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A B S T R A C T

Authenticated encryption schemes establish both privacy and authenticity. This

paper specifies a family of the dedicated authenticated encryption schemes,

Artemia. It is an online nonce-based authenticated encryption scheme which

supports the associated data. Artemia uses the permutation based mode,

JHAE, that is provably secure in the ideal permutation model. The scheme

does not require the inverse of the permutation in the decryption function,

which causes the resource efficiency. Artemia permutations have an efficient

and a simple structure and are provably secure against the differential and

linear cryptanalysis. In the permutations, MDS recursive layers are used that

can be easily implemented in both software and hardware.

© 2014 ISC. All rights reserved.

1 Introduction

P rivacy and authentication are two main goals in in-
formation security. In many applications, these se-

curity parameters must be established simultaneously.
A cryptographic scheme that provides both privacy
and authentication is called authenticated encryption
(AE). The traditional approach for AE is the use of
generic compositions. In this approach, two algorithms
are used, one of which provides confidentiality and
the other one provides authenticity. However, this ap-
proach is not efficient for many applications, because
it requires two different algorithms with two different
keys as well as separate passes over the message [6].
Another approach for designing an AE is the use of a
block cipher in a special mode, in which the block ci-
pher is treated as a black box in the mode [15, 16, 19].
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Another problem of these modes is the necessity for
running the full round block cipher to process each
message block which is a time/resource-consuming.

Dedicated AE schemes resolve the problems of
generic compositions and block cipher based modes.
Designing a dedicated AE has recently received great
attention in cryptography community, mostly driven
by the NIST-funded CAESAR competition for AE
[10]. Some dedicatedAE schemes are ASC-1 [14], ALE
[9], AEGIS [21], FIDES [8], CBEAM [17], and APE
[5]. A common approach for constructing a dedicated
AE is to iterate a random permutation or random
function, which is considered as a primitive, in a spe-
cial mode of operation. Therefore, there are two main
stages in designing a new dedicated AE:

(1) Designing a new dedicated mode (based on a
random permutation or a random function),

(2) Designing a new random permutation or a ran-
dom function to be used in the mode.

In this paper, Artemia, an online single-pass nonce-
based authenticated encryption scheme is proposed.
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Table 1. Comparison between Artemia and some known dedicated AE schemes

Dedicated AE
Provable
Security

AD Online
Nonce Misuse
Resistance

Inverse-Freeness
of π (or f)

Reference

ASC-1 Yes No No No Yes [14]

ALE No Yes Yes No Yes [9]

AEGIS No Yes Yes No Yes [21]

FIDES No Yes Yes No Yes [8]

CBEAM No Yes Yes No Yes [17]

APE Yes Yes Enc only Yes No [5]

Artemia Yes Yes Yes No Yes This paper

The scheme has two variants, Artemia-128 which uses
a 128-bit key and Artemia-256 which uses a 256-bit
key. It supports the optional associated data. Artemia
is a sponge-based [7] scheme which has two main
components: the JHAE mode [4] and the permutation
Artemia. JHAE is a permutation-based AE mode
based on JH hash function mode [20]. It has provable
security up toO(2n/2) queries in the ideal permutation
model where 2n is the length of the permutation.

The permutation Artemia has an efficient and a
simple structure and is resistant against the differen-
tial and linear cryptanalysis. In order to design the
permutation, the MDS recursive layers [12, 13, 18]
were used that can be easily implemented in both
software and hardware.

The Artemia security relies on the usage of nonces.
However, it does not allow the reuse of a nonce under
the same key. Artemia does not require the inverse
of the permutation in the decryption function, this
provides resource efficiency.

In Table 1, a comparison is made between Artemia
and some other known dedicated AE schemes which
were presented before the CAESAR (a comparison
between Artemia and the CAESAR candidates can
be found in [3]).

The paper is structured as follows: Section 2 specifies
the design of Artemia. Security goals and analysis of
Artemia are presented in Section 3 and design rationale
of the scheme is given in Section 4. Finally, the paper
is concluded in Section 5.

2 Artemia Specification

This section defines the family of the dedicated au-
thenticated encryption, namely Artemia. It has two
variants with different security levels and resource’s
requirements. Artemia-256 uses a 512-bit permuta-
tion and Artemia-128 uses a 256-bit permutation in
the JHAE mode.

2.1 Parameters

Artemia has three parameters, key, nonce, and tag
and uses an integer n to denote the length of the param-
eters . The parameters and their length for Artemia-
256 and Artemia-128 are summarized in Table 2.

Table 2. Artemia parameters

lenght of
permuta-

tion (2n)

length of
key (n)

maximum
length of

nonce (n)

length of

tag (n)

Artemia-256 512 256 ≤ 256 256

Artemia-128 256 128 ≤ 128 128

2.2 Constants

The permutations ofArtemia−512 andArtemia−256
use six constants denoted byC0 toC5. These constants
are represented in Table 3 and Table 4.

