
ISeCure
The ISC Int'l Journal of
Information Security

July 2009, Volume 1, Number 2 (pp. 91–103)

http://www.isecure-journal.org

Security Testing of Session Initiation Protocol Implementations

Ian G. Harris a,∗, Thoulfekar Alrahem a, Alex Chen a, Nick DiGiuseppe a, Jefferey Gee a,
Shang-Pin Hsiao a, Sean Mattox a, Taejoon Park a, Saravanan Selvaraj a, Albert Tam a,
Marcel Carlsson b

aDepartment of Computer Science University of California Irvine, Irvine, CA 92697 USA.
bFortConsult A/S, Tranevej 16-18, 2400 Copenhagen NV, Denmark.

A R T I C L E I N F O.

Article history:

Received: 12 February 2009

Revised: 11 June 2009

Accepted: 22 July 2009

Published Online: 25 July 2009

Keywords:

Software Security, Voice Over IP,
Protocol Fuzzing

A B S T R A C T

The mechanisms which enable the vast majority of computer attacks are based
on design and programming errors in networked applications. The growing
use of voice over IP (VOIP) phone technology makes these phone applications
potential targets. We present a tool to perform security testing of VOIP
applications to identify security vulnerabilities which can be exploited by
an attacker. Session Initiation Protocol (SIP) is the widespread standard for
establishing and ending VOIP communication sessions. Our tool generates
an input sequence for a SIP phone which is designed to reveal security
vulnerabilities in the SIP phone application. The input sequence includes
SIP messages and external graphical user interface (GUI) events which might
contribute to triggering a vulnerability. The input sequence is generated to
perform a random walk through the state space of the protocol. The generation
of external GUI events is critical to testing a stateful protocol such as SIP
because GUI interaction is required to explore a significant portion of the state
space. We have used our security testing tool to identify a previously unknown
vulnerability in an existing open source SIP phone.

c© 2009 ISC. All rights reserved.

1 Introduction

Several factors have combined to dramatically in-
crease the significance of the computer security prob-
lem and the need for computer security research. Our
society has become dependent on the use of networked
computing devices for all manner of endeavor, even in
cost-critical and life-critical applications. At the same
time, the number of attacks on computers has sky-

∗ Corresponding author.

Email addresses: harris@ics.uci.edu (I. G. Harris),
t@alrahem.net (T. Alrahem), chenat@uci.edu (A. Chen),

jdgee@uci.edu (J. Gee), shangpih@uci.edu (S. P. Hsiao),

smattox@uci.edu (S. Mattox), taejoonp@uci.edu (T. Park),
selvaras@uci.edu (S. Selvaraj), atam@uci.edu (A. Tam).

ISSN: 2008-2045 c© 2009 ISC. All rights reserved.

rocketed. Records kept by the CERT Coordination
Center (CERT/CC) show that the number of com-
puter attack incidents reported had increased expo-
nentially until 2003, after which year the data was no
longer published [1]. Recently many more insidious
large-scale attacks have been launched against pri-
vate and industrial targets. These include an attack
against a MasterCard transaction processing com-
pany [2], the posting of search queries from Amer-
ica On Line [3], and the theft of personal informa-
tion about students and employees at the University
of Texas [4] and UCLA [5]. Each of these attacks in-
volved the exposure of personal information for well
over 100,000 people in each incident.

The security threat is multiplied by the now com-

ISeCure



92 Security Testing of SIP Implementations —I.G. Harris et al.

mon use of automated attack tools [6] which allow
one individual to quickly launch attacks against
thousands of target machines. Automated attack
tools have enabled the growth of massive “botnets”
which are groups of computers whose operating sys-
tems have been completely compromised by rootkits
[7]. These botnets, which can control thousands of
computers, are leveraged to perform all manner of
large-scale network attacks, including simple spam
[8], DDoS attacks, click fraud, and port redirection
[9].

These types of computer attacks threaten the fea-
sibility of secure communication because any data
passing through a compromised machine is not se-
cure. The mechanisms which enable the vast major-
ity of computer attacks are based on design and pro-
gramming errors in software [10–14]. This observa-
tion leads to the conclusion that the threat of com-
puter attacks can be greatly alleviated by improving
the software engineering process [15]. Major software
manufacturers have appreciated the need in software
security [16] but have not been able to effectively ad-
dress the problem [17].

Software security, a subfield of computer security,
has attracted significant research attention relatively
recently. Software security involves the protection
of software which interacts with a network, either
directly or indirectly. The types of software usually
examined include networked software which com-
municates with other computers over a TCP/IP
network. These applications communicate using a
variety of application-layer protocols such as a web
browser/server using HTTP and a voice over IP
(VOIP) phone using SIP. Other software which in-
teracts indirectly with a network can be included as
well, such as a document viewer which is invoked by
a browser to display a downloaded file. This class of
networked software and related helper applications
is critically important from a security standpoint be-
cause it is through this software that attackers can re-
motely manipulate a computer. Networked software
is the interface between a computer and the network,
so it is also the gateway through which all attacks
must pass. Breaking networked software is an impor-
tant goal of individuals who intend to compromise
the security of a computer system via the network.

The bulk of the previous work in identifying secu-
rity vulnerabilities in code has involved either static
analysis or dynamic checking, but both of these tech-
niques have inherent advantages and disadvantages.
Static analysis techniques are employed prior to soft-
ware deployment, so they have no impact on run time
system performance. However, static analysis does
not have access to run time information, so vulnera-

bility detection is imprecise, either resulting in false
positives or false negatives. Run time analysis detects
security vulnerabilities on-the-fly, as they occur dur-
ing execution. Run time analysis is more accurate
because it can evaluate the entire dynamic system
state to detect vulnerability conditions, but the per-
formance impact can be significant for a tightly con-
strained system.

We investigate the use of security testing as a
method to detect vulnerabilities in communications
software. Security testing is performed before soft-
ware deployment, so it has no impact on run time
performance as static analysis. Security testing is
also a dynamic process so all of the dynamic system
state can be used to identify vulnerabilities, so it has
the potential to have the accuracy of run time anal-
ysis. Security testing is fundamentally different from
traditional testing techniques because it requires the
violation of assumptions about program behavior
[18].

