
ISeCure
The ISC Int'l Journal of
Information Security

November 2023, Volume 15, Number 3 (pp. 51–58)

http://www.isecure-journal.org

Presented at the ISCISC’2023 in Tehran, Iran.

Using ChatGPT as a Static Application Security Testing Tool ∗∗

Atieh Bakhshandeh 1,∗, Abdalsamad Keramatfar 1, Amir Norouzi 1, and
Mohammad M. Chekidehkhoun 1

1Research Center for Development of Advanced Technologies, Tehran, Iran

A R T I C L E I N F O.

Keywords:
Artificial Intelligence-based Code

Review, ChatGPT Model,

Common Weakness Enumeration,
Static Application Security

Testing, Vulnerability Detection

Type:

Research Article

doi:
10.22042/isecure.2023.182082

A B S T R A C T

In recent years, artificial intelligence has had a conspicuous growth in

almost every aspect of life. One of the most applicable areas is security code

review, in which a lot of AI-based tools and approaches have been proposed.

Recently, ChatGPT has caught a huge amount of attention with its remarkable

performance in following instructions and providing a detailed response.

Regarding the similarities between natural language and code, in this paper, we

study the feasibility of using ChatGPT for vulnerability detection in Python

source code. Toward this goal, we feed an appropriate prompt along with

vulnerable data to ChatGPT and compare its results on two datasets with the

results of three widely used Static Application Security Testing tools (Bandit,

Semgrep, and SonarQube). We implement different kinds of experiments with

ChatGPT and the results indicate that ChatGPT reduces the false positive

and false negative rates and has the potential to be used for Python source

code vulnerability detection.

© 2023 ISC. All rights reserved.

1 Introduction

Today, almost all technologies are strongly depen-
dent on source code. Therefore, code is of in-

creasing importance. A glance at the number of lines
of used codes in some well-known tools is evidence
for this claim. For instance, the number of GitHub
repositories increased from 100 million in 2018 to
200 million in 2022 [1]. The increase in the amount
of code will lead to more security requirements in

∗ Corresponding author.
∗∗The ISCISC’2023 program committee effort is highly ac-

knowledged for reviewing this paper.

Email addresses: bakhshandeh@rcdat.com,

keramatfar@rcdat.ir, norouzi@rcdat.ac.ir,
chekidekhoon@rcdat.ir

ISSN: 2008-2045 © 2023 ISC. All rights reserved.

programming. MITRE 1 and other studies indicate
the growth in the number of vulnerabilities in recent
years [2–8]. Specifically, software vulnerability is of
great importance. A software vulnerability is a tech-
nical vulnerability that can be used for violating its
security policies. Such vulnerabilities can be exploited
which in turn leads to data leakage or data tampering
and even denial of services.

Static source code analysis is a method for find-
ing code vulnerabilities that is done by automatically
examining the source code without having to exe-
cute the program. Static Application Security Testing
(SAST) tools analyze a piece of code or a compiled
version of it to identify its security problems. Cov-

1 Massachusetts Institute of Technology Research and Engi-

neering

ISeCure

52 Using ChatGPT as a Static Application Security Testing Tool — Bakhshandeh et al.

ering a wide range of errors and high accuracy are
two important features of SAST tools [9]. Most of
the well-known SAST tools such as Semgrep, Bandit,
and SonarQube often use rule-based techniques to
find the vulnerable patterns of code. However, these
tools have been shown to have some flaws, including
a high rate of false positives and false negatives [4].
The more false positives a SAST tool returns, the
more time and effort is required by a security expert
to validate the findings of the SAST tool. Moreover,
this will increase the error rate by humans, which
may then lead to ignoring some vulnerabilities. On
the other hand, a high rate of false negatives leads to
catastrophic events.

In recent years, Machine Learning (ML) and deep
learning have had remarkable advances in various
areas such as natural language processing [10, 11].
Therefore, considering the high similarity between
code and natural languages, the deep learning-
based models are expected to be successful in code-
processing tasks. Likewise, studies in this area have
shown the interest of researchers in using deep learn-
ing techniques in vulnerability detection [12, 13].
Machine learning models can automatically learn the
patterns of software vulnerabilities based on datasets.
Furthermore, research indicates that ML models have
fewer false positives compared to SAST tools [6, 14].
Results of a new research have shown the superior
performance of deep learning-based models over
three open-source tools in C/C++, reducing false
positive and negative rate at the same time [15].