2.3 Conversions

In order to convert a string to another string of differ-
ent lengths, the little endian conversions is used.

2.4 Specification of JHAE

In this section, we describe JHAE mode [4], also de-
picted in Figure 1. JHAE is a mode developed from
the JH hash function mode and iterates a fixed per-
mutation π : {0, 1}2n → {0, 1}2n. It is a nonce-based,
single-pass, and an online dedicated AE mode that
supports the AD.

2.4.1 Encryption and Authentication.

JHAE accepts an n-bit key K, a nonce N of maximum
n bits, a messageM , and an optional associated dataA,
then it produces the ciphertext C and authentication
tag T . The pseudo code of the JHAE’s encryption-
authentication is depicted in Algorithm 1. We assume
that the input message after padding, is a multiple of
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Table 3. The constants of Artemia− 512 in hexadecimal

C0

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 0f1e2d3b

C1

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 4b5a6978 00000000 00000000 00000000 00000000

C2

00000000 00000000 00000000 00000000 00000000 00000000 00000000 8796a5b4

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

C3

00000000 00000000 00000000 c3d2e1f0 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

C4

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 2d3c4b5a 00000000

C5

00000000 00000000 00000000 00000000 00000000 00000000 69788796 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

Table 4. The constants of Artemia− 256 in hexadecimal

C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0f1e2d3b

C1 00000000 00000000 00000000 00000000 00000000 4b5a6978 00000000 00000000

C2 00000000 00000000 00000000 8796a5b4 00000000 00000000 00000000 00000000

C3 00000000 c3d2e1f0 00000000 00000000 00000000 00000000 00000000 00000000

C4 00000000 00000000 00000000 00000000 00000000 00000000 2d3c4b5a 00000000

C5 00000000 00000000 69788796 00000000 00000000 00000000 00000000 00000000

- - - - -i i i i i? ? ? ? ?- - - - -- -

-
K = x0

IV = 0

- - - - -i i i i i- -- -- - - i-
6 6 6 6 6 6

6 6

π π π π π

x′0 x′1 x′l

x1 xl xl+1 xp

cl+1 = x′l+1 cp = x′p

y′0 y′1 y′l y′l+1

y0 y1 yl yl+1 yp xp+1

mp K

T

ml+1mlm1N

m0 = N m1 ml ml+1 mp

Figure 1. The JHAE mode of operation (the encryption and authentication), where pad(A) = m1‖m2‖ . . . ‖ml and
pad(M) = ml+1 ‖ ml+2 ‖ ... ‖ mp

the block size n. The last block of the original message
is concatenated by the padding data which is as follows
(see Figure 2):

(1) Eight bits are used to represent the length of the
nonce (N) in Artemia-256 and nine bits are used
to represent the length of the nonce in Artemia-
512.

(2) 24 bits are used to represent the length of the
associated data (A), e.g., it would be 024 if there
is no AD.

(3) 64 bits are used to represent the length of the
message (M).

(4) A bit ‘1’ followed by a sequence of ‘0’ is appended
such that the padded message is a multiple of
the block size n.

If there is the AD in the procedure, it is padded by
a bit ‘1’ followed by a sequence of ‘0’ such that the

padded AD would be a multiple of the block size n
(see Figure 3). The padded AD is processed in a way
similar to the process of the message block with an
exception that ciphertext blocks (ci), are not produced
for the AD blocks.

2.5 Decryption and Verification

JHAE decryption-verification procedure, depicted
in Algorithm 2, inputs an n-bit key, K, an maximum
n-bit nonce, N , a ciphertext, C, a tag, T , an optional
associated data A, and it decrypts the ciphertext to
get the message M and tag T ′. If T ′ = T , it outputs
M else it outputs ⊥. In the following, we describe the
permutations, Artemia− 512 and Artemia− 256.
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Figure 2. Message padding in JHAE'
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Padded AD:

AD 10000 · · · 000

Figure 3. AD padding in JHAE

Algorithm 1 The encryption and authentication
pseudo-code of JHAE

Input: KeyK of n bits, NonceN of maximum n bits,
Associated data A where pad(A) = m1‖m2‖ . . . ‖ml

and Message M where pad(M) = ml+1 ‖ ml+2 ‖ ... ‖
mp. Output: Ciphertext C, Tag T .

1: IV = 0;m0 = N
2: x′0 = IV ⊕m0; x0 = K
3: pad(A)‖pad(M) = m1 ‖ m2 ‖ ... ‖ mp

4: for i = 0 to p− 1 do
5: y′i ‖ yi = π(x′i ‖ xi);
6: x′i+1 = y′i ⊕mi+1;
7: xi+1 = yi ⊕mi

8: end for
9: y′p ‖ yp = π(x′p ‖ xp);

10: xp+1 = yp ⊕mp

11: C = x′l+1 ‖ x′l+2 ‖ ... ‖ x′p
12: T = xp+1 ⊕K
13: return (C, T )

2.6 Artemia− 512

Artemia− 512 is a 512-bit permutation (Artemia−
512 : {0, 1}512 → {0, 1}512) which includes the six
rounds of Artemiaround − 512 : {0, 1}512 → {0, 1}512.
Now, we explain the round function Artemiaround −
512.

