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A B S T R A C T

The diffusion layer plays an important role in a block cipher. Some block

ciphers, such as ARIA, Camellia, and Skinny use binary matrices as diffusion

layers which can be efficiently implemented in hardware and software. In this

paper, the goal is to propose some new binary matrices with suitable values

for the active S-boxes for R rounds. Firstly, some new 16 × 16 matrices are

proposed whose software implementations are better than the corresponding

one for the ARIA block cipher. Also, the values for the minimum active S-boxes

for these matrices are greater than the corresponding values for the ARIA block

cipher for R > 5. To design 32× 32 matrices, a structure with a special form

is proposed. Using this structure, a 32× 32 binary matrix is proposed which

guarantees at least 48 active S-boxes for 8 rounds of an SPN structure with this

matrix as its diffusion layer. By extending this structure, a 32× 32 non-binary

matrix is presented which results in at least 60 active S-boxes after 8 rounds.

© 2023 ISC. All rights reserved.

1 Introduction

Nowadays, huge amounts of information are trans-
mitted in networks which is why information secu-

rity is a subject that should be paid utmost attention
to. To have confidentiality as one of the main aspects
of security, encryption is utilized. Encryption algo-
rithms can be divided into symmetric key and public
key. Block cipher is one of the most important types
of symmetric key algorithms. Modern block ciphers
consists of several rounds. In each round input should
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be confused and diffused for which substitution and
permutation (diffusion) layers are used, respectively.
The substitution layer is often implemented using sev-
eral small non-linear substitution boxes (S-boxes) and
the diffusion layer combines the output of each S-box.

To represent diffusion layers, an n × n matrix is
used where n is the number of S-boxes in each round.
Generally, the matrix can be over finite fields, and in
the simplest case, n × n matrix can be over GF (2)
(binary matrix). The E2 [1] and the Camellia block
ciphers [2] use 8× 8 binary matrices with the branch
number of 5 while ARIA [3] uses an involutory 16×16
binary matrix with the branch number of 8 as a dif-
fusion layer. Also, Skinny [4] and Midori [5] are the
block ciphers using binary matrices with good prop-
erties to implement in hardware. In [6] a 32× 32 bi-
nary matrix with the branch number 10 was proposed.
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Figure 1. One round of SPN structure with the binary diffu-

sion layer

Some 24× 24 binary matrices are introduced in [7]
with good implementation properties for lightweight
block ciphers.

If the diffusion layer has good properties, then
many S-boxes will be active after a few rounds which
is why the diffusion layer design has a deep impact
on the resistance of block ciphers against linear [8]
and differential cryptanalysis [9].

In this paper, to investigate the diffusion properties
of proposed binary matrices, we employ them as the
diffusion layer of the SPN structure shown in Fig. 1.
This structure uses n S-boxes of length m bits. So,
the diffusion layer of the considered SPNs is n × n
binary matrices.

We use the following definitions in this paper.

Definition 1. For any given △x,△y,Γx,Γy ∈ Zm
2 ,

the differential and linear probabilities of S-box S,
are defined as:

DP (△x → △y) =
#{x ∈ Zm

2 |s(x)⊕ s(x⊕△x) = △y}
2m

(1)

LP (Γx → Γy) = (2×
#{x ∈ Zm

2 |x.Γx = s(x).Γy}
2m

− 1)2 (2)

where a.b denotes the parity of the bit-wise product
of a and b.

Definition 2. The maximum differential and linear
probabilities of an S-box are defined as:

p = max
△x ̸=0,△y

DP (△x → △y) (3)

q = max
Γx,Γy ̸=0

LP (Γx → Γy) (4)

Definition 3. An S-box is a differential (resp. linear)
active S-box if the input difference ( resp. output
mask) value of the S-box is nonzero.

