(x)B(x) mod P (x)

M [m-1:0]=A[m-1:0];

R0[m-1:0]=B [0]&M [m-1:0];

for i = 1 to m− 1 do
if M [m-1]==’1’ then

M [m-1:0]=(M [m-2:0] ||’0’) ⊕ P [m-1:0]; // shift and

reduction
else

M [m-1:0]=M [m-2:0] ||’0’; // shift

end if
Ri[m-1:0]=B [i]&M [m-1:0];

end for
C [m-1:0]= R0[m-1:0] ⊕ R1[m-1:0] ⊕ . . . Rm−1[m-1:0];
return C [m-1:0];

The critical path delay of the structure shown in Fig-
ure 2 is very long, since the computations of xiA(x) are
performed sequentially. We propose a structure to im-
plement parallel computation of A(x)B(x) mod P (x),
where P (x) is an irreducible trinomial or pentanomial.
In this structure terms xiA(x), for i = 0 to m− 1, are
computed independently and so in parallel. Then the
computed terms xiA(x) after AND-ing with B(x) are
added to each other by XOR tree. The schematic of
the proposed structure are provided in Figure 3.

Figure 2. Schematic of the bit-parallel multiplication in
GF(2m) by sequential shift and reduction operations.

Figure 3. Proposed schematic of the bit-parallel polynomial
multiplication.

Here, we explain this method for the trinomial
P (x) = xm + xk + 1. To compute xA(x) bits
[am−1, am−2, . . . , a2, a1, a0] of the binary represen-
tation of A(x) are shifted one bit to the left as
[am−2, . . . , a2, a1, a0, 0]. If am−1 is ‘1’ the reduction
based on P (x) is also required. The reduction by
P (x) is performed by

[am−2, am−3, . . . , ak−1 ⊕ 1, . . . , a2, a1, a0, 0⊕ 1] =

[am−2, am−3, . . . , ak−1 ⊕ 1, . . . , a2, a1, a0, 0]

Notice the reduction is performed by XOR-ing of
bits [am−2, am−3, . . . , ak ⊕ 1, . . . , a2, a1, a0, 0] with ‘1’
if am−1 is ‘1’. That is XOR-ing with am−1. So, the
two states of only shift and shift-reduction can be
combined in one state by the rotate operation based on
the most significant bit am−1. In other word xA(x)is
represented by

[am−2, am−3, . . . , ak−1 ⊕ am−1, . . . , a1, a0, am−1 ⊕ 0] =

[am−2, am−3, . . . , ak−1 ⊕ am−1, . . . , a1, a0, am−1]

This method can compute xiA(x), for i = 2 to m−1,
recursively. For example, x2A(x) is computed by

[am−3, am−4, . . . , ak−1 ⊕ am−1, ak−2 ⊕
am−2, . . . , a1, a0, am−1, am−2]

and x3A(x) given by

[am−4, am−5, . . . , ak−1 ⊕ am−1, ak−2 ⊕ am−2, ak−3 ⊕
am−3, . . . , a1, a0, am−1, am−2, am−3]

Implementation of xiA(x), for i = 0 to m − 1 by
the proposed method has regular form and is recon-
figurable for other irreducible trinomials. Algorithm

ISeCure

104 Efficient Implementation of Polynomial Basis Multiplier — B. Rashidi et. al.

2 shows the proposed bit-parallel polynomial basis
multiplier over GF(2m) by the irreducible trinomial
P (x) = xm + xk + 1.

Algorithm 2 Proposed bit-parallel polynomial basis
multiplier over GF(2m) by P (x) = xm + xk + 1, 1 <
k < m/2

Input: A = [am−1, am−2, . . . , a1, a0], B = [bm−1, bm−2, . . . ,

b1, b0]; where ai, bi ∈ GF(2)

Output: C = AB mod P (x)
1: M0[m− 1 : 0] = b0 & [am−1, am−2, . . . , a2, a1, a0];

2: M1[m − 1 : 0] = b1 & [am− 2, am−3, . . . ak−1 ⊕
am−1, . . . , a2, a1, a0, am−1];

3: M2[m − 1 : 0] = b2 & [am− 3, am−4, . . . ak−1 ⊕
am−1, ak−2 ⊕ am−2, . . . , a1, a0, am−1, am−2];

4: M3[m − 1 : 0] = b3 & [am− 4, am−5, . . . ak−1 ⊕
am−1, ak−2 ⊕ am−2, ak−3 ⊕
am−3 . . . , a1, a0, am−1, am−2, am−3];

5: . . .

6: Mm−1[m − 1 : 0] = bm−1 & [a0 ⊕ am−k, am−1 ⊕
am−k−1, . . . ak+1 ⊕ (a1 ⊕ am−k+1), ak, ak−1 ⊕
am−1, . . . , a2 ⊕ am−k+2, a1 ⊕ am−k+1];

7: C [m-1:0]= M 0[m-1:0] ⊕M 1[m-1:0] ⊕ . . .⊕Mm−1[m-1:0];
8: return C [m-1:0];

Here, we give an example, over GF(210). This binary
field is constructed by the irreducible trinomialP (x) =
x10 + x3 + 1. The 10-bit representation of A(x)is
[a9, a8, a7, a6, a5, a4, a3, a2, a1, a0]. Table 1 shows the
10-bit representation of xiA(x), for i = 1, . . . , 9.

Table 1. 10-bit representation xiA(x)

i xiA(x)

1 [a8, a7, a6, a5, a4, a3, a2 ⊕ a9, a1, a0, a9]

2 [a7, a6, a5, a4, a3, a2 ⊕ a9, a1 ⊕ a8, a0, a9, a8]

3 [a6, a5, a4, a3, a2 ⊕ a9, a1 ⊕ a8, a0 ⊕ a7, a9, a8, a7]

4 [a5, a4, a3, a2 ⊕ a9, a1 ⊕ a8, a0 ⊕ a7, a9 ⊕ a6, a8, a7, a6]

5
[a4, a3, a2 ⊕ a9, a1 ⊕ a8, a0 ⊕ a7, a9 ⊕ a6, a8 ⊕
a5, a7, a6, a5]

6
[a3, a2 ⊕ a9, a1 ⊕ a8, a0 ⊕ a7, a9 ⊕ a6, a8 ⊕ a5, a7 ⊕
a4, a6, a5, a4]

7
[a2 ⊕ a9, a1 ⊕ a8, a0 ⊕ a7, a9 ⊕ a6, a8 ⊕ a5, a7 ⊕
a4, a6 ⊕ a3, a5, a4, a3]

8
[a1 ⊕ a8, a0 ⊕ a7, a9 ⊕ a6, a8 ⊕ a5, a7 ⊕ a4, a6 ⊕
a3, a5 ⊕ (a2 ⊕ a9), a4, a3, a2 ⊕ a9]