We explore vulnerabilities in VOIP phones, specif-
ically those which adhere to the Session Initiation
Protocol (SIP) standard. SIP phone applications
are of interest because their use is becoming more
widespread, and because their security has not been
fully explored. The SIP protocol presents a challenge
because it is a stateful protocol, unlike HTTP and
some other application-layer protocols which have
no state. Our security testing approach explores the
state machine of the SIP protocol during the test-
ing process to reveal vulnerabilities associated with
obscure control flow paths. Test sequences are gener-
ated and transmitted to the SIP phone to force the
phone application to explore selected control paths.
The test sequences include SIP messages which are
also modified to include faults which may trigger
security vulnerabilities. We have applied our secu-
rity testing tool to evaluate the KPhone SIP phone
[19] and we have identified a previously unknown
vulnerability in that application.

An innovation of our work is the generation of ex-
ternal user interface events during the security test-
ing process. Since the majority of VOIP phones have
graphical user interfaces, our tester generates GUI
events. The generation of GUI events is critical to the
testing of a stateful interactive protocol such as SIP
because GUI events are required to reach a signifi-
cant portion of the state space. For example, most of
the SIP protocol state machine can only be reached
if the user at the receiving end accepts an incoming
call. This typically requires the generation of a GUI
event to mimic clicking an appropriate button. Previ-
ous SIP testing approaches which do not apply GUI
events [20–24] cannot explore large portions of the

ISeCure



July 2009, Volume 1, Number 2 (pp. 91–103) 93

state space, and therefore will not identify security
vulnerabilities in large portions of code.

The remainder of this paper is organized as follows.
The structure of our security testing system is pre-
sented in Section 3. Section 4 presents the SIP proto-
col and the state machine which describes it. Section 5
describes software vulnerabilities which are common
to networked applications in general, and which our
tool attempts to expose in SIP phones. Section 5 also
presents the fault injection functions we use to trig-
ger known vulnerabilities. The algorithm used by our
security testing tool to generate tests and check re-
sponses is described in Section 6. Section 2 describes
related work. Experimental results are presented in
Section 7 and the conclusions are discussed in Section
8.

2 Related Work

The following is a brief summary of previous research
in areas related to software and application security.
Previous efforts are subdivided into four categories.
The first category is Static Analysis which describes
static techniques applied to analyze software before it
is deployed. The next category is Run Time Check-
ing (also referred to as dynamic analysis) which de-
scribes approaches which check security properties at
run time. Next is Language-Based Security which
describes the development of new languages (or di-
alects) to enhance security. The final category is Test-
ing for Security which describes approaches that
execute a program with test data prior to code de-
ployment.

2.1 Static Analysis

A multitude of static analysis techniques have been
applied to software security [25]. The simplest static
checking approaches scan the source code for text pat-
terns which are potentially problematic, such as well-
known insecure functions like sprintf and gets [26–28].
These tools are simple and fast but they produce a
large number of false positives.

A number of techniques depend on user-specified
code annotations to provide functional information
about the code which can be verified against. The
Splint tool [29, 30] requires the designer to include
preconditions and postconditions for each function.
The Eau Claire tool [31] translates each C instruction
into a verification condition which formally describes
the impact of the instruction on the program vari-
ables. Function annotations and the verification con-
ditions are passed to an automatic theorem prover to
check if security conditions are violated. The meta-
compilation approach [32] uses system-specific pro-

gramming extensions written by the user to check
code paths for security properties of their design.

Type modifiers have been used to track the flow of
unvalidated data through the system and guarantee
that it is not used for a safety-critical operation before
it is sanitized [33, 34].

The BOON tool [35] detects buffer overflow vulner-
abilities using an integer linear programming formu-
lation to compute the maximum length of buffers on
all flow paths.

Model checking techniques have been used to ver-
ify software security properties in the MOPS static
checker[36]. The program is abstracted by considering
only “security-relevant operations”, meaning those
which have an explicit and well defined security im-
pact, such as chroot or seteuid in UNIX.

2.2 Run Time Checking

A number of techniques to guard against improper
manipulation of the stack are based on the approach
of StackGuard [37]. The gcc compiler is slightly mod-
ified to place and check a canary word at the begin-
ning and end of each function call. The canary word
is placed on the stack just before the return address
and if the return address has been corrupted by a
stack smashing attack then the canary word must
have been affected. By checking the canary word be-
fore using the return address, the attack is thwarted.
Improvements on this theme include [38, 39]. Com-
piler extensions have been used to detect other types
of attacks as well including format string attacks [40]
and TOCTOU attacks [41].

Techniques which focus exclusively on protecting
the stack neglect more general buffer overflow attacks
which are more difficult to exploit, but are a signifi-
cant danger nonetheless. Researchers have addressed
general buffer overflows in [42] by maintaining an ob-
ject table which stores the location and size of each
object in use. They create a run time library for gcc
which causes each pointer to be verified against the
object table to guarantee legality.

Libsafe [43] and Libverify [44] are dynamic li-
braries which modify vulnerable functions to include
run time checking for stack smashing attacks. Lib-
safe ensures that a vulnerable function cannot write
past the current stack frame. This is accomplished by
computing input length and performing a boundary
check before each call. Libverify improves on Libsafe
by adding a canary stack where return addresses are
pushed in addition to the normal stack. The contents
of the canary stack are used to verify the return
address popped off of the normal stack.

ISeCure



94 Security Testing of SIP Implementations —I.G. Harris et al.

Sandboxing has been proposed [45] to control a pro-
gram’s access to the operating system by selectively
allowing or disallowing the use of particular system
calls.

2.3 Language-Based Security

Attempts have been made to modify fundamental as-
pects of programming languages to support security
in a transparent way. Most of these techniques involve
a mixture of static and run time methods. For in-
stance, variants of the C language have been defined
which are more secure. The CCured type system [46]
uses both static type inferencing and run time checks
such as bounds checks to ensure safe use of pointers.
The Cyclone dialect of C [47] addresses security by
eliminating some of the most insecure features of C,
provides static restrictions on the use of pointers, and
adds some run time checkers as well.

The Java language has several built in security safe-
guards. An important security aspect of Java is that
it does not allow the programmer to directly access
and manipulate pointers as C does. This restriction
alone goes a long way towards preventing insecure ac-
cess of memory. The Java virtual machine also imple-
ments a stack inspection algorithm [48] which checks
the frames in the caller’s stack sequence to determine
if a process has authority to perform a risky action.
Researchers have proposed a static technique for en-
suring the same security policy as stack inspection
[49].