Recently, ChatGPT, an AI-powered chatbot tool
that uses Natural Language Processing (NLP) and
machine learning algorithms to understand and re-
spond to customer inquiries, has drawn a lot of atten-
tion. ChatGPT is vital for business professionals for
several reasons. It can help save time and resources by
automating tasks requiring human intervention. An
important point to note is that ChatGPT has been
trained with a huge amount of data till 2021 so it can
be a great help in finding known patterns in thou-
sands of packages in an automated way. The model is
also trained on a large amount of code and is thus able
to recognize common patterns. In this paper, we eval-
uate the performance of ChatGPT in identifying secu-
rity vulnerabilities of Python codes and compare the
results with three well-known SAST tools for Python
vulnerability detection (Bandit, Semgrep, and Sonar-
Qube). The reason for choosing the Python language
is that in 2022, Python was known to be the most pop-
ular programming languages along with Java, based
on the Popularity of Programming Language Index
(PYPL) and IEEE reports. Also, Stackscale ranked
Python in third place [16]. Although Python is mainly
used in the scope of machine learning and data sci-

ence, its applications are not only limited to these
fields, and with its famous frameworks such as Django
and Flask, it is prone to vulnerabilities. The rest of
the paper is organized as follows: In Section 2, we pro-
vide a brief literature review of this area. Section 3 is
dedicated to the datasets we used. Section 4 provides
the details of the experiments we performed with
ChatGPT. In Section 5, we present the evaluation
and analysis of the obtained results 2 . In Section 6 we
discuss some factors that may threaten the validity
of the results. Finally, Section 7 concludes the paper.

2 Related Work

In this section, we review some of the works that
used different kinds of AI models for vulnerability
detection. Note that we did not focus on works that
proposed models for repairing the identified vulnera-
bilities. When it comes to artificial intelligence, the
main idea is the use of supervised learning. Therefore,
various machine learning models used methods of fea-
ture engineering such as the number of lines of the
code, code complexity, and the number of operations
and also utilized textual features[15, 17]. In general,
research shows that text-based models have better
performance over feature engineering and the studies
also admit that machine learning models outperform
the existing SAST tools.

Recently, more research has been devoted to deep
learning. In this scope, researchers often used dif-
ferent deep learning models such as Convolutional
Neural Networks (CNN), Long Short-Term Memory
(LSTM), and Multilayer Perceptron (MLP) [13, 18–
20]. Some of the models were based on different kinds
of code property graphs and used Graph Neural Net-
works [13, 14], while some others only relied on to-
kens [20]. A new study has investigated the way deep
learning models function in vulnerability detection
tasks. The results of this study reveal some points:
First, the results of different models are not compati-
ble with each other. Second, fine-tuned models have
shown better performance in this field. Third, usually
1000 samples of each class are enough for the training
of a neural network and, finally, models usually use
the same features for prediction [21]. Although stud-
ies approved the superiority of graph-based models,
a new study indicates the superior performance of
transformer-based models over graph-based ones [22].
In 2022, Hanif and Maffeis proposed a model named
VulBERTa [23]. This model is based on RoBERTa
and is used for vulnerability detection in C/C++
codes. Another recent study also has used BERT
architecture and CodeBERT vectors for predicting
code vulnerabilities. The results of this study prove

2 https://github.com/abakhshandeh/ChatGPTasSAST.git

ISeCure

November 2023, Volume 15, Number 3 (pp. 51–58) 53

the superiority of transformer-based models over tra-
ditional deep-learning models and also graph-based
models [24]. Overall, it seems that transformer-based
models are effective in this area. Another recent work
has evaluated ChatGPT as a large language model
for detecting vulnerabilities in Java source codes and
compared the results with a dummy classifier and
achieved no better results than it [25]. However, there
is still no academic study about comparing the re-
sults of the ChatGPT model with traditional SAST
tools for Python. This paper aims to answer the ques-
tion of whether the ChatGPT model is outperforming
SAST tools or not.