For a linear diffusion layer which can be represented
by a matrix multiplication y = A.x, it can be shown
that the output difference (△y) is obtained from the
input difference (△x) by △y = A.△ x:

y1 = A.x1, y2 = A.x2 ⇒ △y = A.△ x (5)

Also, the input linear mask (Γx) is obtained from
the output linear mask (Γy) by Γx = AtΓy where At

denotes the transpose of matrix A:

y = A.x ⇒ Γt
y .y = Γt

y .A.x = (At.Γy)
t.x ⇒ Γx = AtΓy (6)

Definition 4. The minimum number of differential
active S-boxes of two rounds of a linear diffusion
layer D is called the differential branch number and
is defined as [10]:

βd(D) = min
x ̸=0

{w(x) + w(D(x))} (7)

where w(x) is the number of non-zero elements in
vector x.

From relations (5) and (6), we can conclude that for
a block cipher with matrix A as its diffusion layer, the
minimum number of linear active S-boxes (MNLAS)
is equivalent to the minimum number of differential
active S-boxes (MNDAS) of that block cipher with
matrix At as diffusion layer.

1.1 Notations

In this paper, to avoid the representation of large
matrices, some notations are introduced as follows:

Definition 5. zn×m shows an all-zeros n×m matrix.
For example

z2×3 =

0 0 0

0 0 0

 (8)

Definition 6. Pi0,i1,i2,i3 represents a 4 × 4 binary
matrix with one 0 in each row where ij (ij ∈ 0, 1, 2, 3)
shows the position of zero elements in the jth row.
For example:

P3,1,2,0 =


1 1 1 0

1 0 1 1

1 1 0 1

0 1 1 1

 (9)

Definition 7. Πn
(i0,i1,...,in−1)

represents an n × n

binary matrix with one 1 in each row where ij (ij ∈
0, 1, · · · , n− 1) shows the position of non-zero element
in the jth row. For example:
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Π8
(0,5,4,7,2,1,6,3) =



1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0



(10)

1.2 Our Contribution

Counting the number of (linear or differential) active
S-boxes of consecutive rounds of an SPN is often done
by considering the truncated values for the block state.
It means each all-zero or non-zero S-box input and
output is shown by one bit 0 or 1, respectively. Thus,
the block state is shown by an n-bit vector instead
of an nm-bit value. In [11] a counting method was
proposed that can be used to compute active S-boxes
for several rounds of Rijndael. The complexity of this
method linearly increases with the rise in the number
of rounds.

It is proved that the ratio of MNDAS and MN-
LAS to number of rounds for binary matrices pro-
posed in[3] never exceeds Br/2 where Br is the matrix
branch number. Then some 16× 16 binary matrices
will be proposed for which the mentioned ratio ex-
ceeds Br/2 with an increase in number of rounds. For
the new matrices MNDAS for R rounds (e.g. R =
40) will be determined using the method mentioned
in [11]. To find MNLAS, the method is applied to At

instead of A. The proposed matrices have the largest
value of MNDAS and MNLAS among existing binary
matrices for R > 5 rounds.

The mentioned method cannot be used for 32 ×
32 binary matrices because of the method running
time and the limitation of the used memory. Thus,
some limitations have been applied to the matrices
of the mentioned size and the counting method has
been modified. In this paper, a new 32× 32 binary
matrix is also proposed. 8 rounds of an SPN structure
using the new matrix as the diffusion layer has at
least 48 (linear or differential) active S-boxes. The
counting method can be extended for a new 32× 32
non-binary matrix which results in at least 60 (linear
or differential) active S-boxes after 8 rounds. All of
the proposed 16 × 16 and 32 × 32 matrices can be
efficiently implemented.

The rest of this paper is organized as follows. In
Section 2, the counting method mentioned in [11]
with some slight changes are explained. Using this

method, in Section 2, some 16× 16 binary matrices
are offered for which the MNDAS of several rounds
are determined. In Section 3, a 32× 32 binary matrix
with at least 48 active S-boxes for 8 rounds and also
a 32× 32 non-binary matrix with at least 60 active S-
boxes for 8 rounds will be proposed and the conclusion
is in the last section.