9
[a0 ⊕ a7, a9 ⊕ a6, a8 ⊕ a5, a7 ⊕ a4, a6 ⊕ a3, a5 ⊕ (a2 ⊕
a9), a4 ⊕ (a2 ⊕ a9), a3, a2 ⊕ a9, a1 ⊕ a8]

As seen in Table 1 there are many similar terms in
computations of xiA(x). So, resource sharing is used
to reduce the hardware of the implementation. Fig-
ure 4 shows the proposed architecture of high-speed
bit-parallel polynomial basis multiplier over GF(210)
by the irreducible trinomial P (x) = x10 + x3 + 1. As
seen in Figure 4 two inputs are applied simultane-
ously to the circuit in parallel form. The critical path

of the proposed architecture is 2 + log102) TX + TA,
where TX and TA are the time delays of a 2-input
XOR gate and a 2-input AND gate, respectively. This
circuit has low time complexity and the input data
are rapidly propagated in path. Furthermore, the fi-
nal summation is implemented by a tree structure of
XOR gates in a parallel form and short path. This
structure is well suited to pipelining. Therefore, the
critical path is very shorter than that of a sequential
summation form. The following Algorithm 3, describes
the bit-parallel structure of the polynomial basis mul-
tiplier over GF(2m) constructed by the irreducible
pentanomial P (x) = xm + xk1 + xk2 + xk3 + 1. Here,

Algorithm 3 Proposed bit-parallel polynomial basis
multiplier over GF(2m) by P (x) = xm + xk1 + xk2 +
xk3 + 1, 1 < k3 < k2 < k1 < m:

Input: A = [am−1, am−2, . . . , a1, a0]B =

[bm−1, bm−2, . . . , b1, b0]; where ai, bi ∈ GF (2)
Output: C = AB mod P (x)

1: M0[m− 1 : 0] = b0 & [am−1, am−2, . . . , a2, a1, a0];

2: M1[m − 1 : 0] = b1 & [am− 2, am−3, . . . ak−1 ⊕
am−1, . . . , a2, a1, a0, am−1];

3: M2[m − 1 : 0] = b2 & [am− 3, am−4, . . . ak−1 ⊕
am−1, ak−2 ⊕ am−2, . . . , a1, a0, am−1, am−2];

4: M3[m − 1 : 0] = b3 & [am− 4, am−5, . . . ak−1 ⊕
am−1, ak−2 ⊕ am−2, ak−3 ⊕
am−3 . . . , a1, a0, am−1, am−2, am−3];

5: . . .

6: Mm−1[m − 1 : 0] = bm−1 & [a0 ⊕ am−k, am−1 ⊕
am−k−1, . . . ak+1 ⊕ (a1 ⊕ am−k+1), ak, ak−1 ⊕
am−1, . . . , a2 ⊕ am−k+2, a1 ⊕ am−k+1];

7: C [m-1:0]= M 0[m-1:0] ⊕M 1[m-1:0] ⊕ . . .⊕Mm−1[m-1:0];
8: return C [m-1:0];

we give an example of multiplication over GF(28).
This binary field is constructed by the irreducible pen-
tanomial P (x) = x8 + x4 + x3 + x + 1. The 8-bit rep-
resentation of A(x) is [a7, a6, a5, a4, a3, a2, a1, a0]. Ta-
ble 2 shows the 8-bit representation of xiA(x), for i =
1, . . . , 7. The proposed pipelined architecture of the
high-speed bit-parallel multiplier over GF(28) by the
irreducible pentanomial P (x) = x8 + x4 + x3 + x + 1
is shown in Figure 5. The critical data path of the

proposed architecture is (4 + (
⌈ log8

2

2

⌉
− 1))TX + TA.

2.2 Proposed Structure of the Bit-parallel
Multiplier (Method 2)

Here, we present our second structure of the bit-
parallel binary finite field multiplier. The idea of this
structure is to separate even and odd degree terms
of the corresponding polynomial of one input in the
multiplier. Let A(x) and B(x) be two polynomials
representing two elements of the binary finite field
GF(2m). Let C(x) be the multiplication of A,B. We
write B(x) = Bodd(x)+ Beven(x), where Bodd(x) and
Beven(x) are polynomials including all odd and even
degree terms of B(x), respectively. In other words,

ISeCure

July 2015, Volume 7, Number 2 (pp. 101–114) 105

Figure 4. Proposed architecture of the bit-parallel multiplier over GF(210) by P (x) = x10 + x3 + 1.

Figure 5. Proposed pipelined bit-parallel multiplier for GF(28) by P (x) = x8 + x4 + x3 + x+ 1.

C(x) = A(x)B(x) = A(x)(Bodd(x) + Beven(x))

= Bodd(x)A(x) + Beven(x)A(x)

= Codd(x) + Ceven(x),

where we let Codd(x) = Bodd(x)A(x) and
Ceven(x) = Beven(x)A(x). For the case of odd num-
ber m, we have

Ceven (x) = bm−1x
m−1A (x) + bm−3x

m−3A (x) bm−5x
m−5A (x)

+ · · ·+ b2x
2A (x) + b0A(x)

Codd (x) = bm−2x
m−2A (x) + bm−4x

m−4A (x) bm−6x
m−6A (x)

+ · · ·+ b3x
3A (x) + b1xA (x)

= x(bm−2x
m−3A (x) + bm−4x

m−5A (x) bm−6x
m−7A (x)

+ · · ·+ b3x
2A (x) + b1A(x))

and for even m we have

Ceven (x) = bm−2x
m−2A (x) + bm−4x

m−4A (x) bm−6x
m−6A (x)

+ · · ·+ b2x
2A (x) + b0A(x)

Codd (x) = bm−1x
m−1A (x) + bm−3x

m−3A (x) bm−5x
m−5A (x)

+ · · ·+ b3x
3A (x) + b1xA (x)

= x(bm−1x
m−2A (x) + bm−3x

m4A (x) bm−5x
m−6A (x)

+ · · ·+ b3x
2A (x) + b1A(x))

So, we may write Codd (x) = x(C
′

even (x)). Then

C (x) = Ceven (x) + Codd (x) = Ceven (x) + x(C
′
even (x))

Therefore C(x) is divided in to two parts Ceven (x)
and Codd (x). Moreover Codd (x) is computed using a
multiplication by x and C

′

even (x). So, the main block
of the computation of C(x) mod P (x) is performing

ISeCure

106 Efficient Implementation of Polynomial Basis Multiplier — B. Rashidi et. al.

Table 2. 8-bit representation xiA (x)

i xiA(x)

1 (a6, a5, a4, a3 ⊕ a7, a2 ⊕ a7, a1, a0 ⊕ a7, a7)