3 Datasets Description

In this section, we provide the details about our
dataset and the labels we used. Our dataset consists of
156 Python code files. These files contain 130 files of
the securityEval dataset which is proposed in [26]. As
the authors mentioned, these 130 files cover 75 vulner-
ability types that are mapped to Common Weakness
Enumeration (CWE). The remaining 26 files belong
to a project called PyT in which the author developed
a tool for Python code vulnerability detection and
used these 26 vulnerable code files for evaluating his
tool [27, 28]. Since the used datasets do not provide a
specific line of vulnerability, a security expert on our
team rechecked the data and specified the vulnerable
line. We identified the corresponding line of code of
CWEs that were assigned in the labels of these files
with the help of a security expert. The datasets’ in-
formation and the distribution of their corresponding
labels are presented in Table A.1 in Appendix A.

4 Working with ChatGPT API

In this section, we provide the details of the process
of utilizing the ChatGPT model API for identifying
vulnerabilities. In this study, we used the GPT-3.5-
Turbo model. The GPT-3.5-Turbo model can accept
a series of messages as input, unlike the previous
version which only allowed a single text prompt. This
capability provides some interesting features, such as
the ability to store prior responses or queries with a
predefined set of instructions with context. This is
likely to improve the generated response. The GPT-
3.5-Turbo model is a superior option compared to the
GPT-3 model, as it offers better performance across
all aspects while being 10 times more cost-effective
per token. We did four kinds of experiments using
the GPT-3.5-Turbo model.

(1) In our first experiment, we give the model the
vulnerable files and ask it whether they con-
tain any security vulnerabilities or not, without

specifying the corresponding CWEs. We ask the
model to just return the line number of the vul-
nerability if it contains any. Then, we compare
these lines with ground truth labels. In effect,
this experiment is a binary classification.

(2) In our second experiment, we provide the list of
the corresponding CWEs and ask the model to
find the vulnerabilities from the labels’ list in
the Python vulnerable file. In this experiment,
we ask the model to respond in JSON format
like [{”label”: ”CWE-X”, ”line of Code”: ”line
no.”}] so we can compare our results with those
of SAST tools.

(3) In the third experiment, for each of the vulner-
able files, we give the model all the labels re-
turned from Bandit, Semgrep, and SonarQube
tools for the Python code, as the classes that
ChatGPT should use. We then ask the model
whether each vulnerable file contains any of
those vulnerabilities or not. Here, the main dif-
ference with our second experiment is that we
specify the classes per vulnerable file separately.
In other words, we use the model as an assistant
for the SAST tools to verify the detected vulner-
abilities by them. In this experiment, we use the
same JSON format as the second experiment
for the responses. Note that in this experiment,
although we provide the labels’ list beforehand
for each vulnerable file, in some cases the model
has returned a new CWE which is not among
its input labels. This is a natural behavior seen
from a language model and to address this is-
sue in our evaluation, we consider two cases: In
one case, we ignore the new labels and calculate
the metrics without considering them. This pol-
icy can reduce the number of false positives of
SAST tools. In another case, we consider them
as well and this time the number of false nega-
tives may decrease.

(4) In our fourth experiment, we do not provide
any label list for the model and ask it to detect
the vulnerabilities in the files and determine
their corresponding CWEs from its own trained
knowledge. Here, the format of the responses
is the same JSON structure as the previous
experiments.

To use the model for our experiments, we put all the
vulnerable Python codes of our dataset in a directory
and then we called GPT-3.5 API with an optimized
prompt for each of the vulnerable Python files. The
choice of prompt is the most challenging task in this
process, as it has a direct effect on the results the
model provides. We optimize our prompts according
to [29]. Table 2 provides the list of prompts we used
for each experiment.

ISeCure

54 Using ChatGPT as a Static Application Security Testing Tool — Bakhshandeh et al.

4.1 Parameters

The parameters of the experiment are the prompt
which contains the instructions the model will execute
and a parameter called temperature that determines
the randomness level of the model response. The
temperature can take the values between 0 to 6 with
6 giving the most random output. Because we want
to specify labels for a piece of code, the nature of our
job is deterministic, so we set the temperature to zero
to get the most stable behavior. Another important
parameter is the prompt that is very influential in
the results and adjusting it to get the best results
is a challenging task. We used the prompts given
in Table 2. We chose our prompts based on [29].
According to [29], some of the key points to create
an optimized prompt are: using delimiters such as
triple quotes or triple backticks to specify the piece
of code, asking for structured output such as JSON,
HTML, etc., specifying the steps to complete a task in
a clear way, instructing the model to work out its own
solutions before rushing to a conclusion. To show the
sensitivity of ChatGPT to its prompts, an example
is provided in Table 1 where a prompt with minor
modification is given to the model, and the model
responds with different answers in which the second
response contains one less vulnerability compared to
the first one.