2.6.1 Specification of Artemiaround − 512.

Artemiaround − 512 is depicted in Figure 4 and its
pseudo code is represented in Algorithm 3. More
precisely, at the beginning of the each round, the
512-bit input state is XORed by a round dependent
constant value of the same length. The constant is
introduced in § 2.2. Next, the updated state is divided
into four words of 128 bits. These 128-bit words are
combined with a 4× 4 recursive layer (D1), and other
four words of the 128-bit length is produced. Then,
each 128-bit value is passed an SBox layer (S1), which
is 16 parallel 8× 8-bit similar SBoxes and each SBox

Algorithm 2 The decryption and verification
pseudo-code of JHAE

Input: KeyK of n bits, NonceN of maximum n bits,
Associated Data A where pad(A) = m1‖m2‖ . . . ‖ml,
ciphertext C = c1 ‖ c2 ‖ ... ‖ cp and Tag T
Output: Message M or ⊥.

1: IV = 0;m0 = N
2: x′0 = IV ⊕m0; x0 = K
3: x′l+1 ‖ x′l+2 ‖ ... ‖ x′l+p = c1 ‖ c2 ‖ ... ‖ cp
4: for i = 0 to l − 1 do
5: y′i ‖ yi = π(x′i ‖ xi);
6: x′i+1 = y′i ⊕mi+1;
7: xi+1 = yi ⊕mi

8: end for
9: for i = l to p− 1 do

10: y′i ‖ yi = π(x′i ‖ xi);
11: mi+1 = y′i ⊕ x′i+1;
12: xi+1 = yi ⊕mi

13: end for
14: y′p ‖ yp = π(x′p ‖ xp);
15: xp+1 = yp ⊕mp

16: M = ml+1 ‖ ml+2 ‖ ... ‖ mp

17: T ′ = xp+1 ⊕K
18: if T ′ = T then
19: return M
20: else
21: return ⊥
22: end if

is applied to a byte of the internal state. Next, each
128-bit word is divided into four words of the 32-bit
length and these 32-bit words are combined with a
4× 4 recursive layer (D2), then other four words of
the 32-bit length is produced. In this stage, there are
four parallel recursive layers which one processes four
words of 32 bits. Then, each 32-bit value is passed
an SBox layer (S2), which is four parallel 8 × 8-bit
similar SBoxes and each SBox is applied to a byte of
the internal state. Given the 16 words of 32 bits, each
32-bit word is divided into four bytes, the bytes are
combined with a 4× 4 recursive layer (D3), and other
four bytes are produced. In this stage, there are 16
parallel recursive layers which one process four bytes
of the internal state. Finally, each byte passes an SBox
(S3). In the following, we explain the transformations
D1, S1, D2, S2, D3 and S3. S1, S2 and S3 form the
confusion layers of Artemiaround − 512, and D1, D2,
and D3 form its diffusion layers.

ISeCure



July 2014, Volume 6, Number 2 (pp. 125–139) 129

?

Input State

512-bit i� Round Constant
512-bit

�

�

�

� � � �

� � � �

� � � � � � � �

� � � �

� � � � � � � �

� �

� � � � � � � �

� � � � � � � �

� � � � � � � �

?
�

512-bit

128-bit 128-bit 128-bit 128-bit

128-bit 128-bit 128-bit 128-bit

D1 : 4× 4

S1 S1 S1 S1

128-bit 128-bit

32-bit 32-bit 32-bit 32-bit 32-bit 32-bit 32-bit 32-bit

32-bit 32-bit 32-bit 32-bit 32-bit 32-bit 32-bit 32-bit

D2 : 4× 4 D2 : 4× 4

S2 S2 S2 S2 S2 S2 S2 S2

32-bit 32-bit

8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit

D3 : 4× 4 D3 : 4× 4

8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit

8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit

S3 S3 S3 S3 S3 S3 S3 S3

Output State
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Figure 4. Artemiaround − 512

2.6.2 Transformations S1, S2 and S3.

All the SBoxes used in the round function are the same
and they are identical to the SBox of AES [11]. The
lookup table of the SBox is represented in Table 5. For
example if X = b2 (a byte in hexadecimal notation)
is given as the input to the SBox, the output of the
SBox would be y = 37 (in hexadecimal notation).