2
(a5, a4, a3 ⊕ a7, (a2 ⊕ a7)⊕ a6, a1 ⊕ a6, a0 ⊕ a7, a7 ⊕
a6, a6)

3
(a4, a3 ⊕ a7, (a2 ⊕ a7)⊕ a6, (a1 ⊕ a6)⊕ a5, (a0 ⊕
a7)⊕ a5, a7 ⊕ a6, a6 ⊕ a5, a5)

4
(a3 ⊕ a7, (a2 ⊕ a7)⊕ a6, (a1 ⊕ a6)⊕ a5, ((a0 ⊕ a7)⊕
a5)⊕ a4, (a7 ⊕ a6)⊕ a4, a6 ⊕ a5, a5 ⊕ a4, a4)

5

((a2 ⊕ a7)⊕ a6, (a1 ⊕ a6)⊕ a5, ((a0 ⊕ a7)⊕ a5)⊕
a4, ((a7 ⊕ a6)⊕ a4)⊕ k1, (a6 ⊕ a5)⊕ k1, a5 ⊕ a4, a4 ⊕
k1, k1)

6
((a1 ⊕ a6)⊕ a5, ((a0 ⊕ a7)⊕ a5)⊕ a4, ((a7 ⊕ a6)⊕
a4)⊕ k1, ((a6 ⊕ a5)⊕ k1)⊕ k2, (a5 ⊕ a4)⊕ k2, a4 ⊕
k1, k1 ⊕ k2, k2)

7

(((a0 ⊕ a7)⊕ a5)⊕ a4, ((a7 ⊕ a6)⊕ a4)⊕
k1, ((a6 ⊕ a5)⊕ k1)⊕ k2, ((a5 ⊕ a4)⊕ k2)⊕ k3, (a4 ⊕
k1)⊕ k3, k1 ⊕ k2, k2 ⊕ k3, k3)

8
[a1 ⊕ a8, a0 ⊕ a7, a9 ⊕ a6, a8 ⊕ a5, a7 ⊕ a4, a6 ⊕
a3, a5 ⊕ (a2 ⊕ a9), a4, a3, a2 ⊕ a9]

9
[a0 ⊕ a7, a9 ⊕ a6, a8 ⊕ a5, a7 ⊕ a4, a6 ⊕ a3, a5 ⊕ (a2 ⊕
a9), a4 ⊕ (a2 ⊕ a9), a3, a2 ⊕ a9, a1 ⊕ a8]

k1 = a3 ⊕ a7, k2 = (a2 ⊕ a7)⊕ a6, k3 = (a1 ⊕ a6)⊕ a5

x2iA(x), for i = 1, 2, . . . ,m/2. This method decreases
the number of multiplications by powers of x to about
half compared to that of the first method. The pro-
posed structures of multiplication in binary finite fields
by independent computation of the even powers of x
are shown in Figure 6.a and Figure 6.b. As seen in Fig-
ure 6 after computing Ceven (x) and C

′

even(x), Codd

is computed by multiplication of C
′

even(x) by x. Also,

Ceven (x) and x(C
′

even(x)) are added to each other
to perform the output. For example, Figure 7 shows
the proposed structure of multiplication over GF(210)
by the irreducible trinomial P (x) = x10 + x3 + 1.
The important part of the critical path in the multi-
plier structure is in the XOR tree part. Main focus is
to shorten this part of the path with fewer number
of the registers. Therefore, the pipeline registers are
used to shorten critical path delay in the XOR tree of
the proposed structure. For example, Figure 8 shows
a pipelined XOR tree with length 8. As known for
GF(2m), the critical path of XOR trees for methods

1 and 2 are (log
m
2)TX and (log

m/2
2)TX , respectively.

In both methods, the XOR tree structure is 3 stages
pipelined by two row registers. Therefore, the tree
paths in methods 1 and 2 of lengths (log

m
2)TX and

(log
m/2
2)TX are converted to three shorter paths of

lengths (
(⌈

logm
2

2

⌉
− 1
)
TX ,

⌈
logm

2

2

⌉
TX and TX) and

(

(⌈
log

m
2

2

2

⌉
− 1

)
TX ,

⌈
log

m
2

2

2

⌉
TX and 2TX), respec-

tively. According to the structures of multipliers, the

delay of the first part of pipelined XOR trees are added
to delays of the AND-network and computational part
of the multiplication by powers of x. In the case of
using irreducible pentanomial, the critical path de-
lays of the proposed architectures after pipelining for

methods 1 and 2 are TA + (4 + (
⌈
logm

2

2

⌉
− 1))TX and

TA + (4 + (

⌈
log

m
2

2

2

⌉
− 1))TX , respectively. In addition,

for irreducible trinomial, the critical path delays are

TA + (2 + (
⌈
logm

2

2

⌉
−1))TX and TA + (2 + (

⌈
log

m
2

2

2

⌉
−

1))TX . The proposed architectures have an initial 2
clock cycle latency, and after latency produce each re-
sult in every clock cycle. The circuits have advantages
of very low latency and very high throughput.

3 Comparison and Result Analyses

In this section, we give a comprehensive compari-
son between this work and other FPGA-based de-
signs, up to our best knowledge. The comparison ap-
proach is based on hardware resources, critical path
delay, latency (based on the number of clock cycle),
throughput, hardware utilization and power consump-
tion of FPGA implementation. The work has been
successfully verified, synthesized, using Xilinx ISE 11
by Virtex-4 XC4VLX200, XC4VLX40, and Virtex-2
XC2V6000 FPGAs. In Table 3, the values of hardware
utilization including the number of 2-input XOR gate,
2-input AND gate, and D flip-flop are provided for
several related works. In addition, in this table the
structure of multipliers and the generating polynomi-
als are given. For both methods, the critical path de-
lay of the proposed pipelined structure over GF(2233)
constructed by trinomial P (x) = x233 + x74 + 1 is
TA + 5TX . Moreover, for GF(2163) by pentanomial
P (x) = x163 +x7 +x6 +x3 +1, the critical path delay
is TA + 7TX . It can be seen that critical path delays
or time complexity of the proposed methods are the
smallest compared with other existing bit-parallel de-
signs. The results show that an overall improvement
in speed is obtained. For the proposed design, when
compared with the systolic designs in [25], [30] and
[31] it requires nearly the same hardware in terms of
the number of 2-input XOR and AND gates. However,
the number of flip-flops in our design is m

8 + 2m, com-
pared to (4m2 + 3m), 3(m + 1)2 and 3m2 + 2m − 2
that are used in [25], [30] and [31], respectively. The
latency of the proposed design is two clock cycles,
while for the designs in [30] and [31] the latency is
m + 1 clock cycles.