5 Results

In this section, we provide the results of our experi-
ments. First we explain the metrics we use for evalu-
ating our work and then we present GPT-3.5 results
and compare them with three popular SAST tools for
Python vulnerability detection. To be more precise,
we perform the following actions: We give a dataset of
156 vulnerable python codes to Bandit, Semgrep and
SonarQube SAST tools and we also query the Chat-
GPT model with our dataset using the appropriate
prompts. We then calculate the following metrics for
each of the tools’ results and the model result based
on our ground truth labels. Finally, we compare the
results of the tools with the GPT-3.5 model.

5.1 Evaluation Metrics

In classification, we have condition positive which
indicates the number of real positive cases in the
data. Similarly, there is a condition negative which is
the number of real negative cases in the data. Based
on these conditions, there will be four parameters:
true positive (TP) which is the number of positive
examples labeled as such, true negative (TN) which
is the number of negative examples labeled as such,
false positive (FP) that is the number of negative
examples labeled as positive and false negative (FN)

Table 1. Comparison of the responses of two prompts with

minor change

Prompt Response

find all the vulnerabilities

with the CWE standard in
the Python code which is
delimited with triple back-

ticks. Also, give the line of
the vulnerability in the code.
python code:′′′{Vul˙code}′′′
Format your response as a list
of JSON objects with ”label”

and ”line of Code” as the keys

for each element. only answer
with JSON.

[{ ”label”: ”CWE-78: Im-

proper Neutralization of
Special Elements used in an
OS Command (′OS Command

Injection′)”, ”line of Code”:
”command = ′echo′ + param
+ ′ ¿¿ ′ + ′menu.txt′” }, {
”label”: ”CWE-78: Improper
Neutralization of Special

Elements used in an OS

Command (′OS Command
Injection′)”, ”line of Code”:

”subprocess.call(command,

shell=True)” }, { ”label”:
”CWE-78: Improper Neu-

tralization of Special El-

ements used in an OS
Command (′OS Command

Injection′)”, ”line of Code”:

”subprocess.call(′echo Menu: ¿
menu.txt′, shell=True)” }]

find all the vulnerabilities with
the CWE standard in the

Python code. also give the line

of the vulnerability in the code.
python code: ′′′{Vul˙code}′′′
Format your response as a list
of JSON objects with ”label”
and ”line of Code” as the keys

for each element. only answer
with JSON.

[{ ”label”: ”Command
Injection”, ”line of Code”:

”subprocess.call(command,

shell=True)” }, { ”label”:
”Command Injection”, ”line of

Code”: ”subprocess.call(′echo
Menu: ¿ menu.txt′,
shell=True)” }]

that is the number of positive examples labeled as
negative. We define precision, recall, and F-measure
according to the following formulas [30].

• Precision: It answers the question that out of
all the examples the classifier labeled positive,
what proportion were correct? It is defined ac-
cording to the following equation:

precision =
TP

TP + FP
(1)

• Recall: It answers the question that out of
real positive examples, what proportion did the
classifier label as positive? It is defined by the
following formula:

recall =
TP

TP + FN
(2)

• F-measure: It is a measure that combines pre-
cision and recall and is defined according to the
following formula:

F = 2× precision× recall

precision+ recall
(3)

ISeCure

November 2023, Volume 15, Number 3 (pp. 51–58) 55

Table 2. GPT-3.5 prompts used. Vul˙code refers to the vulner-

able code, and labels1 is the list of labels of all vulnerable files

and labels2 is the labels of each vulnerable file that is iterated
through a loop.

Experiment No. Prompt

Experiment1 You will be provided with a Python code
delimited by triple backticks. If it contains

any security vulnerability, identify the lines
of vulnerable code and only write the line
in quotation If the code does not contain

a vulnerability, then simply write None.
python code: ′′′{Vul˙code}′′′

Experiment2 Which of the following vulnerabilities

from the list of vulnerabilities exist in
the Python code which is delimited with

triple backticks. also give the line of

the vulnerability in the code. python
code:′′′{Vul˙code}′′′ list of vulnerabilities:

{”, ”.join(labels1)} Format your response
as a list of JSON objects with ”label” and

”line of Code” as the keys for each element.

only answer with JSON.