2.4 Security Testing, Fuzzing

Security Testing, the class of techniques which in-
cludes the contributions of this paper, describes ap-
proaches that execute a program in order to reveal se-
curity vulnerabilities. Testing is performed before de-
ployment of the code like static analysis, so it causes
no run time overhead. Security testing approaches
use a technique generally referred to as fuzz testing
[18, 50]. Fuzz testing was first proposed by Miller et
al at the University of Wisconsin Madison for use
in determining program robustness [51–54]. The ap-
proach involves supplying random and directed test
sequences to the program under test. These early
fuzzing techniques evaluated operating system func-
tions which accept command-line inputs. The func-
tions were executed many times with both valid data,
chosen randomly from a known domain, and invalid
inputs which were intentionally chosen outside of the
valid domain. The functions were stateless because
the results of one execution did not depend on the
results of previous executions. Fuzzing was originally
used for robustness testing, looking for erroneous re-
sponses that were unrelated to security.

More recently fuzzing has been used to test im-
plementations of a variety of network protocols and
to search specifically for security vulnerabilities. The
most commonly investigated protocol is HTTP be-
cause it is so widely used. One example of many is
the testing approach presented in [55] which uses a
crawler to identify all “access points” of a site, the
forms which accept user input. Random valid data is
supplied to the fields of each form, and some of the
field values are modified by injecting faults which are
known to trigger common vulnerabilities.

A more challenging protocol testing problem in-
volves the testing of stateful protocols, those proto-
cols for which the message application sequence has
an impact of the responses produced by the proto-
col implementation. Testing stateful protocols is dif-
ficult because the input space which must be consid-
ered contains all permutations of valid inputs. Some
researchers have examined stateful protocols, includ-
ing FTP [56], and SIP [20–24]. However, existing ap-
proaches are strictly limited in the subset of the state
space which is explored during testing. For exam-
ple, the SIP testing techniques presented in [22] and
[23] repeatedly apply only the following message se-
quence: INVITE, CANCEL, ACK. This restriction
ensures that only one dialog exists at a time, but the
majority of the state space defined by the SIP pro-
tocol cannot be covered. The research presented in
[20] applies either sequences of INVITE messages, or
ACK messages. The work presented in [21] requires
the definition of a manual sequence scenario; their re-
sults applied a sequence of INVITE and then CAN-
CEL. The contribution of our work is to allow a much
larger subset of the state space to be explored during
the testing process.

3 Security Testing System Structure

Figure 1 depicts the interactions between the basic
components of our security testing system and a SIP
phone under test. The SIP phone is assumed to com-
municate with the user through a graphics user inter-
face (GUI) which is the most common style of inter-
face found in VOIP phones. The security testing sys-
tem provides all inputs and examines all message out-
puts. The edges labeled messages indicate message se-
quences being transferred between the testing system
and the system under test via a network. The edge
labeled GUI indicate the transfer of user commands
to the SIP phone over a TCP/IP network. Previous
research in security testing has only used the testing
system to supply messages and had not controlled the
GUI of the system under test [22, 23, 55, 56]. The rea-
son that the user interface is not controlled in previ-
ous work is that it is assumed that an attacker would

ISeCure



July 2009, Volume 1, Number 2 (pp. 91–103) 95

not have the ability to control the user interface, so
there is no need to do so during security testing. Al-
though it is true that the attacker would usually not
have control over the user interface, an attack could
be devised which depends on the actions of the user.
For example, an attack on a SIP phone might only be
successful if the user accepts the phone call. In order
to explore such attacks it is necessary to control the
user interface during testing.

The testing system has three parts, the Proto-
col Description, the Test Sequence Generator, and
the Response Analyzer. The protocol description is
a state machine which describes the behavior of a
phone application which adheres to the SIP protocol.
The state machine is manually extracted from the
protocol specification in the form of a Request for
Comments (RFC) [57]. The test sequence generator
produces a sequence of messages and GUI events and
sends them to the SIP phone under test. The input
sequence forces the SIP phone to follow a random
walk of the SIP state machine. Response analysis
is performed by using the protocol state machine
as a reference. The messages received from the SIP
phone are compared to the expected responses con-
tained in the state machine. If the received message
sequence differs from the expected sequence then a
vulnerability is detected.

4 Session Initiation Protocol (SIP)

Session Initiation Protocol (SIP) is used to initi-
ate and terminate communication sessions between
VOIP phones. The logical entity which creates a
new request, such as initiating a new SIP session, is
referred to as a user agent client (UAC), and the
node receiving the request is a user agent server
(UAS). A standard phone must have the ability to
act as both UAC and UAS depending on whether it
is placing a call or receiving one. A UAC and UAS
can communicate directly without the intervention
of other SIP communication nodes.

SIP defines several different additional types of
communication nodes which support phone service
by enabling user mobility and several other services.
Additional SIP communication nodes include regis-
trar servers which store current user locations, and
proxy servers which route requests to a user’s current
location. To simplify the testing process we assume
that a UAC and a UAS are communicating directly,
without the assistance of other SIP communication
nodes. As a result of this assumption, our testing
process can identify security vulnerabilities involving
the communication between a UAC and a UAS, but
not involving other communication nodes.

SIP Client SIP Server

INVITE

180 Ringing

200 OK

ACK

BYE

200 OK

MEDIA SESSION

Figure 2. SIP Message Sequence Chart

4.1 SIP State Machine

Our security testing approach requires a state ma-
chine description of the protocol to serve as an ora-
cle for response checking, and to bound the test gen-
eration process. This state machine must be created
manually based on a specification of the protocol. For-
tunately, specifications of all public internet protocols
are freely available as RFCs [57]. RFCs are available
in many natural languages, including English, com-
bined with a set of message sequence charts which de-
scribe common communication sequences. The RFC
document for the core of this protocol, RFC 3261,
describes the set of legal command messages, such
as INVITE to start a new session, and the legal re-
sponses. In addition, several message sequence charts
are presented to describe typical sequences. The chart
in Figure 2 shows the creation and completion of a
media session between a client placing the phone call
and a server receiving the phone call. Using the infor-
mation in the RFC document it is straightforward to
generate a state machine describing the protocol as
has been done in previous work [23].