The proposed trinomial basis multiplier has nearly
the same area as the trinomial basis bit-parallel de-
signs presented in [6], [9], [17], [19], [21], [24], [29]
and [31]. But, the critical path delay of proposed de-
sign is better, In these works the critical path is loga-

ISeCure

July 2015, Volume 7, Number 2 (pp. 101–114) 107

Figure 6. Proposed structures of bit-parallel multiplication over GF(2m) using multiplication by even powers of x(a) mis odd, (b)

mis even.

Figure 7. The second proposed structure of the pipelined bit-parallel multiplication over GF(210) by P (x) = x10 + x3 + 1.

ISeCure

108 Efficient Implementation of Polynomial Basis Multiplier — B. Rashidi et. al.

Table 3. Comparison of hardware resources

Works # 2-input XOR # 2-input AND # FF Structure
Generating
Polynomial/Basis

[1] 2m + k − 2 2m− 1 3m + k − 1 Bit-serial Trinomial

[2]
4m + 4(also2m−
23-input XOR)

7m− 4 6m Bit-parallel General form

[3] w = 2 m2 + 2m m2 m2 Digit-serial Pentanomial

[4] m2 − 1 m2 — Bit-parallel Trinomial

[6] 3m2

4
+ 4m + k − 23

4
3m2+2m−1

4
— Bit-parallel Trinomial

[9] Hybrid
Karatsuba(m = 233)

47350 9435 — Bit-parallel Trinomial

[9] Masked Hybrid
Karatsuba (m = 233)

143937 28485 — Bit-parallel Trinomial

[10] (m + 1)q (m + 1)q — Bit-parallel All One polynomial

[11] 2mw 2mw 4m Digit-serial Pentanomial

[13] m
√
m

√
dm(2 + m) + d

√
m
d

(2m + d− 1) + 2m Digit-serial Trinomial

[15] 2m 3m
4m + 2 (# MUX 2to
1 = 2m)

Bit-serial General form

[16] 2m2 2m2 3m2 Bit-parallel General form

[17] m(m
2
− 1

2
)− 1 0 # MUX 2to 1 = m(m

2
) Bit-parallel Trinomial

[18] (#Tri-state buffer=m
and #inverter =m)

2m 4mand #OR = m 3m Bit-serial General form

[19] m2 + m (3-input XOR) 2m2 + 3m 3m2 + 4m Bit-parallel Trinomial

[20] 2m2

3
+ 22m

3
2m2

3
+ 8m

3
− 4

3
— Bit-parallel General form

[21] 16
3

mlog63 − 22
3

m + 2 mlog63 — Bit-parallel Trinomial

[24] m2 − 1 m2 — Bit-parallel Trinomial

[24] m2 + 2m− 3 — — Bit-parallel Pentanomial

[25] m2 + 2m m2 4m2 + 3m Bit-parallel General form

[27] 25
4

mlog63 − 5m + 1.5 mlog63 — Bit-parallel Trinomial

[29] m2 − 1 m2 — Bit-parallel Trinomial

[30] (m + 1)2 (m + 1)2 3(m + 1)2 Bit-parallel All One polynomial

[31] m2 + m− 1 m2 3m2 + 2m− 2 Bit-parallel Trinomial

[44] m2 + m− 3 m2 — Bit-parallel Type 1, 2 Polynomials

[44] m2 + m− 3 m2 — Bit-parallel Type 3 Polynomials

[45] m + 1
m + 1 (# MUX 2 to
1 = m + 3)

3m +
⌈
logm2

⌉
+ 3 Bit-serial All One polynomial

[36] ≤ T+4
4

m(m− 1) m2 2m Bit-parallel Gaussian normal basis

[37] ≤ T+1
2

m(m− 1) m2 3m Bit-parallel Gaussian normal basis

[38] ≤ Tm(m− 1) + m m2 3m Bit-parallel Normal basis

[39] ≤ T+1
2

m(m− 1) m2 2m Bit-parallel Normal basis

[40] 1.5m(m− 1) m2 2m Bit-parallel Normal basis

[41] type 1 wm + m + w + 1 wm + m + w + 1 2m Digit-serial Normal basis

[41] type 2 w(m +
⌊

m
2

⌋
) wm + m 2m Digit-serial Normal basis

[41] type 2 ≤ m
2
(3m− 3) m2 2m Bit-parallel Normal basis

[43] (m2 + 3m− 2)/2 m(m− 1)/2 (MUX 4 to 1) — Bit-parallel Normal basis

Proposed method 1 m2 + m m2 m
8

+ 2m Bit-parallel Trinomial

Proposed method 1 m2 + 3m m2 m
8

+ 2m Bit-parallel Pentanomial

Note: q = K ∗
⌊

m+1
K

⌋
+
⌊
logK2

⌋
, Kis a small positive integer (K≤ 10); w, d: digit size; k is in irreducible trinomial P (x) = xm + xk + 1.

rithmically dependent on the operands length. While,
in the proposed work logarithm of operands length
in the critical path delay formula is divided by 2. For
example, in [27] and [29] the critical path delay is
TA + (3 dlogm2 e + 1)TX and TA + (2 +

⌈
logm−1

2

⌉
)TX ,

respectively whereas it is TA + (2 + (
⌈
logm

2

2

⌉
− 1))TX

and TA + (2 + (

⌈
log

m
2

2

2

⌉
− 1))TX for the proposed

methods 1 and 2, respectively. The proposed pen-
tanomial basis multiplier, has shorter critical path de-
lay compared with the pentanomial basis bit-parallel

design presented in [24]. The critical path delay in [24]
is TA + (4 +

⌈
logm−1

2

⌉
)TX compared to TA + (4 +

(
⌈
logm

2

2

⌉
− 1))TX and TA + (4 + (

⌈
log

m
2

2

2

⌉
− 1))TX

, respectively, for the proposed methods 1 and 2 in
pentanomial basis case.

Total time delay of Non-redundant KOA multiplier
in [7] is the same as parallel KOA multiplier, but with
lower number of total gates. In addition, the efficiency
of multiplier in [7] depends on the hamming-weight
of degree m.

ISeCure

July 2015, Volume 7, Number 2 (pp. 101–114) 109

Figure 8. Pipelined XOR tree with length of 8.

As seen in the above table the values of the hardware
utilization in the proposed structures are reasonable
and nearly the same compared to the other polynomial
bit-parallel designs.

In this work, FPGA implementations of the bit-
parallel multipliers over finite fields GF(2163) and
GF(2233) generated by the irreducible pentanomial
P (x) = x163 +x7 +x6 +x3 + 1 and trinomial P (x) =
x233 + x74 + 1 are reported. These binary extension
fields are recommended by National Institute of Stan-
dards and Technology (NIST) for elliptic curve cryp-
tosystems. Comparison of the FPGA synthesis results
are provided in Table 5.