Experiment3 Which of the following vulnerabilities

from the list of vulnerabilities exist in
the Python code which is delimited with
triple backticks. also give the line of the

vulnerability in the code. Python code:
′′′{Vul˙code}′′′ list of vulnerabilities: {”,
”.join((labels2)} Format your response as

a list of JSON objects with ”label” and
”line of Code” as the keys for each element.
only answer with JSON.

Experiment4 Your task is to determine whether the
following Python code which is delimited

with triple backticks, is vulnerable or not?
identify the following items: - CWE of its
vulnerabilities. - lines of vulnerable code.

Format your response as a list of JSON
objects with ”label” and ”line of Code”
as the keys for each vulnerability. If the

information isn’t present, use ”unknown”
as the value. Make your response as short
as possible and only answer with JSON.
python code:′′′{Vul˙code}′′′

5.2 Analyzing Results

In this section, we present the results based on the
mentioned metrics in the previous section. The re-
sults for Experiment1 in which we did not ask the
model to return the CWEs, are provided in Table 3.
The precision for the model in this experiment is not
better than the other three tools. Furthermore, the
low recall suggests that using this model for only de-
tecting vulnerable lines of a code does not give any
better results than SAST tools since low recall leads
to a high false negative rate. Likewise, the results
of Experiment2, which are presented in Table 4, in-
dicate that using the GPT-3.5 model with all the
classes given as labels does not provide superior re-
sults in comparison with the SAST tools. Note that

Figure 1. F1-score of top 6 CWE classes in Experiment3
(case 2)

in this experiment, the order of the given labels to
the GPT-3.5 model has a high impact on the gener-
ated results from the model. This is because when
the order of the labels is changed, the prompt is mod-
ified and as we mentioned before, the prompt has
a great effect on the model’s results. Therefore, we
gave the labels in a random order. Here, we reach
the same conclusion as [25] in which the authors con-
cluded that the capabilities of the ChatGPT model
for detecting vulnerabilities in code are limited.

The results of Experiment3 in which we provided
the classes per vulnerable file, are given in Table 5.
Here the figures indicate that case 1, in which we do
not accept the new labels returned from the model,
has produced better results than case 2. These results
are significantly better than those of SAST tools in
this experiment. The F1-score for the top 6 CWEs in
terms of frequency is illustrated in Figure 1 for this
experiment. This behavior shows that using ChatGPT
as an assistant along with SAST tools can be a good
idea. Moreover, if we do not provide any labels for
the model and ask it to return the CWEs of the
vulnerable codes from its own knowledge, as we did in
Experiment4, we obtain the results in Table 6 which
are comparable to the SAST tools. By and large, our
experiments show that using the ChatGPT model
as an assistant for SAST tools can provide hopeful
results.

6 Threats to Validity

In this Section, we discuss some factors in our experi-
ments that could affect the correctness of the results.
Our biggest challenge was the choice of the prompts of

ISeCure

56 Using ChatGPT as a Static Application Security Testing Tool — Bakhshandeh et al.

Precision Recall F1

Semgrep 0.6694 0.1504 0.2457

Bandit 0.7450 0.1447 0.2424

SonarQube 0.9104 0.1161 0.2060

GPT-3.5 0.7413 0.0819 0.1475

Table 3. Results of Experiment1 (binary classification)

Precision Recall F1

Semgrep 0.4682 0.1123 0.1812

Bandit 0.3168 0.0609 0.1022

SonarQube 0.3283 0.0419 0.0743

GPT-3.5 0.1659 0.0761 0.1044

Table 4. Results of Experiment2 (selecting from the list)

Precision Recall F1

Semgrep 0.4682 0.1123 0.1812

Bandit 0.3168 0.0609 0.1022

SonarQube 0.3283 0.0419 0.0743

Experiment3,GPT-3.5-Case 1 0.7807 0.2781 0.4101

Experiment3,GPT-3.5-Case 2 0.333 0.1542 0.2109

Table 5. Results of Experiment3 (SAST assistant)

Precision Recall F1

Semgrep 0.4682 0.1123 0.1812

Bandit 0.3168 0.0609 0.1022

SonarQube 0.3283 0.0419 0.0743

GPT-3.5 0.3350 0.1238 0.1808

Table 6. Results of Experiment4 (free classification)