The state machine of a SIP UAS which we used
during testing is shown in Figure 3. The behavior
of a UAS changes based on the settings specified by
the user. Figure 3 describes the behavior of a UAS
given “default” settings, where no password is re-
quired, “Do Not Disturb” is not selected, and an ex-
plicit offhook signal from the user is required to ac-
cept a phone call. Several transitions are considered
during testing which are not shown in Figure 3 for
clarity. Each transition is labeled input/output where
input is the input event which triggers the transition,
and output is the set of output events which are pro-
duced as a result of executing the transition.

There are three different classes of transition trig-
gers. The first class of trigger, the receipt of a request
message, is labeled R:rtype, where rtype is the type
of request (i.e. INVITE, ACK, etc.). The transition

ISeCure



96 Security Testing of SIP Implementations —I.G. Harris et al.

Test Sequence
Generator

Response
Analyzer

SIP 
Phone

messages

messages

GUI

Protocol
Description

Security Testing System

Figure 1. Security Testing System

decline ring cancel
special

OK

media
conn

reset

cancel
ack

R:Invite/
100 Trying

-/
180 Ringing,

SetTimerB

U: Decline/
603 Decline

R: Ack

U: Offhook &
not(R:Cancel)/

200 OK, SetTimerD

U:Offhook&R: Cancel/
200 OK, SetTimerE

T: TimeoutD/ 408 Timeout

R: Ack

R: Bye / 200 OK

R: Invite / 200 OK

R: Ack

T: TimeoutE/
408 Timeout

R: Bye/ 200 OK

R: Ack

T: TimeoutB/
408 Timeout

R: Cancel/
Error

Figure 3. SIP UAS State Machine

ISeCure



July 2009, Volume 1, Number 2 (pp. 91–103) 97

between states start and Invite is triggered by re-
ceiving an Invite massage.

The second class of trigger is the receipt of user
input by the UAS. The types of user input that we
are most concerned with for the SIP protocol are the
Offhook and Decline signals generated when the
user wants to answer a call or decline a call respec-
tively. User input is labeled U:signal where signal is
the name of the user input data received. In Figure
3, the transition between states ring and decline is
triggered by the receipt of the Decline signal from
the user.

The third class of trigger is the expiration of one
of the many timers built into the UAS. In Figure
3, the transition between states OK and start is la-
beled T:TimeoutD, where TimeoutD is the name of
the timer whose expiration triggers the edge. Notice
that TimerD is set at the transition between states
ring and OK.

5 Security Vulnerabilities in Software

It is important to understand the nature of the flaws
in software which may manifest themselves as security
vulnerabilities in SIP phone applications. Software
security vulnerabilities have been studied in previous
work [10–14] and have been grouped into a number of
broad categories. We present a subset of these vulner-
abilities which could exist in SIP phone applications.

• Unvalidated Input: This occurs when a program
uses external input without checking the prop-
erties of the input to ensure that it is legal. An
input may be illegal for many reasons including
excessive length and the use of illegal characters.
This software vulnerability leaves a system open
to a number of attacks including buffer overflow
attacks and command insertion attacks.
• Broken Access Control: This occurs if there is a

control path through the program which allows
access to an object without checking access per-
missions properly. This vulnerability can allow
direct access to critical data. For a SIP phone
critical data might include a password to receive
voice mail or change settings remotely.
• Non-Atomic Check and Use: Access to an object

may be granted based on some aspect of the sys-
tem state, such as a semaphore indicating that
critical data is not exposed. A vulnerability ex-
ists if there is a gap in the time between when
the system state is checked and the time when
the protected object is accessed.

The following is a list of typical attacks which can
exploit the above mentioned security vulnerabilities.

• Buffer Overflow: A user input is placed directly
in a buffer without checking the input length. By
creating a very long input the user can exceed
the length of the buffer and write into adjacent
memory locations. If the buffer is in the heap
then the impact of this attack depends on the
contents of the memory adjacent to the buffer. If
the buffer is a stack frame then the return address
can be modified, allowing arbitrary code to be
injected and executed.

• Shell Command Injection: This occurs when
some external input, for example a field of a SIP
message, is directly interpreted by a shell. If the
external input contains shell commands then an
attacker can execute arbitrary shell scripts on
the remote machine.

• Time-of-check Time-of-use (TOCTOU): This is
a race condition that occurs when a file is ac-
cessed abstractly by a name which is later re-
solved to a file handle. A program first checks the
access permissions of a file, and then it accesses
the file some time later. In the time between the
permission check and the use of the file, a ma-
licious user may remap the filename to point to
another file (such as a password file) with differ-
ent permissions.

Each class of attacks depends on the existence of
one or more software vulnerabilities. For example, a
buffer overflow attack almost always depends on the
existence of some unvalidated input.

5.1 Detection of Security Vulnerabilities

The general approach that we use to detect security
vulnerabilities in code is composed of two steps:

(1) Execute the control path containing the vulner-
ability

(2) Alter the input data to trigger the vulnerability,
if necessary.

The first goal of executing the faulty control path is
difficult because we have no knowledge of which con-
trol path contains the vulnerability. To accomplish
this goal we execute a random walk through the pro-
tocol state space. The test time required to exhaus-
tively explore a state machine using a random walk
can vary widely based on the structure of the state
graph. In spite of this fact, the experimental results
presented in Section 7 show that testing time for the
VOIP phone example which we used is low.

The second goal of altering the input data to trig-
ger the vulnerability is performed by applying a set
of fault injection functions to modify the contents of
message fields. A variety of fault injection functions
have been employed in previous work [23]. We use the

ISeCure



98 Security Testing of SIP Implementations —I.G. Harris et al.

following subset of these functions which trigger the
vulnerabilities that we have described.

• string repeat - This function creates a very
large string from a shorter string by repeating
the string pattern. Applying this function to a
message field can reveal an unvalidated input
by mimicking a buffer overflow attack. The long
string will overflow its buffer and overwrite other
parts of memory, eventually causing a crash or
serious malfunction.
• shell command injection - This function in-

serts a random shell metacharacter into a ran-
dom point in a string. Applying this function to a
message field can reveal an unvalidated input by
mimicking a shell command injection attack. If
the metacharacter causes the program to crash,
then it is likely that the field is being passed to
a shell without validation. This function may re-
veal broken access control if the injected com-
mands access a protected file such as a password
file.