Notice several works, for example [1–4], [6], [10], [13],
[16, 17] and [20, 21] do not have hardware implemen-
tation. Moreover, some FPGA based related works
did not completely reported the synthesis results. Ta-
ble 5 shows the maximum operation frequencies of the
proposed structures, which are the highest operation
frequencies among all FPGA based reported works.
The proposed architectures after an initial two clock
cycles latency produce each result in every clock cycle.
The throughput is computed by the following equa-
tion in which the number of processed bits is based
on field size.

Throughput =
Number of processed bits

Clock period×Number of Cycles

=
Number of processed bits

Time

Since target devices are different in different works,
to have a fair comparison with works that used older
FPGAs, for example, Virtex-2 FPGA family, the pro-
posed design is also implemented on Virtex-2 using
Xilinx ISE 10.1 tool. Also, to compare the design
with works presented in [33] and [26] which are imple-
mented on Virtex-4 XC4VLX40 with speed grade -12,

Table 4. Comparison of the critical path delay and latency

Work Critical Path Delay
Latency

(Clock Cycle)

[1] TA + (2 + logm2)TX 1

[2] ((m
2
)+2)(2TA +2TX +TL) —

[3] 4TX
m
4

+ 2

[4] TA + (logm−1
2

+1)TX —

[6] TA + (3 +
⌈
logm−1

2

⌉
)TX —

[7] (m = 163) 20Tx + TA —

[10] h* (TA + TX + TL) h

[11] w(TA + TX) 14

[12] Bit-serial — 80

[13] TA + (log
(d+1)
2

)TX + TL 2
√

m
d

[15] TM+ 2TX 0.664m

[16] m(TA +TX +TL) m

[17] TM + (

⌈
log

m
2

2
+ 1

⌉
)TX —

[18] TA + TX+ TTri state m

[20] TA + (3+

⌈
log

m−1
3

2

⌉
)TX —

[21] TA + (3
⌈
logm3

⌉
)TX —

[23] Digit-serial
(m = 163)

— 144

[24] Trinomial TA + (2 +
⌈
logm−1

2

⌉
)TX —

[24] Pentanomial TA + (4 +
⌈
logm−1

2

⌉
)TX —

[27] TA + (3
⌈
logm2

⌉
+ 1)TX —

[29] TA + (2 +
⌈
logm−1

2

⌉
)TX —

[30] (m+1)(TA +TX +TL) —

[31] (m+1)(TA +TX +TL) —

[36] TA + (
⌈
logT2

⌉
) +
⌈
logm2

⌉
)TX 1

[37] TA + (
⌈
logT2

⌉
) +
⌈
logm2

⌉
)TX 1

[38] TA + (
⌈
logT2

⌉
) +
⌈
logm2

⌉
)TX 1

[39] TA + (
⌈
logTm−T+1

2

⌉
)TX 1

[40] TA + (1+
⌈
logm2

⌉
)TX 1

[41] type 1 ≤ 2TA + (3+
⌈
logw−1

2

⌉
)TX w

[41] type 2 ≤ 2TA + (3+
⌈
logw−1

2

⌉
)TX w

[42] type 2 TA + (2 +
⌈
log2m−1

2

⌉
)TX 1

[43] TM4 + (2 +
⌈
logm−1

2

⌉
)TX 1

[44] Type 1, 2
Polynomials

TA + (3+
⌈
logm−3

2

⌉
)TX 1

[44] Type 3
Polynomials

TA + (3+
⌈
logm−1

2

⌉
)TX 1

[45] Tx + TA m+dlogm2 e+1

Proposed method
1 Trinomial

TA + (2 + (

⌈
logm2

2

⌉
− 1))TX 2

Proposed method
1 Pentanomial

TA + (4 +(

⌈
logm2

2

⌉
− 1))TX 2

Proposed method
2 Trinomial

TA + (2 + (

⌈
log

m
2

2
2

⌉
− 1))TX 2

Proposed method
2 Pentanomial

TA + (4 +(

⌈
log

m
2

2
2

⌉
− 1))TX 2

Note: TA, TX , TL, TM , TM4,TTri state denote the Time delay of an
AND gate, XOR gate, one bit Latch, multiplexer 2 to 1, multiplexer 4
to 1 and Tri-state buffer respectively; d, w : digit size; h=[(m + 1)/k] +

[logk2].

it is implemented on this FPGA family too.

In Table 5 works [8], [12], [15], [18], and [45] have bit-
serial structure with low hardware resources and low
critical path delay compared to other digit-serial and
bit-parallel structures. However, due to higher number

ISeCure

110 Efficient Implementation of Polynomial Basis Multiplier — B. Rashidi et. al.

Table 5. Comparison of the critical path delay and latency

Work FPGA Area Time(ns) Freq.(Mhz) Throughput(Mbps)

[5] GF(2163) Virtex-5 — LUTs 7786 5.468 — 29813

[8] GF(2239) Bit-serial Virtex-E XCV300 Slices 359 3100 75 75

[12] GF(2160) Bit-serial Virtex-E XCV800 Slices 1049 — — —

[14] GF(2191) Virtex-E XCV3200E Slices 8721 — — —

[35] GF(2193) Virtex-E XCV3200E Slices 8753 43.1 — 4478

[22] GF(2191) Virtex-E XCV2600 Slices 8721 45889 — 4

[23] GF(2160) Digit-serial Virtex-E XCV2000E
Gates 21600 (LUTs 3344, FF
64)

— — —

[5] GF(2239) Virtex-2 — Slices 10510 10.710 — 22316

[11] GF(2163) Digit-serial Virtex-2 XC2VP30 LUTs 12210 197.18 71 827

[15] GF(2233) Bit-serial Virtex-2 XC2V1000 CLBs 523 787 197 296

[15] GF(2163) Bit-serial Virtex-2 XC2V1000 CLBs 330 543 199 297

[18] GF(2160) Bit-serial Virtex-2 XC2V500 CLBs 635 (FF 481) 731 219 219

[45] GF(2160) Bit-serial Virtex-2 XC2V500 CLBs 296 (489 FF) 740 227 216

[28] GF(2233) Digit-serial (d=1) Virtex-2 XC2V6000 Slices 246 (LUTs 484, FF 477) 992.58 234.8 235

[28] GF(2233) Digit-serial (d=32) Virtex-2 XC2V6000
Slices 4457 (LUTs 7110, FF
1349)

52.72 151.6 4415

[19] GF(2233) Hybrid Karatsuba Virtex-2 XC2V6000 LUTs 11746, FF 13941 11.07 90.33 21047

[19] GF(2233) Classical Virtex-2 XC2V6000 LUTs 37296, FF 37552 13 77 17941

[34] GF(2163) Virtex-2 XC2V6000 Slices 12640 (LUTs 21058) 15.496 — 10519

[9] GF(2233) Virtex-4 — Slices 30435 17 — 13706

[36] GF(2163) DL-SIPO
Digit-serial (d=55)