2.6.3 Transformation D1.

D1 is a recursive diffusion layer which takes four words
of 128 bits of X0, X1, X2 and X3, and produces four
words of 128 bits, Y0, Y1, Y2 and Y3. The structure of
the used diffusion layer was first introduced in [18],
and works as follows:

Y0 = X0 ⊕X2 ⊕X3 ⊕ L(X1 ⊕X3)

Y1 = X1 ⊕X3 ⊕ Y0 ⊕ L(X2 ⊕ Y0)

Y2 = X2 ⊕ Y0 ⊕ Y1 ⊕ L(X3 ⊕ Y1)

Y3 = X3 ⊕ Y1 ⊕ Y2 ⊕ L(Y0 ⊕ Y2)


(1)

where L is a linear function. If L(X), X ⊕ L(X),
X ⊕ L3(X), and X ⊕ L7(X) are invertible, the diffu-
sion layer will be perfect [18] and provides the branch
number 5. In addition, if L is an efficient linear func-
tion, the diffusion layer would be efficient. In D1, we
use L(X) = (X � 1) ⊕ (X � 3) that satisfies the
given conditions, i.e., L(X), X ⊕ L(X), X ⊕ L3(X),
and X ⊕ L7(X) are invertible. Hence, the diffusion
layer D1 is perfect and efficient and its branch number
is 5.

2.6.4 Transformation D2.

Similar to D1, D2 is a recursive diffusion layer which
takes four words of 32 bits and produces four words
of 32 bits. Its structure is identical to D1 with an
exception that it works with the 32-bit words. In the
case of D2, we have L(X) = (X � 1) ⊕ (X � 3).
Since L(X), X ⊕ L(X), X ⊕ L3(X), and X ⊕ L7(X)
are invertible, D2 is a perfect diffusion layer and its
branch number is 5.
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Algorithm3The pseudo-code ofArtemiaround−512

Input: X // a stream of 512-bit length.
Output: Y // a stream of 512-bit length.

1: C // a constant of 512-bit length from the binary
representation of 243F6A888 . . .;

2: X ⊕ C = W 1
3 ‖ W 1

2 ‖ W 1
1 ‖ W 1

0 ; //W 1
i ∈

{0, 1}128; 0 ≤ i ≤ 3.
3: W 2

3 ‖ W 2
2 ‖ W 2

1 ‖ W 2
0 = D1(W 1

3 ‖ W 1
2 ‖ W 1

1 ‖
W 1

0 );
4: for i = 0 to 3 do
5: W 3

i = S1(W 2
i );

6: W 3
i = W 3

i,3 ‖ W 3
i,2 ‖ W 3

i,1 ‖ W 3
i,0; //W 3

i,j ∈
{0, 1}32; 0 ≤ j ≤ 3.

7: W 4
i = W 4

i,3 ‖ W 4
i,2 ‖ W 4

i,1 ‖ W 4
i,0 = D2(W 3

i,3 ‖
W 3

i,2 ‖W 3
i,1 ‖W 3

i,0);
8: end for
9: for i = 0 to 3 do

10: for j = 0 to 3 do
11: W 5

i,j = S2(W 4
i,j);

12: W 5
i,j = W 5

i,j,3 ‖ W 5
i,j,2 ‖ W 5

i,j,1 ‖ W 5
i,j,0;

//W 5
i,j,k ∈ {0, 1}8; 0 ≤ k ≤ 3.

13: W 6
i,j = W 6

i,j,3 ‖ W 6
i,j,2 ‖ W 6

i,j,1 ‖ W 6
i,j,0 =

D3(W 5
i,j,3 ‖W 5

i,j,2 ‖W 5
i,j,1 ‖W 5

i,j,0);
14: end for
15: end for
16: for i = 0 to 3 do
17: for j = 0 to 3 do
18: for k = 0 to 3 do
19: W 7

i,j,k = S3(W 6
i,j,k);

20: end for
21: end for
22: end for
23: Y = W 7

3,3,3 ‖W 7
3,3,2 ‖ ... ‖W 7

0,0,0;
24: return Y .

2.6.5 Transformation D3.

Similar to D1 and D2, D3 is a recursive diffusion layer
given four bytes produces other four bytes. Its struc-
ture is identical to D1 and D2 with two exceptions,
that is it works with bytes and uses L(X) = (X⊕X �
1) ≪ 1. Since L(X), X ⊕ L(X), X ⊕ L3(X), and
X ⊕ L7(X) are invertible, D3 is a perfect diffusion
layer and its branch number is 5.

2.7 Artemia− 256

Artemia− 256 is a 256-bit permutation (Artemia−
256 : {0, 1}256 → {0, 1}256) which includes the six
rounds of Artemiaround − 256 : {0, 1}256 → {0, 1}256.
In the rest of this section we describe the round func-
tion Artemiaround − 256.