ChatGPT. There are some metrics for measuring the
effectiveness of a prompt for LLMs. In [31] natural-
ness and expressiveness are mentioned as two impor-
tant factors for a prompt. Here, we tried to choose the
most efficient prompts in terms of these metrics and
also based on what was explained in Section 4.1 [29].
However, it is possible that a more careful selection
of the prompt can affect the results. Another fac-
tor that may also affect the results is the size of the
dataset and its accessibility on the Internet. Further-
more, the distribution of the CWEs of the dataset
is of great importance. To overcome this threat, we
chose three different datasets for better generalization
of the vulnerabilities they cover, but there may be
still a few coverage of the vulnerabilities. Moreover,
we only compare this model with three SAST tools
for Python language. Perhaps, further SAST tools
affect the results. Finally, we only tested the GPT-
3.5 model of ChatGPT, and the new billable version
(GPT-4) may performs better than this version.

7 Conclusion

In this paper, we did four types of experiments with
the ChatGPT model to detect the security vulnerabil-
ities of Python codes. We compared this model with
Bandit, Semgrep, and SonarQube which are popular

SAST tools for Python codes. We concluded that us-
ing the GPT-3.5 model for vulnerability detection of
codes in some special manners gives promising results.
Specifically, if we use it as a SAST tool assistant, it
will produce results that can help to improve the re-
turned results of SAST tools. Overall, we believe this
model has the potential to be used in vulnerability
detection tasks regarding the factors that may affect
the correctness of the results that we described in 6.
However, we admit that this study is not general in
all aspects and provides primary steps toward this
path. In future studies, the behavior of the latest
model of ChatGPT (GPT-4) which is more powerful
than the GPT-3.5 model, can be examined in vulner-
ability detection of codes with the hope of obtaining
better results. Moreover, the Temperature parameter
of the model can be set to values other than zero and
innovative rules can be passed to decide for the most
efficient obtained results. Another suggestion is to use
one-shot learning in future works. Moreover, it should
be considered that there is a security caution about
using ChatGPT as a SAST tool because it is required
to upload the source code on the OpenAI servers.

A Appendix

The distribution of labels of our dataset is provided
in Table A.1.

References

[1] Wikipedia. https://en.wikipedia.org/wiki/
GitHub, 2023. Accessed: 2023-03-27.

[2] cvedetails. https://www.cvedetails.com/

browse-by-date.php, 2023. Accessed: 2015-08-
23.

[3] Kumar V, Anjum M, Agarwal V, and Kapur
PK. A hybrid approach for evaluation and pri-
oritization of software vulnerabilities. Predictive
Analytics in System Reliability. Cham: Springer
International Publishing, - -:39–51, 2023.

[4] Sharma A. Zhou Y. Automated identification of
security issues from commit messages and bug
reports. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering,
2017.

[5] Zhou Y., Liu S., Siow J, Du X, and Liu Y. De-
vign. Effective vulnerability identification by
learning comprehensive program semantics via
graph neural networks. Advances in neural in-
formation processing systems, 32, 2019.

[6] Perl H, Dechand S, Smith M, Arp D, Yamaguchi,
Rieck K, and et al. Vccfinder: Finding potential
vulnerabilities in open-source projects to assist
code audits. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Commu-
nications Security, 2015.

ISeCure

https://en.wikipedia.org/wiki/GitHub
https://en.wikipedia.org/wiki/GitHub
https://www.cvedetails.com/browse-by-date.php
https://www.cvedetails.com/browse-by-date.php