Virtex-4 XC4VLX100
Slices 9323 (LUTs 16715, FF
326)

20.1 149 8096

[36] GF(2163) DL-PISO
Digit-serial (d=55)

Virtex-4 XC4VLX100
Slices 9678 (LUTs 17348, FF
419)

21.9 137 7444

[33] GF(2163) Virtex-4 XC4VLX40 Slices 8665 (LUTs 15356) 8.284 120.7 19674

[26] GF(2163) Virtex-4 XC4VLX40 Slices 4651 (LUTs 8624) 8.487 117.83 19206

1Proposed method 1 GF(2163) Virtex-2 XC2V6000
Slices 11958 (LUTs 19916,
FF 3749)

8.832 226.467 18457

1Proposed method 1 GF(2233) Virtex-2 XC2V6000
Slices 25555 (LUTs 48712,
FF 7456)

7.758 257.819 30035

1Proposed method 1 GF(2163) Virtex-4 XC4VLX40
Slices 10515 (LUTs 18250,
FF 3749)

6.816 290.394 23667

1Proposed method 1 GF(2163) Virtex-4 XC4VLX200
Slices 10515 (LUTs 18250,
FF 3749)

7.814 255.951 20860

1Proposed method 1 GF(2233) Virtex-4 XC4VLX200
Slices 21195 (LUTs 36812,
FF 7456)

7.191 278.133 32402

1. The results for proposed method 1 are equal to the proposed method 2.

of clock cycles throughput of bit-serial structure is less
than those of digit-serial and bit-parallel structures.
Digit-serial architectures in [23], [11], [28], and [36]
have better timing performance compared to bit-serial
structure, but their hardware consumption in terms
of Slices (LUTs and FF) is higher. The bit-parallel ar-
chitectures proposed in [5], [9], [19], [26], [33] and [34]
have lowest number of clock cycles, but they include
a large amount of XOR and AND logical gates and
flip-flops.

In terms of hardware utilization, considering the
values of other bit-parallel structures, the proposed
bit-parallel structures have reasonable values. Also,
compared to the works presented in [33] and [26] the
proposed structures have better performance in terms
of frequency, execution time and throughput, but it
uses more slices. Similarly, for the target device of
Virtex-2 FPGA, the results of proposed method are
suitable. For example in terms of execution time, the
proposed method shows 44.962ns and 3.312ns time

reduction, respectively, when compared with those
of [28] and [19] for GF(2233), and also 6.664ns time
reduction when compared to that of [34] for GF(2163).
On a Virtex 4 FPGA, the masked multiplier with
the Hybrid Karatsuba implementation for GF(2233)
requires 30435 slices [9], while the proposed Multiplier
needs 21195 slices. Moreover, the delay of [9] is two
times more than that of our design. Also throughput
in [9] is 13706 Mbps, compared to 32402 Mbps in
present work.

Table 6 shows the power consumption of the present
work based on method 1 by Virtex-4 XC4VLX200, and
also of the circuit presented in [18] by “CoolRunner
XPLA3” CPLD. The power consumption is measured
by the Xilinx Power Estimator (XPE) tool at different
operational frequency.

The graphical representations of the power by func-
tion (Typical, 1.2V, 26◦C), Power vs. voltage (Typical,
26◦C), and Power vs. Temperature (Typical, 1.2V),
for the proposed structure for GF(2163) and GF(2233)

ISeCure

July 2015, Volume 7, Number 2 (pp. 101–114) 111

Table 6. Comparison of the power consumption.

Work This work Method 1 GF(2163) This work Method 1 GF(2233) [18] GF(2160)

Frequency(MHz) 50 100 150 200 50 100 150 200 214

Quiescent(static
power)(w)

0.992 0.994 0.996 0.999 0.994 0.997 1.001 1.005 —

Dynamic(w) 0.188 0.303 0.418 0.533 0.286 0.468 0.649 0.830 —

Total(w) 1.18 1.297 1.414 1.532 1.28 1.465 1.65 1.835 3.523

are shown in Figure 9 (a)-(c) and Figure 9 (d)-(f) re-
spectively. The power consumption for both methods
1 and 2 are equal.

4 Conclusions

In this paper two fast and pipelined architectures
for bit-parallel polynomial basis multipliers in binary
finite fields are presented. The implementations are
performed over finite fields constructed by irreducible
trinomials and pentanomials. The structures of the
multipliers are based on a parallel and independent
computation of powers of x as the polynomial variable.
To speed up the multiplication operation, two inputs
of the multiplier are simultaneously applied in parallel
form. In addition, the pipelining technique is used
to shorten critical path and to increase speed and
performance. In the proposed methods after an initial
2 clock cycle latency, each result is produced in every
clock cycle, so the circuits provide very low latency
and high throughput.

Acknowledgment

The author would like to thank the reviewers for their
comments. This research was in part supported by a
grant from IPM (No. 93050416).

References

[1] Arash Reyhani-Masoleh, “A New Bit-Serial Ar-
chitecture for Field Multiplication Using Polyno-
mial Bases”, Cryptographic Hardware and Em-
bedded Systems-CHES 2008, Vol. 5154, pp. 300-
314.

[2] Che-Wun Chiou and Huey-Lin Jeng, “Parallel
Algorithm for Polynomial Basis Multiplier in
GF(2m) Fields”, Tamkang Journal of Science and
Engineering, Vol. 11, No. 2, 2008, pp. 211-218.

[3] XIE Jia-feng, HE Jian-jun, GUI Wei-hua, “Low
latency systolic multipliers for finite field GF(2m)
based on irreducible polynomials”, Journal of
Central South University, Vol. 19, Iss. 5, 2012,
pp. 1283-1289.

[4] Huapeng Wu, “Bit-Parallel Finite Field Multi-
plier and Squarer Using Polynomial Basis”, IEEE
Transactions on Computers, Vol. 51, No. 7, July
2002, pp. 750-758.

[5] Eduardo Cuevas-Farfan, Miguel Morales-
Sandoval, Alicia Morales-Reyes, Claudia

Feregrino-Uribe, Ignacio Algredo-Badillo, Paris
Kitsos, René Cumplido, “Karatsuba-Ofman Mul-
tiplier with Integrated Modular Reduction for
GF(2m)”, Advances in Electrical and Computer
Engineering, Vol. 13, No. 2, 2013, pp. 3-10.

[6] M. Elia, M. Leone and C.Visentin, “Low com-
plexity bit-parallel multipliers for GF(2m) with
generator polynomial P (x) = xm + xk + 1”,
Electronics Leters 1st April 1999 Vol. 35 No. 7,
pp. 551-552.