Table 5. The lookup table of the AES SBox

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76

1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0

2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15

3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75

4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84

5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf

6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8

7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2

8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73

9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db

a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79

b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08

c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a

d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e

e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df

f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

2.7.1 Specification of Artemiaround − 256.

Artemiaround − 256 is depicted in Figure 5. More
precisely, at the beginning of each round, the 256-bit
input state is XORed by a round dependent constant
value of the same length. The constant is introduced
in § 2.2. Next, the updated state is divided into four
words of 64 bits. These 64-bit words are combined with
a 4× 4 recursive layer (D1), and other four words of
64 bits are produced. Then, each 64-bit value is passed
an SBox layer (S1), which is 8 parallel 8×8-bit similar
SBoxes and each SBox is applied to a byte of the
internal state. Next, each 64-bit word is divided into
four words of the 16-bit length and these 16-bit words
are combined by a 4 × 4 recursive layer (D2), then
other four words of 16-bit length are produced. In this
stage, there are four parallel recursive layers which one
process four words of 16 bits. Then, each 16-bit value
is passed an SBox layer (S2), which is two parallel
8× 8-bit similar SBoxes and each SBox is applied to
a byte of the internal state. Given 16 words of 16 bits,
each 16-bit word is divided into two bytes, the bytes
are combined by a 2×2 recursive layer (D3), and other
two bytes are produced. In this stage, there are 16
parallel recursive layers which one processes two bytes
of the internal state. Finally, each byte passes an SBox
(S3). In the following we explain the transformations
D1, S1, D2, S2, D3 and S3. S1, S2 and S3 form the
confusion layers of Artemiaround − 256, and D1, D2
and D3 form its diffusion layers.
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Figure 5. Artemiaround − 256

The pseudo-code of Artemiaround − 256 is repre-
sented in Algorithm 4.

2.7.2 Transformations S1, S2 and S3.

Similar to Artemia−512, any SBox used in the round
function of Artemia − 256 is identical to the SBox
of AES. The lookup table of the SBox is represented
in Table 5.

2.7.3 Transformation D1.

D1 is a recursive diffusion layer given four words of
64 bits of X0, X1, X2 and X3, and it produces other
four words of 64 bits, Y0, Y1, Y2 and Y3 as shown in
Equation 1. As we discussed about the recursive layers
of Artemia−512, if L(X), X⊕L(X), X⊕L3(X) and
X⊕L7(X) are invertible, the diffusion layer would be
perfect [18] and provides the branch number 5. In D1,
L(X) = (X � 1) ⊕ (X � 15) satisfying the given
conditions is used. Hence, the diffusion layer D1 is
perfect and its branch number is 5.

2.7.4 Transformation D2.

Similar to D1, D2 is a recursive diffusion layer given
four words of 16 bits produces other four words of
16 bits. Its structure is identical to D1 with two ex-
ceptions that it works with 16-bit words and uses a
different L. In the case of D2, we have L(X) = (X �
1) ⊕ (X � 1). Since L(X), X ⊕ L(X), X ⊕ L3(X),
andX⊕L7(X) are invertible,D2 is a perfect diffusion
layer and its branch number is 5.

2.7.5 Transformation D3.

Similar to D1 and D2, D3 is also a recursive diffusion
layer. However, it is a 2× 2 recursive diffusion layer.
It is introduced in [18] and works as follows:

Y0 = X0 ⊕ L(X1)

Y1 = X1 ⊕ L(Y0)

 (2)

where L is a linear function. It has been shown that
if L(X) and X ⊕ L(X) are invertible, the diffusion
layer is perfect [18]. We use L(X) = (X � 1)⊕ (X �
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Algorithm4The pseudo-code ofArtemiaround−256

Input: // a stream of 256-bit length.
Output: Y // a stream of 256-bit length.

1: C //a constant of 256-bit length from the binary
representation of 243F6A888 . . .;

2: X ⊕ C = W 1
3 ‖ W 1

2 ‖ W 1
1 ‖ W 1

0 ; //W 1
i ∈

{0, 1}64; 0 ≤ i ≤ 3.
3: W 2

3 ‖ W 2
2 ‖ W 2

1 ‖ W 2
0 = D1(W 1

3 ‖ W 1
2 ‖ W 1

1 ‖
W 1

0 );
4: for i = 0 to 3 do
5: W 3

i = S1(W 2
i );

6: W 3
i = W 3

i,3 ‖ W 3
i,2 ‖ W 3

i,1 ‖ W 3
i,0; //W 3

i,j ∈
{0, 1}32; 0 ≤ j ≤ 3.

7: W 4
i = W 4

i,3 ‖ W 4
i,2 ‖ W 4

i,1 ‖ W 4
i,0 = D2(W 3

i,3 ‖
W 3

i,2 ‖W 3
i,1 ‖W 3

i,0);
8: end for
9: for i = 0 to 3 do

10: for j = 0 to 3 do
11: W 5

i,j = S2(W 4
i,j);

12: W 5
i,j = W 5

i,j,3 ‖ W 5
i,j,2 ‖ W 5

i,j,1 ‖ W 5
i,j,0;

//W 5
i,j,k ∈ {0, 1}8; 0 ≤ k ≤ 3.