2 New 16× 16 Binary Matrices

In this section, some new 16× 16 binary matrices are
proposed which provide the following properties when
used as the diffusion layer in the SPN structure:
− The active S-boxes for R rounds of the proposed
SPNs is large.
− The SPN can be efficiently implemented.
According to the mentioned method, to compute the
MNDAS for R rounds of the SPN structure using the
new matrices, array T must be of size R× 216.

The main idea to propose a new 16× 16 matrix is
the usage of the AES structure whose MDS matrix is
replaced by binary matrices. By using the mentioned
method, we observed that the MNDAS and MNLAS
for 4r rounds are greater than the expected value
which is 16r. The first proposed matrix is as follows.

A1 =



1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0

0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0

0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0


(11)

This matrix is the result of multiplying
Π16

0,5,10,15,4,9,14,3,8,13,2,7,12,1,6,11 by Q1, where Q1
is given below.
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Q1 =


P3,1,0,2 z4×4 z4×4 z4×4

z4×4 P0,2,3,1 z4×4 z4×4

z4×4 z4×4 P1,3,2,0 z4×4

z4×4 z4×4 z4×4 P2,3,0,1

 (12)

The differential branch number of A1 is 4. The
MNDAS of r rounds of the SPN structure using A1

as the diffusion layer has been shown in Table 1. It
can be observed from Table 1 that when the number
of rounds increases, the ratio of the MNDAS to the
number of rounds, also increases. Although there are
other options for matrices Q and Π, the results for
the mentioned one are the best.

To investigate the security of the SPN cipher with
A1 as the diffusion layer against the impossible dif-
ferential attack, we checked the length of impossible
differentials. We looked for truncated differentials of
probability 1 in both encryption and decryption di-
rections and found out that after four rounds there is
no byte whose difference is zero and there is no set of
bytes that the XOR of their differences is zero with
probability 1. This ensures us that this SPN does
not have any impossible differential in more than 6
rounds. In other words, we found a 6-round impossi-
ble differential for the SPN that uses A1.

It should be noted that the A1 matrix is better
than the Skinny matrix in terms of the active S-boxes
and the resistance to impossible differential attack,
but in terms of hardware implementation in Skinny,
12 XOR operations are needed forthe diffusion layer
but for A1 this value requires 32 XOR operations (28
operations with an auxiliary variable). Due to the fact
that in order to compare the implementation of two
block ciphers, it is necessary to compare the number
of rounds of the algorithm as well as the designed
S-box, it is not possible to have a detailed review
between these diffusion layers of block ciphers in this
paper.

To find a binary matrix with at a most 4-round
impossible differential, we searched all permuta-
tions Π, but for all of them, there are impossible
differentials on 5 or more rounds. To overcome
this problem, another matrix, A2, is proposed
which is the result of multiplying Q2 by Π =
Π16

2,7,8,14,3,4,9,15,0,5,10,12,1,6,11,13, where Q2 is of
the form:

Q2 =



P3,0,1,2 P0,1,2,3 z4×4 z4×4

P3,0,1,2 ⊕ P0,1,2,3 P0,1,2,3 z4×4 z4×4

z4×4 z4×4 P1,2,3,0 P1,2,3,0

z4×4 z4×4 P1,2,3,0 ⊕ P2,3,0,1 P2,3,0,1


(13)

The form of the upper left 8× 8 sub-block of Q2 is
like the matrix used in the Camellia block cipher.

The matrix A2 = Q2 × Π has at most 4-round
impossible differential distinguisher.

The MNDAS of r rounds of the SPN structure
using A2 as the diffusion layer has been shown in
Table 2. The inverse of matrix Q2 can be efficiently
implemented similar to the implementation of matrix
Q2. Software implementation of this matrix has been
described in Appendix 1.