Because we have limited our fuzzer to these two
functions, our fuzzer is only likely to detect unval-
idated input vulnerabilities using string repeat and
shell command injection, and broken access control
vulnerabilities using shell command injection.

6 Security Testing Algorithm

Figure 4 shows the algorithm used to generate test in-
put and check test responses. The testing tool keeps
track of the current state of the UAS in the variable
curr state which is initialized on line 1. The algo-
rithm enters a loop between lines 2 and 10 in which
tests are generated until either an error is detected
or the test process is aborted. Tests are generated by
selecting successive edges to traverse and generating
their trigger conditions. An outgoing edge from the
current state is selected to be traversed on line 3. The
algorithm performs a random walk through the state
machine, so the selection is random. Once an edge
is selected, the triggering conditions of the edge are
generated by the generate trigger function which is
called on line 4. The response message from the UAS
is received on line 5 and checked on line 6. If the re-
sponse is incorrect then the testing process exits on
line because a bug has been found. If the response is
correct then the curr state is updated to the succes-
sor state of the edge and the new iteration begins.

Figure 5 shows the algorithm used to implement
the generate trigger function which is invoked in the
security testing algorithm to generate the trigger con-
dition of an edge. The variable t is used to refer to the
triggering condition of the edge e. The triggering con-

1. curr state = ’start’
2. while() {
3. e = select outgoing edge(curr state)
4. generate trigger(e)
5. r = get response message
6. if (!correct response(r)) then
7. exit (error detected)
8. else
9. curr state = e.successor state
10. }

Figure 4. Security Testing Algorithm

dition can be one of three types: ’user input’ to repre-
sent a GUI event, ’timer’ to represent the expiration
of a timer, and ’message’ to represent the receipt of
a message. Each of these three conditions is handled
by code in Figure 5 starting at lines 2, 3, and 4, re-
spectively. If the trigger is of type ’user input’ then
the X11::GUITest library functions [58] are used to
generate the GUI event on the UAS machine. If the
trigger is of type ’timer’ then the security test process
waits for the duration of the timer, plus 1 second to
account for network delays. It is sufficient to add only
1 second because the network used during testing is
tightly controlled, containing only two machines, one
running the security testing tool and the other run-
ning the UAS.

If the trigger is of type ’message’ then a mes-
sage must be generated and sent the UAS. A valid
message is created first, and then faults may be in-
jected into that message based on the outcome of
several random variables. The valid message created
on line 5 of Figure 5 is the SIP request class re-
quired to trigger the edge, either Invite, Ack, Bye, or
Cancel. All fields of the valid message are correctly
formatted according to the SIP protocol. The Call-
ID field matches that of the current session, unless
a new session is being created with an Invite mes-
sage, in which case a new Call-ID is created. The
fault inject message() function invoked on line 6
generates a random number which is used to deter-
mine if a fault will be injected into the message. The
probability that the fault inject message function
will return TRUE can be changed in order to con-
trol the degree of invalid data received by the UAS.
The fault inject message() function returns TRUE
with a 60% probability for this experiment.

If the message is selected for fault injection, a mes-
sage field for fault injection is selected on line 7 and
a fault injection function is selected on line 8. The
message field is selected randomly from the follow-
ing four required fields: From, To, CSeq, and Call-
id. The fuzzing function is chosen randomly from be-
tween the string repeat and shell command injection

ISeCure



July 2009, Volume 1, Number 2 (pp. 91–103) 99

functions described in Section 5. The chosen fault in-
jection function is applied to the appropriate message
field and the message is sent to the UAS.

generate trigger(e)

1. t = e.trigger
2. if t.type == ’user input’ then generate gui input(t)
3. else if t.type == ’timer’ then wait(t) + 1
4. else if t.type == ’message’ then {
5. m = make valid message(t)
6. if (fault inject message() == TRUE) {
7. field = select finj field()
8. funct = select finj function()
9. m = apply finj function(m, field, funct)
10. }
11. }
12. send message(m)

Figure 5. Algorithm to Generate the Trigger Conditions for
an Edge

7 Experimental Results

We have evaluated our security testing tool by using
it to test an open source SIP phone, KPhone Version
4.2 [19]. KPhone is written in C++ and C, and to-
tals 45,761 lines if code. The same version of KPhone
was tested in previous work [23] and no security vul-
nerabilities were detected. Our security testing tool
was executed on a 1.3 GHz AMD Athlon processor
with 512MB RAM, running Debian Linux. KPhone
was executed on 1.3 GHz Intel Celeron M processor
also running Debian Linux.

Our security testing tool detected a timing vul-
nerability when the UAS traversed the edge between
the ring state and the OK state as shown in Fig-
ure 3. When the UAS is in the ring state and the
user accepts the call (asserting the Offhook signal),
KPhone loads the required audio codecs before send-
ing the 200 OK message. The process of loading the
codecs takes place quickly, usually in less than a sec-
ond. KPhone crashed when a BYE is received dur-
ing this codec initialization period. The correct op-
eration of a SIP phone from either the ring or OK
states should have been to ignore the BYE since the
session has not been completely established until the
media conn state has been reached. Although the
edges triggered by receiving a BYE message from the
ring and OK states were removed from Figure 3 for
clarity, they are part of the state machine used by
our tool. To ensure that the vulnerability was not
specific to a particular machine or operating system,
we manually replicated the KPhone crash by running
KPhone on a 2.0 GHz Intel Pentium M processor with
1GB of RAM, running Gentoo Linux.

Iteration 1:
Edge 1: start→ invite
Edge 2: invite → ring
Edge 3: ringing→ start

Iteration 2:
Edge 4: start→ invite
Edge 5: invite → start

Iteration 3:
Edge 6: start→ invite
Edge 7: invite → ring
Edge 8: ring→ OK (crash)

Figure 6. State Machine Path Explored During Testing to

Detect Vulnerability

In order to find this vulnerability our tool was run
for approximately 6 seconds real time. During that
time, the following sequence of 8 edges shown in Fig-
ure 6 was traversed in the UAS state machine be-
fore the vulnerability was detected. The sequence is
grouped into three iterations, each of which describes
the establishment and ending of a session. Note that
most of the edges triggered by the receipt of a Cancel
message and a Bye message are not shown in Figure 3
for clarity. For this reason, Edge 5 and Edge 8 in the
sequence shown in Figure 6 are not shown in Figure
3, although they are used during testing.