13: W 6
i,j = W 6

i,j,3 ‖ W 6
i,j,2 ‖ W 6

i,j,1 ‖ W 6
i,j,0 =

D3(W 5
i,j,3 ‖W 5

i,j,2 ‖W 5
i,j,1 ‖W 5

i,j,0);
14: end for
15: end for
16: for i = 0 to 3 do
17: for j = 0 to 3 do
18: for k = 0 to 3 do
19: W 7

i,j,k = S3(W 6
i,j,k);

20: end for
21: end for
22: end for
23: Y = W 7

3,3,3 ‖W 7
3,3,2 ‖ ... ‖W 7

0,0,0;
24: return Y

3) (satisfying the conditions) in D3. Hence, D3 is a
perfect diffusion layer and has the branch number 3.

2.8 The Authenticated Encryption Artemia

We define Artemia-256 and Artemia-128 as the two
variants of the family of the dedicated authenticated
encryption which is named Artemia, as follows.

2.8.1 Artemia-256.

Artemia-256 uses the permutation Artemia− 512 in
the JHAE mode. Its key, AD blocks and message
blocks have the length of 256-bit, and it produces the
ciphertext blocks and a tag of the 256-bit length.

2.8.2 Artemia-128.

Artemia-128 uses the permutation Artemia− 256 in
the JHAE mode. Its key, AD blocks and message
blocks have the length of 128-bit, and it produces the

Table 6. The security goals of Artemia

Goal
Artemia-256 bits

of security
Artemia-128 bits

of security

Confidentiality of

the secret key
128 64

Confidentiality of

the plaintext
128 64

Integrity of the

plaintext
128 64

Integrity of the
associated data

128 64

Integrity of the

nonce
128 64

ciphertext blocks and a tag of 128 bits.

3 Security Analysis

In this section, security of Artemia is investigated.
At first, the security goals of Artemia are presented
briefly and then the security of Artemia is described
in two subsections: security analysis of JHAE, and
security analysis of the permutation Artemia.

3.1 Security Goals

The security goals of Artemia are summarized in Ta-
ble 6. The padding process of Artemia does not use
the secret message number. Hence, the bit length of
this field is zero. It uses a nonce value as the pub-
lic message, which is upper bounded by 256 bits for
Artemia− 512 and 128 bits for Artemia− 256. The
only restriction for the nonce value is that reuse of
the nonce value under a same key is not allowed. It is
unnecessary that the nonce values have equal length
(shorter values of the nonce value will be extended
to maximum length by appending 0-bit to the left).
Hence, the scheme does not provide any integrity or
confidentiality if the legitimate user uses a same set
(nonce, key) to encrypt two different sets of (plaintext,
associated data). In addition, during the decryption,
the scheme returns m if the received tag is correct and
⊥ otherwise.

3.2 Security Analysis of JHAE

In [4] it is shown that JHAE achieves the privacy
(indistinguishability under chosen plaintext attack or
IND-CPA) and integrity (integrity of ciphertext or
INT-CTXT) up to O(2n/2) queries, where the length
of the used permutation is 2n. The security of JHAE
can be summarized in the following two theorems:
Theorem 1. JHAE based on an ideal permutation π :
{0, 1}2n → {0, 1}2n is (tA, σ, ε)-indistinguishable from
an ideal AE based on a random function RO and an
ideal permutation π′ with the same domain and range,
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for any tA, then ε ≤
σ(σ − 1)

22n−1
+

σ2

22n
+
σ2

2n
, where σ

is the total number of blocks in queries to JHAE −E,
π, and π−1, by A.
Proof. The proof of this theorem can be found in [4].

Theorem 2. For any adversary A that makes σ block
queries to JHAE−E, π, or π−1 in total, JHAE based
on an ideal permutation π : {0, 1}2n → {0, 1}2n is

(tA, σ, ε)-unforgeable, then ε ≤
3σ2

2n
+

3q

2n
.

Proof. The proof of this theorem can be found in [4].

3.3 Security Analysis of the Permutation
Artemia

In this section, the security of Artemia against dif-
ferential and linear cryptanalysis is investigated. We
show that any 2-round differential or linear charac-
teristic has a minimum of 45 and 35 active SBoxes
in Artemia − 512 and Artemia − 256, respectively.
The numbers are a trivial lower bound for the mini-
mum number of active SBoxes. The lower bound can
be improved with respect to the diffusion layers of
Artemia and the linear function that are used in the
layers. On the other hand, the differential and linear
characteristic of the SBox used in Artemia are 2−6

and 2−4, respectively. Hence, the probability of any
2-round differential characteristic for Artemia− 512
and Artemia− 256 are upper bounded by 2−270 and
2−210, respectively. Similarly, for any 2-round linear
characteristic for Artemia− 512 and Artemia− 256,
the biases are upper bounded by 2−180 and 2−140,
respectively. By following a similar approach, any 4-
round differential characteristic forArtemia−512 and
Artemia− 256 has a probability upper bounded by
2−540 and 2−420, respectively and any 4-round linear
characteristic for Artemia− 512 and Artemia− 256
has a bias upper bounded by 2−360 and 2−280, respec-
tively. These results are summarized in Table 7.