3 The 32× 32 Matrix

The method proposed in Section 2 cannot be directly
used for 32 × 32 binary matrices to determine the
MNDAS of r rounds because of the large running
time of the algorithm for each round.
Thus, a new method is used to determine a lower
bound for the active S-boxes of r rounds of an SPN
structure which uses a 32×32 binary matrix as its dif-
fusion layer. This method is different from the method
described in Section 2 in the following aspects:
(1) Here, two m-bit sub-blocks (instead of one m-bit
sub-block) are truncated to one bit. Thus, the num-
ber of columns of the array T will be 2

n
2

(2) In each iteration of the search algorithm two
rounds will be analyzed (instead of one round in each
iteration). Thus the array T will be of size r

2 × 2
n
2

(instead of r × 2n).

In the following, we introduce a new 32×32 binary
matrix with suitable linear and differential properties.
Consider the following 32× 32 binary matrix A3 =
P.Π, where:

P=



B4×4 z4×4 z4×4 z4×4 z4×4 z4×4 z4×4 z4×4

z4×4 B4×4 z4×4 z4×4 z4×4 z4×4 z4×4 z4×4

z4×4 z4×4 B4×4 z4×4 z4×4 z4×4 z4×4 z4×4

z4×4 z4×4 z4×4 B4×4 z4×4 z4×4 z4×4 z4×4

z4×4 z4×4 z4×4 z4×4 B4×4 z4×4 z4×4 z4×4

z4×4 z4×4 z4×4 z4×4 z4×4 B4×4 z4×4 z4×4

z4×4 z4×4 z4×4 z4×4 z4×4 z4×4 B4×4 z4×4

z4×4 z4×4 z4×4 z4×4 z4×4 z4×4 z4×4 B4×4


(14)

and
Π = Π32

I (15)

where

I = {0, 1, 6, 7, 8, 9, 14, 15, 16, 17, 22, 23, 24, 25, 30, 31,
4, 5, 2, 3, 12, 13, 10, 11, 20, 21, 18, 19, 28, 29, 26, 27}.

The matrix Π is similar to the matrix representa-
tion of permutation P4 introduced in [12]. B4×4 is a

ISeCure
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Table 1. MNDAS of r rounds of the SPN structure using A1 as the diffusion layer

r 1 2 3 4 5 6 7 8 9 10 12 14 ... 20 ... 39 40

MNDAS 1 4 7 16 22 28 33 38 43 48 60 70 ... 106 ... 217 224

MNLAS 1 4 7 16 22 28 33 38 43 48 60 70 ... 106 ... 217 224

MNDAS/r 1.00 2.00 2.33 4.00 4.40 4.66 4.71 4.75 4.77 4.80 5 5 ... 5.3 ... 5.56 5.60

Table 2. MNDAS of r rounds of the SPN structure using A2 as the diffusion layer

r 1 2 3 4 5 6 7 8 9 10 12 14 ... 20 ... 39 40

MNDAS 1 5 8 16 20 25 31 36 41 47 58 68 ... 101 ... 205 211

MNDAS/r 1 2.50 2.66 4 4 4.16 4.42 4.5 4.55 4.7 4.83 4.85 ... 5.05 ... 5.25 5.27

MNLAS 1 5 8 16 21 25 29 36 40 47 57 69 ... 102 ... 207 212

MNLAS/r 1 2.5 2.66 4 4.2 4.16 4.14 4.5 4.44 4.7 4.66 4.92 ... 5.1 ... 5.25 5.3

4× 4 binary matrix as follows

B = P1,2,3,0 =


1 0 1 1

1 1 0 1

1 1 1 0

0 1 1 1

 (16)

The sequence of transformations applied to the
input of an SPN structure (regardless of the key
addition) can be written as

· · · ◦P ◦Π ◦S ◦P ◦Π ◦S ◦P ◦Π ◦S ◦P ◦Π ◦S (17)

Concerning commutativity of Π and S, this sequence
can be rewritten as:

· · ·◦Π◦P◦Π◦S◦P◦S◦Π◦P◦Π◦S◦P◦S◦Π (18)

Fig 2 shows the SPN structure corresponding to the
relation (18) which is composed of two different types
of rounds S ◦P ◦S and Π ◦P ◦Π applied alternately.
The input to the rth sub-cipher S ◦P ◦S is shown by
(Ir0 , I

r
1 , · · · , Ir31), while the input to the rth sub-cipher

Π ◦P ◦Π is represented by (Or
0, O

r
1, · · · , Or

31).