7.1 Analysis of Results

The vulnerability detected in KPhone is an unvali-
dated input vulnerability which enables a Denial of
Service (DoS) attack. We have demonstrated that this
vulnerability can be triggered remotely by sending a
BYE message to the KPhone UAS immediately after
the user at the receiving end has accepted the phone
call. In order to execute this attack in practice, the
BYE message must be timed so that it is received just
after the call is accepted. This could be accomplished
fairly easily by transmitting a number of BYE mes-
sages in rapid succession in order to ensure that at
least one message is received in the critical time win-
dow after phone call acceptance.

An important aspect of the detection of this vulner-
ability is that the detection was enabled by the appli-
cation of GUI events during testing. The vulnerabil-
ity is exposed when the SIP UAS moves from the ring
state to the OK state. Without the ability to assert
the Offhook signal through the GUI, this vulnera-
bility could not have been detected because the cor-
responding state machine edge could not have been
triggered. This vulnerability is an example a class of
vulnerabilities which are triggered only in portions of
the state machine which are accessible through edges

ISeCure



100 Security Testing of SIP Implementations —I.G. Harris et al.

triggered by GUI events.

It is also important to note that this vulnerability
was detected due to the message sequence rather than
the specifics of the message content. Only a fuzzer
which has the ability to explore the state space by ap-
plying many sequences of message types could have
detected this vulnerability. Our fuzzer, and all other
network application fuzzers, apply fault injection to
corrupt the contents of test messages. In this case,
fault injection did not detect the vulnerability. This
vulnerability was detected using variation in the mes-
sage sequence resulting from exploring the state ma-
chine, rather than variation in the message content in-
duced by fault injection. This underscores the impor-
tance of state space exploration when fuzzing stateful
protocols.

8 Conclusions

We have presented a security testing tool which en-
sures VOIP communication security by identifying
vulnerabilities in SIP phones. The technique performs
a random walk of the SIP state machine by supply-
ing an input sequence to trigger edges in the state
machine. Faults are injected in the input message se-
quence in order to reveal a set of security vulnera-
bilities which are data dependent. The testing ap-
proach depends on the availability of a SIP state ma-
chine which describes the behavior of a SIP server.
The manual state machine generation process is te-
dious but it is only performed once and the state ma-
chine can be reused to test any SIP phone. We have
used our security testing tool to efficiently identify a
previously unknown vulnerability in an existing open
source SIP phone. In the future, this technique can
be generalized to evaluate the security of protocol im-
plementations other than SIP.

References

[1] CERT/CC Statistics 1988-2006, October 2006.
http://www.cert.org/stats/cert stats.html.

[2] Paul F. Roberts. Major Card Vendors Stay Mum
on Data Breach, 2005. www.eweek.com.

[3] Mark Trumbull. AOL Security Breach Puts Web
on Notice. The Christian Science Monitor, Au-
gust 11 2006.

[4] The University of Texas at Austin Re-
sponds to Data Theft, April 2006.
http://www.mccombs.utexas.edu/datatheft/.

[5] Rebecca Trounson. Major Breach of UCLA’s
Computer Files. Los Angeles Times, December
12 2006.

[6] A. Householder, K. Houle, and C. Dougherty.

Computer Attack Trends Challenge Internet Se-
curity. Internet Security (Supplement to Com-
puter Magazine), 35(4):5–7, 2002.

[7] John Markhoff. Attack of the Zombie Computers
is a Growing Threat, Experts Say. New York
Times, January 7 2007.

[8] Brad Stone. Spam Doubles, Finding New Ways
to Deliver Itself. New York Times, December 6
2006.

[9] Nicholas Ianelli and Aaron Hackworth. Botnets
as a Vehicle for Online Crime. Technical report,
CERT Coordination Center, 2005.

[10] Frank Piessens. A Taxonomy of Causes of Soft-
ware Vulnerabilities in Internet Software. In Pro-
ceedings of the International Symposium on Soft-
ware Reliability Engineering (ISSRE), pages 47–
52, 2002.

[11] Sam Weber, Paul A. Karger, and Amit Parad-
kar. A Software Flaw Taxonomy: Aiming Tools
at Security. ACM SIGSOFT Software Engineer-
ing Notes, 30(4):1–7, 2005.

[12] OWASP. The Ten Most Critical Web Appli-
cation Security Vulnerabilities. Technical re-
port, 2004. The Open Web Application Security
Project.

[13] U. Lindqvist and E. Jonsson. How to Systemat-
ically Classify Computer Security Intrusions. In
Proceedings of the IEEE Symposium on Security
and Privacy, pages 154–163, Oakland, CA, USA,
1997.

[14] Carl E. Landwehr, Alan R. Bull, John P. Mc-
Dermott, and William S. Choi. A Taxonomy of
Computer Program Security Flaws. ACM Com-
puting Surveys, 26(3):211–254, 1994.

[15] Premkumar T. Devanbu and Stuart G. Stub-
blebine. Software Engineering for Security: a
Roadmap. In Proceedings of the International
Conference on Software Engineering, pages 227–
239, 2000.

[16] Brian Krebs. Microsoft’s Security Push Rolls on.
Washington Post, October 6 2005.

[17] John Markhoff. Security Experts Say Risky
Flaws Exist in New Microsoft System. New York
Times, December 25 2006.

[18] P. Oehlert. Violating Assumptions with Fuzzing.
IEEE Security and Privacy Magazine, 3(2):58–
62, 2005.

[19] KPhone SIP Softphone. http://kphone.cvs
.sourceforge.net/kphone/kphone/.

[20] H. Srinivasan and K. Sarac. A SIP Security Test-
ing Framework. In Proceedings of the IEEE Con-
sumer Communications and Networking Confer-
ence, pages 1–5, Las Vegas, Nevada, USA, 2009.

[21] Humberto Abdelnur, Olivier Festor, and Radu
State. KiF: a Stateful SIP Fuzzer. In Pro-
ceedings of the 1st ACM International Confer-

ISeCure



July 2009, Volume 1, Number 2 (pp. 91–103) 101

ence on Principles, Systems and Applications of
IP Telecommunications, pages 47–56, New York,
USA, 2007. ACM Press.

[22] C. Wieser, M. Laakso, and H. Schulzrinne. Se-
curity Testing of SIP Implementations. Techni-
cal report, Columbia University, Department of
Computer Science, 2003.