[7] Nam Su Chang, Chang Han Kim, Young-Ho Park
, and Jongin Lim, “A Non-redundant and Effi-
cient Architecture for Karatsuba-Ofman Algo-
rithm”, Proceedings of the 8th International Con-
ference on Information Security (ISC), Singapore,
September 20-23, Springer-Verlag Berlin Heidel-
berg, Vol. 3650, 2005, pp. 288-299.

[8] Mario Alberto Garćıa-Mart́ınez, Rubén Posada-
Gómez, Guillermo Morales-Luna and Francisco
Rodŕıguez-Henŕıquez, “FPGA Implementation
of an Efficient Multiplier over Finite Fields
GF(2m)”, Proceedings of the IEEE International
Conference on Reconfigurable Computing and
FPGAs, 2005, pp.21-26.

[9] Chester Rebeiro and Debdeep Mukhopad-
hyay, “Hybrid Masked Karatsuba Multiplier for
GF(2233)”, 11th IEEE VLSI Design and Test
Symposium, Kolkata, August 2007.

[10] Che Wun Chiou and Liuh Chii Lin, “Fast Array
Multiplications over GF(2m) Fields with Mul-
tiple Speeds”, Tamkang Journal of Science and
Engineering, Vol. 7, No 3, 2004 , pp. 139-144.

[11] Junfeng Fan and Ingrid Verbauwhede, “A Digit-
Serial Architecture for Inversion and Multipli-
cation in GF(2m)”, IEEE Workshop on Signal
Processing Systems, 8-10 Oct. 2008, pp. 7-12.

[12] Lejla Batina, Nele Mentens, Sıddıka Berna Ors,
Bart Preneel, “Serial Multiplier Architectures
over GF(2m) for Elliptic Curve Cryptosystems”,
12th IEEE Electrotechnical Conference, Vol.2
2004, pp. 779-782.

[13] Jeng-Shyang Pan, Chiou-Yng Lee and Pramod
Kumar Meher, “Low-Latency Digit-Serial and
Digit-Parallel Systolic Multipliers for Large Bi-
nary Extension Fields”,IEEE Transactions on
Circuits and Systems I: Regular Papers, Dec.
2013, pp. 3195-3204.

[14] Nazar A. Saqib, Francisco Rodriguez-Henriquez

ISeCure

112 Efficient Implementation of Polynomial Basis Multiplier — B. Rashidi et. al.

Figure 9. The graphical representations of the (a): power by function(Typical, 1.2V, 26◦C), (b):On-Chip Power vs. voltage (Typical,
26◦C) , and (c): Power vs. Temperature(Typical, 1.2V) for GF(2163); and also similarly (d)-(f) for GF(2233) in the proposed structure.

and Arturo Diaz-Perez, “A Parallel Architecture
for Fast Computation of Elliptic Curve Scalar
Multiplication over GF(2m)” 18th International
Parallel and Distributed Processing Symposium,
26-30 April 2004.

[15] George N. Selimis, Apostolos P. Fournaris, Harris
E. Michail, Odysseas Koufopavlou, “Improved
throughput bit-serial multiplier for GF(2m)
fields”, Integration, the VLSI Journal 42, 2009,
pp. 217-226.

[16] Che-Wun Chiou, Chiou-Yng Lee and Jim-Min
Lin, “Finite Field Polynomial Multiplier with
Linear Feedback Shift Register”, Tamkang Jour-
nal of Science and Engineering, Vol. 10, No. 3,
2007, pp. 253-264.

[17] Chiou-Yng Lee, Che Wun Chiou , Jim-Min Lin,
“Low-complexity bit-parallel dual basis multipli-
ers using the modified Booths algorithm”, Com-
puters and Electrical Engineering Vol. 31, 2005,
pp. 444-459.

[18] Ali Zakerolhosseini, Morteza Nikooghadam,
“Low-power and high-speed design of a versatile

bit-serial multiplier in finite fields GF(2m)”, In-
tegration, the VLSI Journal Vol. 46, 2013, pp.
211-217.

[19] C. Grabbe, M. Bednara, J. Teich, J. von zur Ga-
then, J. Shokrollahi “FPGA Designs of Parallel
High Performance GF(2233) Multipliers” Inter-
national Symposium on Circuits and Systems,
2003, Vol. 2, pp. 268-271.

[20] Yin Li, Gongliang Chen, Xiao-ning Xie: “Low
complexity bit-parallel GF(2m) multiplier for
all-one polynomials”, IACR Cryptology ePrint
Archive 2012: 414 (2012).

[21] Haining Fan, Jiaguang Sun, Ming Gu and Kwok-
Yan Lam, “Overlap-free Karatsuba-Ofman Poly-
nomial Multiplication Algorithms”, IET Infor-
mation security, Vol. 4, No. 1, 2010, pp. 8-14.

[22] Sameh M. Shohdy, Ashraf B. El-Sisi, and Nabil
Ismail, “Hardware Implementation of Efficient
Modified Karatsuba Multiplier Used in Elliptic
Curves”, International Journal of Network Secu-
rity, Vol. 11, No. 3, Nov. 2010, pp.155-162.

[23] Mohammed Benaissa and Wei Ming Lim, “Design

ISeCure

July 2015, Volume 7, Number 2 (pp. 101–114) 113

of Flexible GF(2m) Elliptic Curve Cryptography
Processors”, IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, Vol. 14, No. 6,
June 2006, pp. 659-662.

[24] Arash Reyhani-Masoleh, and M. Anwar Hasan,
“Low Complexity Bit Parallel Architectures for
Polynomial Basis Multiplication over GF(2m)”,
IEEE Transactions on Computers, Vol. 53, No.
8, August 2004, pp. 945-959.

[25] Chiou-Yng Lee, Chin-Chin Chen,Yuan-Ho Chen
and Erl-Huei Lu, “Low-Complexity Bit-Parallel
Systolic Multipliers over GF(2m)”, IEEE Inter-
national Conference on Systems, Man, and Cy-
bernetics, 2006, pp. 1-6.

[26] Gang Zhou, Harald Michalik, and László Hin-
senkamp, “Complexity Analysis and Efficient Im-
plementations of Bit Parallel Finite Field Mul-
tipliers Based on Karatsuba-Ofman Algorithm
on FPGAs”, IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, Vol. 18, No. 7,
July 2010, pp. 1057-1066.

[27] Haining Fan and M. Anwar Hasan, “A New Ap-
proach to Subquadratic Space Complexity Par-
allel Multipliers for Extended Binary Fields”,
IEEE Transactions on Computers, Vol. 56, No.
2, February 2007, pp. 224-233.

[28] Miguel Morales-Sandoval, Claudia Feregrino-
Uribe, René Cumplido, Ignacio Algredo-Badillo,
“An area/performance trade-off analysis of a
GF(2m) multiplier architecture for elliptic curve
cryptography”, Computers and Electrical Engi-
neering, Vol. 35, 2009, pp. 54-58.