In the rest of this section, we show the correctness
of our claims on the number of active SBoxes for
Artemia− 512 and Artemia− 256.

3.3.1 Artemia-512

3.3.2 The Minimum Number of Active
SBoxes in Two Rounds.

In Figure 4, assume that a D3 recursive layer has
been activated.. An active D3 guarantees at least five
active SBoxes in S2 and S3. On the other hand, any
active SBox in S2 comes from an active D2 which also
guarantees five active SBoxes in S1 and S2. Hence,
each active 128-bit word at the input of D1 in the

i − th round guarantees at least nine active SBoxes
in the i − th round and each active 128-bit word at
the output of D1 in i− th round guarantese at least
nine active SBoxes in the (i− 1)− th round. Since the
branch number of D1 is five, there are at least five
active words in the input/output of any active D1.
Hence, the minimum number of active SBoxes for two
rounds of Artemia − 512 is 45 (see also Figure 6 in
Appendix 6 where the bold line is related to the lower
bound). We summarize the minimum number of active
SBoxes for two rounds of Artemia− 512 in Table 8.

3.3.3 Artemia-256

3.3.4 The Minimum Number of Active
SBoxes in Two Rounds.

In Figure 5, assume that a D3 recursive layer has
been activated. An active D3 guarantees at least three
active SBoxes in S2 and S3. On the other hand, any
active SBox in S2 comes from an active D2 which also
guarantees five active SBoxes in S1 and S2. Hence,
each active 64-bit word at the input of D1 in the i− th
round guarantees at least nine active SBoxes in the
i− th round and each active 64-bit word at the output
of D1 in i− th round guarantees at least seven active
SBoxes in the (i − 1) − th round. Since the branch
number of D1 is five, there are at least five active
words in the input/output of any active D1. Hence,
the minimum number of active SBoxes for two rounds
ofArtemia−256 is 35 (see also Figure 7 in Appendix 6
where the bold line is related to the lower bound). We
summarize the minimum number of active SBoxes for
two rounds of Artemia− 256 in Table 9.

4 Design Rationale

Artemia has two main components: the JHAE mode
and the permutation Artemia. In order to design each
component, we use the publicly known elements. In
the following, we give the rationale of the designing
each component.

4.1 JHAE

JH [20] is a finalist of the SHA-3 competition and
JHAE is a dedicated authenticated encryption mode
based on the JH mode. JHAE is a sponge-like mode
that uses a permutation and does not need any key
schedule. On the other hand, in [4], it has been shown
that JHAE is provably secure up to O(2n/2). The
important researches on JH hash mode done during
SHA-3 competition shows that there is no any signifi-
cant vulnerability in the JH hash mode.
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Table 7. The minimum number of active SBoxes and the differential and linear characteristic for Artemia

Artemia # Rounds
# Minimum
active SBoxes

Maximum

probability of a
differential

characteristic

Maximum bias

of a linear

characteristic

Artemia− 512 2 45 2−270 2−180

Artemia− 512 4 90 2−540 2−360

Artemia− 256 2 35 2−210 2−140

Artemia− 256 4 70 2−420 2−280

Table 8. The minimum number of active SBoxes for two rounds of Artemia− 512

# active words in the
start of the round

# Minimum active

SBoxes in the end of

the round

# active words in the
start of the next round

# Minimum active

SBoxes in the end of

the next round

# Minimum active

SBoxes in two rounds

of Artemia− 512

1 36 4 9 45

2 27 3 18 45

3 18 2 27 45

4 9 1 36 45

Table 9. The minimum number of active SBoxes for two rounds of Artemia− 256

# active words in the

start of the round

# Minimum active

SBoxes in the end of
the round

# active words in the
start of the next round

# Minimum active

SBoxes in the end of
the next round

# Minimum active
SBoxes next round in

two rounds of

Artemia− 256

1 28 4 7 35

2 21 3 14 35

3 14 2 21 35

4 7 1 28 35

4.2 The Permutation Artemia

The permutation Artemia has two main layers: the
confusion and diffusion layer. In the confusion layer,
the AES SBox having the appropriate characteristics
is used. The diffusion layers are developed from the
recently introduced recursive diffusion layers [18], that
are simple and efficient. In [18], it is shown that these
diffusion layers are perfect and provide the maximum
branch number.

One can summarize the design rational of Artemia
as follows:

• Security;
• Simplicity;
• Using the known transformations as its
components;

• Avoiding a Key Schedule.

5 Conclusion

We have proposed Artemia, a family of dedicated au-
thenticated encryption (AE) scheme. It is a single-

pass nonce-based online scheme, which supports op-
tional associated data. Artemia uses the permutation,
Artemia, in the JHAE mode.