[23] G. Banks, M. Cova, V. Felmetsger, K. Almeroth,
R. Kemmerer, and G. Vigna. SNOOZE: to-
ward a Stateful NetwOrk prOtocol fuzZEr. In
Proceedings of the 9th International Conference
on Information Security, volume 4176 of Lecture
Notes in Computer Science (LNCS), Samos Is-
land, Greece, 2006. Springer.

[24] Voiper Security Toolkit. http://voiper.
sourceforge.net/.

[25] Brian Chess and Gary McGraw. Static Analysis
for Security. IEEE Security and Privacy, 2(6):
32–35, 2004.

[26] John Viega, J. T. Bloch, Tadayoshi Kohno, and
Gary McGraw. ITS4: A Static Vulnerability
Scanner for C and C++ Code. In Proceedings of
the 16th Annual Conference on Computer Secu-
rity Applications, pages 257–267, New Orleans,
LA, USA, 2000.

[27] David A. Wheeler. Flawfinder. http://www.
dwheeler.com/flawfinder.

[28] Secure Software Inc. RATS. http://www.
securesw.com/rats.

[29] David Evans and David Larochelle. Improv-
ing Security using Extensible Lightweight Static
Analysis. IEEE Software, 19(1):42–51, 2002.

[30] David Larochelle and David Evans. Statically
Detecting Likely Buffer Overflow Vulnerabilities.
In Proceedings of the 10th Usenix Security Sym-
posium, Washington, DC, USA, 2001.

[31] Brian V. Chess. Improving Computer Security
using Extended Static Checking. In Proceedings
of the IEEE Symposium on Security and Privacy,
pages 160–173, Berkeley, CA, USA, 2002.

[32] K. Ashcraft and D. Engler. Using Programmer-
Written Compiler Extensions to Catch Security
Holes. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 143–159, Berkeley,
CA, USA, 2002.

[33] Umesh Shankar, Kunal Talwar, Jeffrey S. Fos-
ter, and David Wagner. Detecting Format String
Vulnerabilities with Type Qualifiers. In Proceed-
ings of the 10th USENIX Security Symposium,
pages 201–220, Washington, DC, USA, 2001.

[34] J. Foster, T. Terauchi, and A. Aiken. Flow-
Sensitive Type Qualifiers. ACM SIGPLAN No-
tices, 37(5):1–12, 2002.

[35] David Wagner, Jeffrey S. Foster, Eric A. Brewer,
and Alexander Aiken. A First Step Towards Au-
tomated Detection of Buffer Overrun Vulnera-

bilities. In Proceedings of the Network and Dis-
tributed System Security Symposium, pages 3–17,
San Diego, CA, USA, 2000.

[36] H. Chen and D. Wagner. MOPS: An Infrastruc-
ture for Examining Security Properties of Soft-
ware. In Proceedings of the ACM Conference on
Computer and Communications Security, pages
235–244, Washingtion, DC, USA, 2002.

[37] Crispan Cowan, Calton Pu, Dave Maier,
Jonathan Walpole, Peat Bakke, Steve Beat-
tie, Aaron Grier, Perry Wagle, Qian Zhang,
and Heather Hinton. StackGuard: Automatic
Adaptive Detection and Prevention of Buffer-
Overflow Attacks. In Proceedings of the USENIX
Security Conference, pages 63–78, San Antonio,
Texas, USA, 1998.

[38] T. Chiueh and F. Hsu. RAD: A Compile-Time
Solution to Buffer Overflow Attacks. In Proceed-
ings of the IEEE 21st International Conference
on Distributed Computing Systems, pages 409–
417, Mesa, AZ, USA, 2001.

[39] Mike Frantzen and Mike Shuey. StackGhost:
Hardware Facilitated Stack Protection. In Pro-
ceedings of the 10th USENIX Security Sympo-
sium, pages 55–66, Washington, DC, USA, 2001.

[40] Crispin Cowan, Matt Baringer, Steve Beattie,
Greg Kroah-Hartman, Mike Frantzen, and Jaime
Lokier. FormatGuard: Automatic Protection
from printf Format String Vulnerabilities. In
Proceedings of the 10th USENIX Security Sym-
posium, pages 191–200, Washington, DC, USA,
2001.

[41] Crispin Cowan, Steve Beattie, Chris Wright, and
Greg Kroah-Hartman. RaceGuard: Kernel Pro-
tection from Temporary File Race Vulnerabil-
ities. In Proceedings of the 10th USENIX Se-
curity Symposium, pages 165–172, Washington,
DC, USA, 2001.

[42] R. Jones and P. Kelly. Backwards-Compatible
Bounds Checking for Arrays and Pointers in C
Programs. In Proceedings of the International
Workshop on Automatic Debugging, pages 13–
26, 1997.

[43] A. Baratloo, N. Singh, and T. Tsai. Libsafe:
Protecting Critical Elements of Stacks. White
paper, 1999.

[44] Arash Baratloo, Navjot Singh, and Timothy
Tsai. Transparent Run-Time Defense Against
Stack Smashing Attacks. In Proceedings of the
USENIX Annual Technical Conference, pages
251–262, San Diego, CA, USA, 2000.

[45] Ian Goldberg, David Wagner, Randi Thomas,
and Eric A. Brewer. A Secure Environment for
Untrusted Helper Applications. In Proceedings
of the 6th USENIX Security Symposium, pages
1–13, San Jose, CA, USA, 1996.

ISeCure



102 Security Testing of SIP Implementations —I.G. Harris et al.

[46] George C. Necula, Scott McPeak, and West-
ley Weimer. CCured: Type-Safe Retrofitting of
Legacy Code. In Proceedings of the Symposium
on Principles of Programming Languages, pages
128–139, 2002.

[47] T. Jim, G. Morrisett, D. Grossman, and
M. Hicks. Cyclone: A Safe Dialect of C. In Pro-
ceedings of the USENIX Annual Technical Con-
ference, Monterey, CA, USA, 2002.

[48] Dan S. Wallach and Edward W. Felten. Under-
standing Java Stack Inspection. In Proceedings
of the IEEE Symposium on Security and Privacy,
pages 52–63, Oakland, CA, USA, 1998.

[49] Ulfar Erlingsson and Fred B. Schneider. IRM En-
forcement of Java Stack Inspection. In Proceed-
ings of the IEEE Symposium on Security and Pri-
vacy, pages 246–255, Berkeley, CA, USA, 2000.