[29] Huapeng Wu, “Bit-Parallel Finite Field Multi-
plier and Square Using Polynomial Basis”, IEEE
Transactions Computers, Vol. 51, 2002, pp. 750-
758.

[30] Lee, C. Y., Lu, E. H. and Lee, J. Y., “Bit-Parallel
Systolic Multipliers for GF(2m) Fields Defined by
All-One and Equally-Spaced Polynomials,” IEEE
Transactions Computers, Vol. 50, 2001, pp. 385-
393.

[31] Lee, C. Y., “Low Complexity Bit-Parallel Systolic
Multiplier Over GF(2m) Using Irreducible Tri-
nomials,” IEE Proc. Comput. Digit. Tech., Vol.
150, 2003, pp. 39-42.

[32] Bahram Rashidi, Reza Rezaeian Farashahi, Sayed
Masoud Sayedi, “High-speed and Pipelined Fi-
nite Field Bit-Parallel Multiplier over GF(2m) for
Elliptic Curve Cryptosystems”, Proceedings of
the 11th International ISC Conference on Infor-
mation Security and Cryptology (ISCISC), 3-4
Sept. 2014, pp. 15-20.

[33] G. Zhou, L. Li, and H. Michalik, “Area optimiza-
tion of bit parallel finite field multipliers with fast
carry logic on FPGAs”, Proceedings of the Inter-
national Conference on Field Program. Logic and

Applications (ICFPL), Sep. 2008, pp. 671-674.
[34] W. N. Chelton and M. Benaissa, “Fast elliptic

curve cryptography on FPGA,” IEEE Transac-
tions Very Large Scale Integration (VLSI) Sys-
tem, Vol. 16, No.2, Feb. 2008, pp. 198–205.

[35] F. Rodŕıguez-Henŕıquez, N. A. Saqib, and N.
Cruz-Cortés, “A fast implementation of multi-
plicative inversion over GF(2m)”, in Proceedings
of the International Conference on Inf. Technol.:
Coding Computer, 2005, pp. 574–579.

[36] Reza Azarderakhsh, Arash Reyhani-Masoleh,
“Low-Complexity Multiplier Architectures for Sin-
gle and Hybrid-Double Multiplications in Gaus-
sian Normal Bases”, IEEE Transactions on Com-
puters, Vol. 62, No. 4, April 2013, pp. 744-757.

[37] Arash Reyhani-Masoleh, “Efficient Algorithms
and Architectures for Field Multiplication Us-
ing Gaussian Normal Bases,” IEEE Transactions
Computers, Vol. 55, No. 1, Jan. 2006, pp. 34-47.

[38] A.H. Namin, H. Wu, and M. Ahmadi, “A Word-
Level Finite Field Multiplier Using Normal Basis,”
IEEE Transactions Computers, Vol. 60, No. 6,
June 2010, pp. 890-895.

[39] Arash Reyhani-Masoleh and M.A. Hasan, “A
New Construction of Massey-Omura Parallel Mul-
tiplier over GF(2m)” IEEE Transactions Com-
puters, Vol. 51, No. 5, May 2002, pp. 511-520.

[40] C. K. Koç and B. Sunar, “An Efficient Optimal
Normal Basis Type II Multiplier over GF(2m)”
IEEE Transactions Computers, Vol. 50, No. 1,
Jan. 2001, pp. 83-87.

[41] Arash Reyhani-Masoleh, M. Anwar Hasan, “Low
Complexity Word-Level Sequential Normal Basis
Multipliers”, IEEE Transactions on Computers,
Vol. 54, No. 2, Feb. 2005, pp.98-110.

[42] Arash Reyhani-Masoleh, M. Anwar Hasan, “Effi-
cient Digit-Serial Normal Basis Multipliers over
Binary Extension Fields”, ACM Transactions on
Embedded Computing Systems, Vol. 3, No. 3,
August 2004, pp. 575-592.

[43] Jenn-Shyong Horng, I-Chang Jou, Chiou-Yng
Lee, “Low-complexity multiplexer-based normal
basis multiplier over GF(2m)”, Journal of Zhe-
jiang University Science A, 2009 Vol. 10, No.6,
pp. 834-842.

[44] Huapeng Wu, “Bit-Parallel Polynomial Basis
Multiplier for New Classes of Finite Fields”, IEEE
Transactions on Computers, Vol. 57, No. 8, Au-
gust 2008, pp. 1023-1031.

[45] M. Nikooghadam, A. Zakerolhosseini, “Utiliza-
tion of Pipeline Technique in AOP Based Mul-
tipliers with Parallel Inputs”, Journal of Signal
Processing Systems, Vol. 72, No. 1, pp. 57-62.

ISeCure

114 Efficient Implementation of Polynomial Basis Multiplier — B. Rashidi et. al.

Bahram Rashidi was born in
Boroujerd, Iran, in 1986. He received
his B.S. degree in electrical engineer-
ing from Lorestan University, Iran, in
2009 and he received his M.S. from
Tabriz University, Iran in 2011 also
he is now Ph.D. student in Isfahan
University of Technology (IUT). His

research interests include hardware implementation
for arithmetic of finite fields, cryptographic hardware,
and VLSI circuits for elliptic curve cryptosystems.

Reza Rezaeian Farashahi is an as-
sistant professor at department of
Mathematical sciences at Isfahan Uni-
versity of Technology. He was a re-
search fellow at the center for Ad-
vanced Computing Algorithms and
Cryptography (ACAC) at Macquarie

University. He obtained his Ph.D at the Eindhoven
University of Technology, in Netherlands. Currently,
his main research interests are algebraic aspects and
computational number theory in cryptography and
especially in elliptic and hyperelliptic curve cryptogra-
phy. Specific areas he has worked on include: efficient
arithmetic and implementation on elliptic curves over
finite fields, computational problems on families of
elliptic curves, number extractors for curves and Ja-
cobians and pseudorandom bit generators.

SayedMasoud Sayedi was born in
Maragheh, Iran, in 1960. He received
the B.Sc. and M.Sc. degrees in elec-
trical engineering from Isfahan Uni-
versity of Technology (IUT), and the
Ph.D. degree in electronics from Con-
cordia University in 1986, 1988, and

1996, respectively. From 1988 to 1992, and then since
1997, he has been with IUT, where he is currently
an associate professor in the Department of Electri-
cal and Computer Engineering. His areas of interest
include VLSI fabrication processes, low power VLSI
circuits, and data converters.

ISeCure

	1 Introduction
	2 Proposed Structures for Bit-Parallel Binary Finite Field Multiplier
	2.1 Proposed Structure of the Bit-parallel Multiplier (Method 1)
	2.2 Proposed Structure of the Bit-parallel Multiplier (Method 2)

	3 Comparison and Result Analyses
	4 Conclusions