In Section 2, the truncated value of Iri was rep-
resented by Ir,ti which could be 0 or 1. Now the
double-truncated value for every pair (Ir2i, I

r
2i+1), i =

0, 1, · · · , 15 is shown by Īr,ti which can be 0̄ or 1̄.
If both of Ir2i and Ir2i+1 are all-zero, Īr,ti will be
shown by 0̄. In other cases, it will be shown by
1̄. (Ir0 , I

r
1 , · · · , Ir31) can be shown with the double-

truncated vector (Īr,t0 , Īr,t1 , · · · , Īr,t15 ) which corre-

sponds to the double-truncated value
∑i=15

i=0 Īr,ti .2i.
This double-truncated value is a number between
0 and 65535. Similar notation can be used for the
input to the ith application of Π ◦P ◦Π.

Applying the S-box layer (S) to a double-truncated
vector does not change its value, i.e., the S transfor-
mation is considered an identity transformation on

a double-truncated vector. As can be seen from Fig.
2 the Π is equivalent to a permutation on 16 2m-
bit values. Therefore Π acts as a permutation on 16
elements of a double truncated vector. This transfor-
mation is one-to-one. The application of P is realized
by a parallel application of 8 B functions. Double-
truncated input to a B can be shown by (0̄, 0̄), (0̄, 1̄),
(1̄, 0̄) or (1̄, 1̄). Applying B to (0̄, 1̄) and (1̄, 0̄) re-
sults in (1̄, 1̄). Applying B to (1̄, 1̄) results in (0̄, 1̄),
(1̄, 0̄) or (1̄, 1̄). A function B is called active if its
input (or output) is not all zero. Each active B in
the application of S ◦P ◦ S makes at least 4 S-boxes
active in its input and its output.

Based on Fig. 2, the analysis of the mentioned
structure is as follows. To find a lower bound for
MNDAS of R rounds of the mentioned SPN, all of
the double-truncated values for the input of the SPN
shown in Fig. 2 and all of the possible transitions by
application of the P layers will be considered. In the
considered paths, each active B in S ◦P ◦S sequence
of functions, adds four active S-boxes to the lower
bound of MNDAS.

Considering a double-truncated vector for the first
application of S ◦P ◦ S, the number of paths is ex-
ponentially increased by adding each P layer in the
sequence of applied functions. To overcome this prob-
lem, an array T of the size R

2 × 216 is built. The num-
bering of the rows and the columns of the array starts
from 1 and 0, respectively. T [i][j] shows the MNDAS
of the characteristics which finished with the double-
truncated value j (a number from 0 to 65535) at the
end of the ith application of Π ◦P ◦Π. Computation
of i+ 1th row of T is performed by using the ith row
of T . T [r + 1][j] is computed using the exhaustive
search over T [r][i], i = 0, · · · , 65535 and all of the pos-
sible transitions from Īr+1,t = i to Or+1,t = k, k =
0, 1, · · · , 65535 by i+ 1th application of the S ◦P ◦ S
and all of the possible transitions from Or+1,t = k
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Figure 2. Equivalent form of four rounds of the SPN with A3 as the diffusion layer

to Ir+2,t = j by i+ 1th application of the Π ◦P ◦Π.
For each active B in the i + 1th application of the
S◦P◦S, 4 is added to the lower bound of the number
of active S-boxes of the characteristic. Thus we have

T [r+1][j] = min
i,k

{
T [r][i] + 4 × l

∣∣∣ Ī
r+1,t

= i −→ Ī
r+2,t

= j is possibleand Ī
r+1,t

makes l different Bs active
}
.