We showed that the permutation Artemia is secure
against two most powerful cryptanalysis methods,
differential and linear cryptanalysis. On the other
hand, the permutation Artemia has an efficient and a
simple structure. It uses MDS recursive layers that can
be easily implemented in both software and hardware.
Given that, JHAE is an sponge-based mode which
is efficient in both software and hardware and it is
provably secure in the ideal permutation model [4],
we can claim that Artemia is a family of secure and
efficient AE scheme.

We implemented Artemia in software where the
results of the implementation can be found in [2]
and the test vectors are presented in Appendix 7. A
compression between the speed of Artemia and other
CAESAR candidates can be found in [1]. It must
be noted that the current implementation is a basic
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implementation and can be improved. As a future work
we improve our software implementation and present
an efficient hardware implementation of Artemia.
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Appendix

6 The Number of Active SBoxes

7 Test Vectors

The test vectors (in hexadecimal notation) of Artemia-
256 and Artemia-128 are given below.

7.1 Test vectors of Artemia-256

7.1.1 a.

Key: 0 Nonce: 0 Message: 0 AD: 0
Ciphertext: 884ec6cf910fd4dfd97c6ca56f71e264f63
177495c1d13bff2741227398a8999

Tag: 1190271e3a3aac7d2427f9a5d6a1fde3adbe10e04
3205a5aa6755b9806653247

7.1.2 b.

Key: 0 Nonce: 0 Message: 0 AD: Empty
Ciphertext: e55ffef4d4ccbd041ec98025eb26cba874
a3282c1831aa4bca57519eac039971

Tag: c0a9c7f8f6aac255e6b6a04657235aa90487850

aeaf5ff787fe004b8349f17e6

7.1.3 c.

Key: ff Nonce: ff Message: ff AD: ff
Ciphertext: dda879fcfd8b977b01feff3470df656700
c7d070840052fd7174ce6e23561136

Tag: 65414aa30abd19039f79ef96accc02d2710e0727
bd2469ad1c5ef67de21d762e

7.1.4 d.

Key: ff Nonce: ff Message: ff AD: Empty
Ciphertext: e4064adb94c2f229d205b416a207841463b
9a548dd9fb20b90769ffe287356e1

Tag: 00a4f4793851cdaca43ad0c83893ced0978be2fa5
a37526d18621628e0771fd2

7.1.5 e.

Key: dbdbNonce: dbdbMessage: 03bbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbbb5525aeebbbbbbbbbAD: 04444
4444444444444444444444444471f36a1243ab77777

Ciphertext: 12b675307357d734ba16daeaeb745ff3797b
1c00cca946fbc55d97ead069ef4971d47ce65d6f0e714d

fd14d02b2d27742fb52ae4f467410dd5a6d232ff2f73b6

Tag: b45e48ad814639f700412db009087bac447fe549e4
46c288b49a9b9f347020aa

7.2 Test vectors of Artemia-128

7.2.1 a.

Key: 0 Nonce: 0 Message: 0 AD: 0
Ciphertext: df365dc54f4931a00c0180e5acf3cbfc
Tag: 52dde31b249a0c4b6bb3490cf4833b3f

7.2.2 b.

Key: 0 Nonce: 0 Message: 0 AD: Empty
Ciphertext: 3a1eabbccd33af7fecf1abe9acadc1b6
Tag: 753d513f2dfe79b65f4ebe5800bf0a1c

7.2.3 c.

Key: ff Nonce: ff Message: ff AD: ff
Ciphertext: a5aeb92df745ddaaf764d0510374b147
Tag: 91e29ab5ee55e06b5deecb59038b65b6

7.2.4 d.

Key: ff Nonce: ff Message: ff AD: Empty
Ciphertext: b5583b1d0bbb727b6ad8103e974078f5
Tag: 4f92f91749a91aff0825097319b06652

7.2.5 e.

Key: dbdb Nonce: dbdb
Message: 03bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
bb5525aeebbbbbbbbb

AD: 044444444444444444444444444444471f36a124
3ab77777

Ciphertext: eb70ad7cbcbd7da09a5063e7abd53fa38f
caeff5ae062a98729824d2d035ff45dcb5ef8c4328b

d2814e1969f3e0ab89f

Tag: 56af39a4050397caaff0989284471681

8 Name

We named it Artemia because of:

Critical condition of Artemia Urmiana and possibility
of extinction 1 .

1 See http://saveurmia.com/main/2013/01/11/critical-

condition-of-artemia-urmiana-and-possibility-of-

extinction/
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Figure 6. The minimum number of SBoxes in Artemia− 512. S1, S2, and S3 are the minimum number of SBoxes in S1, S2, and

S3 respectively
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Figure 7. The minimum number of active SBoxes in Artemia− 256. S1, S2, and S3 are the minimum number of SBoxes in S1, S2,

and S3 respectively
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