
ISeCure
The ISC Int'l Journal of
Information Security

January 2014, Volume 6, Number 1 (pp. 3–22)

http://www.isecure-journal.org

Access Control in Ultra-Large-Scale SystemsUsing aData-Centric

Middleware

Saeed Shokrollahi 1,∗, Fereidoon Shams 1, and Javad Esmaeili 1
1Department of Computer Engineering, Shahid Beheshti University, Tehran, Iran

A R T I C L E I N F O.

Article history:

Received: 13 March 2014

Revised: 31 May 2014

Accepted: 24 June 2014

Published Online: 28 June 2014

Keywords:
Access Control, Colored-Petri-Nets
Model, Middleware,

Data-Distribution-Service
Middleware, Ultra-Large-Scale

Systems.

A B S T R A C T

The primary characteristic of an Ultra-Large-Scale (ULS) system is ultra-large

size on any related dimension. A ULS system is generally considered as a

system-of-systems with heterogeneous nodes and autonomous domains. As

the size of a system-of-systems grows, and interoperability demand between

sub-systems is increased, achieving more scalable and dynamic access control

system becomes an important issue. The Attribute-Based Access Control

(ABAC) model is a proper candidate to be used in such an access control

system. The correct deployment and enforcement of ABAC policies in a ULS

system requires secure and scalable collaboration among different distributed

authorization components. A large number of these authorization components

should be able to join different domains dynamically and communicate

with each other anonymously. Dynamic configuration and reconfiguration of

authorization components makes authorization system more complex to manage

and maintain in a ULS system. In this paper, an access control middleware is

proposed to overcome the complexity of deployment and enforcement of ABAC

policies in ULS systems. The proposed middleware is data-centric and consists

of two layers. The lower layer is a Data-Distribution-Service (DDS) middleware

used for loosely-coupled-communication among authorization components.

The upper layer is used for secure configuration and reconfiguration of

authorization components. An executable model of the proposed middleware is

also represented by a Colored-Petri-Net (CPN) model. This executable model

is used to analyze the behavior of the proposed middleware.

© 2014 ISC. All rights reserved.

1 Introduction

T he scale of system-of-systems is growing in the re-
cent years, dramatically. Ultra-Large-Scale (ULS)

systems have extraordinary scale in many dimensions,

∗ Corresponding author.

Email addresses: s shokrollahi@sbu.ac.ir (S. Shokrollahi),

f shams@sbu.ac.ir (F. Shams), j-esmaeili@sbu.ac.ir (J.
Esmaeili).

ISSN: 2008-2045 © 2014 ISC. All rights reserved.

such as number of policy domains and enforceable
mechanisms, number of connections among compo-
nents, number of overall interactions, amount of data,
and number of people involved [1]. The consequence
of the scale of ULS systems makes a serious need to
have a scalable and dynamic access control that ac-
cepts, denies or restricts access to the systems. In
addition, all attempts made to access the system and
processes involved could be logged in detail by the ac-
cess control system. The logged data may be audited

ISeCure

4 Access Control in Ultra-Large-Scale Systems — S. Shokrollahi, F. Shams, and J. Esmaeili

and the result of the audition could be used in new
decision-making processes, while the access control
system is in progress. Various access control models
are in use, including Mandatory Access Control [2],
Discretionary Access control [3], and Role Based Ac-
cess Control [4, 5]. These models are usually effective
in unchangeable distributed systems that deal only
with a set of known subjects which access a set of
known resources [6, 7]. However, Attribute Based Ac-
cess Control (ABAC) model provides more flexibility,
granularity, and dynamicity [6–14]. Therefore, ABAC
model is a proper candidate to be used in ULS sys-
tems. In ABAC model, access decisions are based on
attributes of the subjects and resources.