(19)

For the mentioned structure the minimum non-zero
values of the 4th row of the T array is 48 which means
that 8 rounds of the structure have at least 48 active
S-boxes.

Table 3 and Table 4 show the possible transitions
from Īr,t to Ōr,t and Ōr,t to Īr+1,t, respectively.

Example 1. For computing T [r + 1][153], it can be
seen from Table 4 that one of the possible values
for Ōr+1,t which results in Īr+2,t = 153 is 3. From
Table 3 it is concluded that 1,2 and 3 are some values
for Īr+1,t which can be transformed to Ōr+1,t = 3.
So minimum of T [r][1] + 1 × 4, T [r][2] + 1 × 4 and
T [r][3] + 1× 4 can be a candidate for T [r + 1][153].
Considering all of the possible transformations results
in the final value of T [r + 1][153].

The most important properties of B which affect
the resultant bound are as follows:
(1) The minimum active sub-blocks in the input and
output of B takes its maximum possible value.

(2) Double-truncated pairs (0̄, 1̄) and (1̄, 0̄) results
in (1̄, 1̄).

To see the effect of the second property on the
overall diffusion of the SPN, consider the following
matrix B1:

B1 =


1 0 1 1

0 1 1 1

1 1 1 0

1 1 0 1

 (20)

The minimum positive active sub-blocks in the
input and output of B1 and B are the same, but if
B1 is used instead of B in the SPN mentioned in this
section, the obtained lower bound of MNDAS for 8
rounds of the SPN would be 16, which is much smaller
than the lower bound for SPN using B. This egregious
difference is the result of the possible transformations
of (0̄, 1̄) to (0̄, 1̄) and (1̄, 0̄) to (1̄, 0̄) for the matrix
B1.

For the introduced method in this section, if the
matrix P uses 8 different matrices B with the two
mentioned properties, the obtained lower bound will
not change.
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Table 3. Possible transitions from Īr,t to Ōr,t and the active Bs of each transition

Īr,t Ōr,t The active Bs

0 0 0

1 3 1

2 3 1

3 1,2,3 1

4 12 1

5 15 2

6 15 2

7 13,14,15 2

...
...

...

65535 21845,21846,21847,21849,...,65535 8

Table 4. Possible transitions from Ōr,t to Īr+1,t

Ōr,t Īr+1,t

0 0

1 9

2 144

3 153

4 2304

5 2313

6 2448

7 2457

...
...

15 39321

..

.
..
.

65535 21845,21852,21853,21957,...,65535

The bound can be increased if we use MDS ma-
trices (in GF (28)) instead of the binary matrix B
in relation (14). In this case, using the mentioned
method, the lower bound of the MNDAS for 8 rounds
is increased to 60. For a 4× 4 MDS matrix the possi-
ble double-truncated transitions would be the same
as the ones for matrix B. The only difference is that
for each active B, 5 is added to the lower bound of
MNDAS. The SPN structures using the new diffusion
layer, have at most 6-round impossible differentials. It
can be implemented efficiently similar to Rindael-256
because Π is similar to ShiftRows and B is similar to
MixColumns. The lower bound of the MNDAS for 8
rounds of Rindael-256 is 50 which is much less than
the bound 60 calculated for the proposed SPN. The
new SPN can be used to design a block cipher with
a block size of 256 bits.

4 Conclusion

In this paper, we concentrated on the design of bi-
nary matrices with suitable cryptographic properties.
Firstly, using the AES structure, a new 16 × 16 bi-
nary matrix was proposed. Although, this matrix has
appropriate results as far as the active S-boxes for
R rounds of the Camellia block cipher is concerned,
its resistance against impossible differential attack is
not preferable. To solve this problem, The Camellia
binary matrix idea and byte permutation (similar to
ShiftRows in AES ) were utilized resulting in a new
structure. Using this new structure, a 16× 16 matrix
was proposed where 10 rounds of an SPN structure us-
ing this matrix as its diffusion layer has 47 linear and
differential active S-boxes and there is no impossible
differential distinguisher for more than 4 rounds.