November 2023, Volume 15, Number 3 (pp. 51–58) 57

Table A.1. Details of datasets

Vulnerability Occurrence in [26] Occurrence in [27]
CWE-15 15 0
CWE-1004 1 0
CWE-614 1 0
CWE-489 22 0
CWE-20 0 18
CWE-22 3 11
CWE-78 25 5
CWE-79 26 11
CWE-80 0 3
CWE-89 2 6
CWE-90 0 15
CWE-94 0 7
CWE-95 0 2
CWE-99 0 2
CWE-113 0 5
CWE-116 0 7
CWE-117 0 6
CWE-1204 0 3
CWE-193 0 4
CWE-200 0 5
CWE-209 0 4
CWE-215 0 4
CWE-250 0 3
CWE-252 0 2
CWE-259 0 2
CWE-269 0 4
CWE-283 0 2
CWE-284 0 3
CWE-285 0 5
CWE-295 1 8
CWE-297 0 10
CWE-306 0 4
CWE-312 0 3
CWE-319 0 2
CWE-321 0 1
CWE-326 0 4
CWE-327 0 7
CWE-329 0 4
CWE-330 0 1
CWE-331 0 1
CWE-339 0 4
CWE-347 0 3
CWE-352 0 1
CWE-367 0 3
CWE-377 0 3
CWE-379 0 4
CWE-384 0 4
CWE-385 0 6
CWE-400 0 3
CWE-406 0 9
CWE-414 0 7
CWE-425 0 4
CWE-434 0 9
CWE-454 0 6
CWE-462 0 5
CWE-477 0 2
CWE-488 0 4
CWE-502 0 15
CWE-521 0 5
CWE-522 0 12
CWE-595 0 4
CWE-601 0 14
CWE-605 0 4
CWE-611 0 22
CWE-641 0 3
CWE-643 0 8
CWE-703 0 13
CWE-730 0 10
CWE-732 0 4
CWE-759 0 4
CWE-760 0 2
CWE-776 0 3
CWE-798 0 4
CWE-827 0 3
CWE-835 0 5
CWE-841 0 10
CWE-918 0 8
CWE-941 0 8
CWE-943 0 7

[7] Jabeen G, Rahim S, Afzal W, Khan D, Khan
A, Hussain Z, and et al. Machine learning
techniques for software vulnerability prediction:
a comparative study. Applied Intelligence, 52,
2022.

[8] Maffeis S. Hanif H. Vulberta: Simplified source
code pre-training for vulnerability detection. In
2022 International Joint Conference on Neural
Networks (IJCNN), pages 1–8, 2022.

[9] Berabi B, He J, Raychev V, and Vechev M. Tfix:
Learning to fix coding errors with a text-to-text
transformer. In Proceedings of the 38th Inter-
national Conference on Machine Learning; Pro-
ceedings of Machine Learning Research: PMLR,
pages 78–91, 2021.

[10] Lorenz Hüther, Bernhard J. Berger, Stefan
Edelkamp, Sebastian Eken, Lara Luhrmann, and
et al Hendrik Rothe. Machine learning in the
context of static application security testing -
ml-sast. Federal Office for Information Security
(BSI), 2021.

[11] Abdalsamad Keramatfar, Mohadeseh Rafiee, and
Hossein Amirkhani. Graph neural networks: a
bibliometrics overview. Machine Learning with
Applications, 10:100401, 2022.

[12] Chakraborty S, Krishna R, and Ding Yand Ray
B. Deep learning based vulnerability detection:
Are we there yet? In IEEE Transactions on Soft-
ware Engineering, pages 3280–96. IEEE, 2022.

[13] Fu Michael and et al. Vulrepair: A t5-based au-
tomated software vulnerability repair. In Pro-
ceedings of the 30th ACM Joint European Soft-
ware Engineering Conference and Symposium on
the Foundations of Software Engineering, pages
935–947, 2022.

[14] et al. Zhou, Yaqin. Devign: Effective vulnera-
bility identification by learning comprehensive
program semantics via graph neural networks.
Advances in neural information processing sys-
temsy, 32, 2019.

[15] et al. Ding, Yangruibo. Velvet: a novel ensemble
learning approach to automatically locate vul-
nerable statements. In 2022 IEEE International
Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 959–970. IEEE,
2022.

[16] spectrum. https://spectrum.ieee.org/top-

programming-languages-2022, 2022.
Accessed:2023-06-23.

[17] et al. Lomio, Francesco. Just-in-time software
vulnerability detection: Are we there yet? Jour-
nal of Systems and Software, - -:111283, 2022.

[18] Rebecca Russell and et al. Kim. Automated vul-
nerability detection in source code using deep
representation learning. In 2018 17th IEEE inter-
national conference on machine learning and ap-

ISeCure

 https://spectrum.ieee.org/top-programming-languages-2022
 https://spectrum.ieee.org/top-programming-languages-2022

58 Using ChatGPT as a Static Application Security Testing Tool — Bakhshandeh et al.

plications (ICMLA), pages 757–762. IEEE, 2018.
[19] Zhen Li and et al. Zou. Vuldeepecker: A deep

learning-based system for vulnerability detection.
arXiv preprint arXiv:1801.01681, 2018.