[50] Jared DeMott. The Evolving Art of Fuzzing. In
DefCon, 2006.

[51] B.P. Miller, L. Fredriksen, and B. So. An Em-
pirical Study of the Reliability of Unix Utilities.
Communications of the ACM, 33(12), 1990.

[52] B.P. Miller, D. Koski, C.P. Lee, V. Maganty,
R. Murthy, A. Natarajan, and J. Steidl. Fuzz
revisited: A re-examination of the reliability of
unix utilities and services. Technical report,
University of Wisconsin-Madison, Department
of Computer Science, 1995.

[53] J.E. Forrester and B.P. Miller. An Empirical
Study of the Robustness of Windows NT Appli-
cations using Random Testing. In Proceedings of
the 4th USENIX Windows Systems Symposium,
pages 59–68, Seattle, Washington, USA, 2000.

[54] B.P. Miller, G. Cooksey, and F. Moore. An Em-
pirical Study of the Robustness of MacOS Appli-
cations using Random Testing. ACM SIGOPS
Operating Systems Review, 41(1):78–86, 2007.

[55] Yao-Wen Huang, Shih-Kun Huang, Tsung-Po
Lin, and Chung-Hung Tsai. Web Application
Security Assessment by Fault Injection and Be-
havior Monitoring. In Proceedings of the 12th
International Conference on World Wide Web,
pages 148–159, Budapest, Hungary, 2003.

[56] Leon Juranic. Using Fuzzing to Detect Secu-
rity Vulnerabilities. Technical report, Infingo IS,
2006.

[57] Request for Comments 3261, Session Ini-
tiation Protocol. RFC Editor Database,
http://www.rfc-editor.org/.

[58] X11::GUITest Libraries, Version 0.21.
http://sourceforge.net/projects/x11guitest.

Ian G. Harris is currently an Associate Pro-

fessor in the Computer Science Department
at the University of California Irvine. He re-

ceived his BS degree in Computer Science

from Massachusetts Institute of Technology
in 1990. He received his MS and PhD degrees

in Computer Science from the University of

California San Diego in 1992 and 1997 re-
spectively. He was a member of the faculty in

the Electrical and Computer Engineering De-

partment at the University of Massachusetts
Amherst from 1997 until June 2003. Professor Harris’ research

is related to testing of hardware and software systems. His
field interest includes validation of hardware systems to en-

sure that the behavior of the system matches the intentions of

the designer. He also investigates the application of testing for
computer security. His group’s security work includes testing

software applications for security vulnerabilities and designing

special-purpose hardware to detect intrusions on-line. Profes-
sor Harris serves on the program committees of several leading

conferences in verification and security including IEEE/ACM

Design Automation and Test in Europe (DATE), IEEE VLSI
Test Symposium (VTS), IEEE Hardware Oriented Security

and Trust (HOST), and the IEEE Workshop on High Level

Design Validation and Test (HLDVT).

Thoulfekar Alrahem received his B.S. de-

gree in Information and Computer Science
from the University of California Irvine in

2007. He is currently working full-time as a

software engineer in Southern California. Mr.
Alrahem plans to pursue graduate school and

join a Ph.D. program in the near future. His

main interests fall in theory, algorithms, ma-
chine learning, and AI. When he is not cod-

ing, he likes to workout, run, read, and spend

time with friends.

Alex Chen received his B.S. degree in Infor-
mation and Computer Science from the Uni-

versity of California Irvine in 2007. He is cur-

rently working at Cedars Sinai Hospital un-
der the Enterprise Information Systems de-

partment.

Nicholas DiGiuseppe has a BS in Infor-
mation and Computer Science from the Uni-
versity of California, Irvine. He is striving to

gain a PhD in the same field, and his in-
terests include protocol fuzzing, testing, and

the impact of games on technology and those

playing them.

Jeffrey Gee graduated in 2008 from the Uni-

versity of California, Irvine, with a B.S. in

Computer Science. Prior to graduation, he
spent over a year researching security under

Professor Ian Harris. In addition, he spent
a year researching speech recognition at the
Tokyo Institute of Technology, under Profes-

sor Sadaoki Furui, as a member of the Young

Scientist Exchange Program.

ISeCure



July 2009, Volume 1, Number 2 (pp. 91–103) 103

Shang-Pin Hsiao received his B.S. degree

in Computer Science from the University of
California Irvine in 2007. His research in-

terests include computer security, embedded

systems, and grid computing.

Sean Mattox received his B.S. degree in

Information and Computer Science from the
University of California Irvine in 2007. His

research interests include computer security,

operating systems, and game development.

Taejoon Park received his B.S. degree in

Information and Computer Engineering from
the University of California Irvine in 2008. He

is currently employed at Grandstream Inc.
and is working on the testing of VOIP phones.

Saravanan Selvaraj received his B.S. de-

gree in Computer Science and Engineering
from the University of California Irvine in

2008.He performed an internship at Broad-

com Inc. in Irvine, CA and is now employed
in IT industry.

Albert Tam received his B.S. degree in In-

formation and Computer Science from the

University of California Irvine in 2007. His
research interests include computer security,

embedded systems, and web application de-

velopment.

Marcel Carlsson is a security consultant working at Fort-

Consult in Copenhagen, Denmark. He performs penetration

testing and security auditing for International businesses and
organizations. He has worked for both niche consultancies

and international consulting firms performing security con-

sulting in the US, UK and most European countries for more
than 10 years. Marcel has an bachelor’s degree in Electrical

Engineering from the University of California San Diego,

USA, and a Master’s Degree from Chalmers, Gothenburg,
Sweden. He is a validated PCI DSS and PA DSS auditor, has

CISSP, CISA, CISM, GSNA certifications, enjoys attending
hacking conferences, exploring and pwning technology in his

spare time.

ISeCure


	1 Introduction
	2 Related Work
	2.1 Static Analysis
	2.2 Run Time Checking
	2.3 Language-Based Security
	2.4 Security Testing, Fuzzing

	3 Security Testing System Structure
	4 Session Initiation Protocol (SIP)
	4.1 SIP State Machine

	5 Security Vulnerabilities in Software
	5.1 Detection of Security Vulnerabilities

	6 Security Testing Algorithm
	7 Experimental Results
	7.1 Analysis of Results

	8 Conclusions