Due to the limitation of the memory and time for
counting the active S-boxes for a 32× 32 binary ma-
trix, the counting method mentioned in was modified
to provide a lower bound for the active S-boxes. Then
based on 4× 4 binary matrices, a new structure for
32× 32 binary matrices was presented. Using the pro-
posed structure, it was found that the lower bound
for the active S-boxes in 8 rounds of the SPN struc-
ture employing this matrix as its diffusion layer is
48. Since the counting method used for this structure
could be extended to non-binary matrices, the 4× 4
binary matrix was replaced by a 4× 4 MDS matrix.
The lower bound for the number of active S-boxes is
60 for the new non-binary structure. The resultant
bound is better than the corresponding lower bound
for Rijndael-256 which is 50 [13]. All the proposed dif-
fusion layers proposed in this paper can be efficiently
implemented in software.
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A Software Implementations

Now some points are described about the method of
implementing of round function on processors with
word length 32 or above. In a round function of the
SPN structure after the key addition layer which
simply is implemented by XOR operations, the S-
box layer and diffusion layer are applied to the input
block as follows:

Q ◦Π ◦ S

where Q and Π are n × n binary matrices. The
above functions are applied to the input block X =
(x1, x2, ..., xn), where each xi, i = 1, 2, · · · , n is a byte.
Since we can interchange S and Π, Q ◦Π ◦ S(X) =
Q ◦ S ◦ Π(X) . Thus, in the following the method
of implementation is described. If all of the 8-bit S-
boxes used in S-box layer are the same, to implement
Q ◦S for all Qs introduced in this paper it suffices to
pre-compute and store the following 4 lookup tables
each with 256 4-byte word entries:

T0111[x] =


0

s[x]

s[x]

s[x]

 , T1011[x] =


s[x]

0

s[x]

s[x]

 ,

T1101[x] =


s[x]

s[x]

0

s[x]

 , T1110[x] =


s[x]

s[x]

s[x]

0


On the other hand, to implement the inverse of

the round function the following 4 lookup tables are
stored:
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TI0111[x] =


0

s−1[x]

s−1[x]

s−1[x]

 , T I1011[x] =


s−1[x]

0

s−1[x]

s−1[x]

 ,

T I1101[x] =


s−1[x]

s−1[x]

0

s−1[x]

 , T I1110[x] =


s−1[x]

s−1[x]

s−1[x]

0


The matrix Q1 introduced in Section 2 can be di-
vided into 4 independent 4× 4 sub-blocks. Thus, ap-
plying Q1 ◦ S to input vector can be implemented by
independent calculation of 4 sub-blocks of the out-
put. Each output sub-block is calculated by 4 table
lookups and 3 XOR operations. Calculation of the
Q1−1 ◦ S−1 is the same.

Matrix Q2 introduced in Section 2 can be divided
into two 8× 8 sub-blocks which can be implemented
independently. Here, the implementation of the first
8× 8 sub-block is described. Implementation of the
second 8 × 8 sub-block is performed similarly. To
compute (y1, y2, · · · ..., y8), the following vectors are
calculated first:

z0 = P3,0,1,2 ×


s[x1]

s[x2]

s[x3]

s[x4]


= T1011[x1]⊕ T1101[x2]⊕ T1110[x3]⊕ T0111[x4]

z1 = P0,1,2,3 ×


s[x5]

s[x6]

s[x7]

s[x8]


= T0111[x5]⊕ T1011[x6]⊕ T1101[x7]⊕ T1110[x8]