[20] Laura Wartschinski and et al. Nollers. Vudenc:
Vulnerability detection with deep learning on a
natural codebase for python. Information and
Software Technology, 144:106809, 2022.

[21] et al. Steenhoek, Benjamin. An empirical study
of deep learning models for vulnerability detec-
tion. arXiv preprint arXiv:2212.08109, 2022.

[22] et al. Chen, Yizheng. Diversevul: A new vul-
nerable source code dataset for deep learning
based vulnerability detection. arXiv preprint
arXiv:2304.00409, 2023.

[23] Hazim Hanif and Sergio Maffeis. Vulberta: Sim-
plified source code pre-training for vulnerability
detection. In International Joint Conference on
Neural Networks (IJCNN), pages 1–8, 2022.

[24] Michael Fu and Chakkrit Tantithamthavorn.
Linevul: a transformer-based line-level vulner-
ability prediction. In Proceedings of the 19th
International Conference on Mining Software
Repositories, pages 608–620, 2022.

[25] Pavel Zadorozhny Cheshkov, Anton and Ro-
dion Levichev. Evaluation of chatgpt model
for vulnerability detection. arXiv preprint
arXiv:2304.07232, 2023.

[26] Mohammed Latif Siddiq and Joanna CS San-
tos. Securityeval dataset: mining vulnerability
examples to evaluate machine learning-based
code generation techniques. In Proceedings of
the 1st International Workshop on Mining Soft-
ware Repositories Applications for Privacy and
Security, pages 29–33, 2022.

[27] Bruno Thalmann Stefan Micheelsen. Pyt: A
static analysis tool for detecting security vulner-
abilities in python web applications, 2016.

[28] python-security. https://github.com/python-
security/pyt/tree/master/examples, 2018.
Accessed: 2023-06-15.

[29] Isa Fulford Andrew Ng. Chatgpt prompt
engineering for developers. https://www.

deeplearning.ai/short-courses/chatgpt-

prompt-engineering-for-developers, April
2023. Accessed: 2023-04-27.

[30] Atieh Bakhshandeh and Zahra Eskandari. An
efficient user identification approach based on
netflow analysis. In 2018 15th International ISC

(Iranian Society of Cryptology) Conference on
Information Security and Cryptology (ISCISC),
pages 1–5. IEEE, 2018.

[31] Catherine Tony, Markus Mutas, Nicolás E Dı́az
Ferreyra, and Riccardo Scandariato. Llmse-
ceval: A dataset of natural language prompts
for security evaluations. arXiv preprint
arXiv:2303.09384, 2023.

Atieh Bakhshandeh has been a cy-
ber security researcher at RCDAT
since 2014. She has a master’s de-
gree in Computer Science and her in-
terested research areas include Data
Analysis for Security Threat Detec-
tion and Penetration Testing.

Abdalsamad Keramatfar re-
ceived his Ph.D. in Information Tech-
nology Engineering in 2021 with a
focus on Natural Language Process-
ing and Deep Learning. He worked
as a Data Scientist for 6 years at SID
and is currently working as an AI

researcher at RCDAT.

Amir Norouzi is a Data Scientist
with a master’s degree in Bioelectric
Engineering from Amirkabir Univer-
sity of Technology. He is experienced
in Machine Learning, Data Engineer-
ing, Deep Learning, and Data Analy-
sis. He has been working in AI since

2017 and is currently working as a researcher in RC-
DAT.

Mohammad M. Chekidehkhoun
graduated from Telecommunications
Engineering in 2016 with a focus on
Identifying Threats in the Mobile
Network. He has been working as a
Security Specialist at RCDAT for 12
years, focusing on Penetration Test-

ing and Sode Security Reviews.

ISeCure

https://github.com/python-security/pyt/tree/master/examples
https://github.com/python-security/pyt/tree/master/examples
https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers
https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers
https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers

	1 Introduction
	2 Related Work
	3 Datasets Description
	4 Working with ChatGPT API
	4.1 Parameters

	5 Results
	5.1 Evaluation Metrics
	5.2 Analyzing Results

	6 Threats to Validity
	7 Conclusion
	A Appendix