Then (y1, y2, y3, y4) is computed as follows:


y1

y2

y3

y4

 = z0 ⊕ z1 (A.1)

and (y5, y6, y7, y8) is computed as follows:


y5

y6

y7

y8

 =


y1

y2

y3

y4

⊕ z0 ≪ 8 (A.2)

where z0 <<< 8 shows the circular shifting of z0 by
8 bits. Thus, the calculation of each output sub-block
needs 8 table lookups, 8 XOR operations and 1 cir-
cular shift operation. To compute (y9, y10, · · · ..., y16)
the following vectors are calculated first:

z2 = P1,2,3,0 ×


s[x9]

s[x10]

s[x11]

s[x12]


= T1110[x9]⊕ T0111[x10]⊕ T1011[x11]⊕ T1101[x12]

z3 = P1,2,3,0 ×


s[x13]

s[x14]

s[x15]

s[x16]


= T1110[x13]⊕ T0111[x14]⊕ T1011[x15]⊕ T1101[x16]

Then (y9, y10, y11, y12) is computed as follows:
y9

y10

y11

y12

 = z2 ⊕ z3 (A.3)

and (y13, y14, y15, y16) is computed as follows:
y13

y14

y15

y16

 = (


y9

y10

y11

y12

) ≪ 8⊕ z2 (A.4)

Thus, the calculation of each output sub-block needs
8 table lookups, 8 XOR operations, and 1 circular
shift operation.

Inverse of Q2 is as follows.

Q2ˆ-1=


P0,1,2,3 P0,1,2,3 z4×4 z4×4

P3,0,1,2 ⊕P0,1,2,3 P3,0,1,2 z4×4 z4×4

z4×4 z4×4 P0,1,2,3 P3,0,1,2

z4×4 z4×4 P0,1,2,3 ⊕P3,0,1,2 P3,0,1,2


(A.5)

It is clear that Q2−1 ◦ S−1 can be implemented
similar to Q2 ◦ S.
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B Hardware Implementations of 4× 4
Binary Matrix

To hardware implementation of binary matrix

P1,2,3,0 =


1 0 1 1

1 1 0 1

1 1 1 0

0 1 1 1

 We can implement this ma-

trix directly or recursive. To implement recursive,
these relations as below (xi’s are inputs and yi’s are
output):

y0 = x0 ⊕ x2 ⊕ x3

y1 = x1 ⊕ x2 ⊕ y0

y2 = x2 ⊕ x3 ⊕ y1

y3 = x3 ⊕ y0 ⊕ y1

(B.1)

If we want to decrease 8 XOR to 7 XOR, we need to
define a temporary variable:

temp = x0 ⊕ x1 ⊕ x2 ⊕ x3

y0 = x0 ⊕ temp

y1 = x1 ⊕ temp

y2 = x2 ⊕ temp

y3 = x3 ⊕ temp

(B.2)

Mahdi Sajadieh received the B.Sc.,
M.Sc. and Phd degrees in Communi-
cation Engineering from Isfahan Uni-
versity of Technology (IUT), Isfahan,
Iran, in 2004, 2007 and 2012, respec-
tively. He joined Islamic Azad Uni-
versity, Isfahan (Khorasgan) Branch
in 2011 and at present time is an As-

sistant Professor in Electrical Engineering Depart-
ment. His research interests include Cryptography
and Channel Coding.

Arash Mirzaei received his B.Sc.,
M.Sc. degrees in Communication
Engineering from Isfahan Univer-
sity of Technology, Isfahan, Iran, in
2007 and 2009, respectively. He then
worked in the cybersecurity field for
about ten years before starting his

Ph.D. at Monash University, Melbourne, Australia
in 2019. His research interests include Cryptography
and Security.

ISeCure


	1 Introduction
	1.1 Notations
	1.2 Our Contribution

	2 New 16 16 Binary Matrices
	3 The 3232 Matrix
	4 Conclusion
	A Software Implementations 
	B Hardware Implementations of 44 Binary Matrix