In ABAC model a resource could be accessed by a
subject while the subject is unknown. In such models,
the enforcement of policies usually requires collabora-
tion among different distributed authorization com-
ponents. For example, Policy Administration Point
(PAP), Policy Enforcement Point (PEP), Policy Deci-
sion Point (PDP), and Policy Information Point (PIP)
components are respectively used for administration,
enforcing policies, making decisions, and providing a
collection of attributes of related entities. The logging
process could be also done by an authorization com-
ponent, which is called Policy Logging Point (PLP)
in this paper.

• The weakness of ABAC model is the complex-
ity of administration and maintenance in open
and large-scale distributed systems [8, 9]. In ad-
dition, an authorization system based on this
model has to have some desirable features as fol-
lows, in order to be widely used in ULS systems
efficiently. A large number of authorization com-
ponents should be able to join the authorization
system dynamically and communicate with each
other anonymously. These components might be
located in distributed and heterogeneous nodes
and different autonomous domains.

• Multi policy, multi decision, and multi informa-
tion capabilities in a domain or among several
domains should be supported. These capabilities
allow each component to receive several policies,
several decisions, and several information data
from other components and properly combine
them to make a decision, final-decision, or needed-
information, respectively.

• Flexible and loosely-coupled dependencies be-
tween authorization components, to reduce the
administration overhead, are necessary.

• The capability of dynamic and correct reconf of
components is important.

• The integration of new types of components into
the authorization system should be done easily.
For example, adding a new component for speci-

fying policies, performing obligations, verifying
certificates and using ontology.

• The component failures are considered as normal
and frequent events. These failures should be
tolerated and tackled by authorization system.

To overcome the complexity of deployment and en-
forcement of ABAC policies in ULS systems and pro-
vide the mentioned desirable features, a two-layer Ac-
cess Control (AC) Middleware is presented in this pa-
per. The lower layer, named Data-Distribution Layer
(DDL), is a Data-Distribution-Service (DDS) middle-
ware used for loosely-coupled-communication among
authorization components. DDS is a data-centric mid-
dleware [15]. However, in most of distributed access
control systems, authorization components commu-
nicate with each other via a message-centric middle-
ware [11]. A data-centric middleware focuses on shared-
data and system-state-information, not on component-
specific-message sets. General-messages are used by
the data-centric middleware to exchange the system
states. Moreover, a data-centric middleware is aware
of data being shared among components. This aware-
ness leads to a set of capabilities, such as Quality of
Services (QoS) policies in DDS. The QoS policies of
DDS are applied by the AC middleware to reduce the
complexity of communication among the authoriza-
tion components. The AC middleware exploits the
data-centric and publish-subscribe characteristics of
DDS, which increase the scalability, elasticity, avail-
ability, location and network independence, auditabil-
ity, and manageability of distributed systems [16, 17].

The upper layer, named Authorization Layer (AL),
is used for conf and reconf of authorization com-
ponents, independent of the lower layer. In the AC
middleware the notion of combining ABAC policies,
combining decisions and combining information re-
ceived from several components is used to achieve
Multi policy, multi decision, and multi information ca-
pabilities. Publish-subscribe architecture that is used
in DDS, may cause new threats to the authorization
system [18]. To reduce these threats, the upper layer
helps authorization systems to provide a mechanism
to allow only authorized components to read and write
data in DDS. The provided mechanism exploits the
Open Architecture for Secure Interworking Services
(OASIS) model [19–21]. An executable model of the
AC middleware is also represented by a Colored-Petri-
Net (CPN) model, using CPN tools software.

The rest of this paper is organized as follows: Sec-
tion 2 describes some related works about using the
ABAC and OASIS models in large-scale systems. Sec-
tion 3 gives background information about principles
of the DDS middleware and the OASIS model. Sec-
tion 4 describes the proposed AC middleware. Sec-

ISeCure

January 2014, Volume 6, Number 1 (pp. 3–22) 5

tion 5 represents an executable model of the proposed
middleware by a CPN model. Section 6 presents an
analysis of the proposed middleware. Section 7 con-
cludes the paper and discusses possible future work.

2 RelatedWork

The ABAC model [22] specifies the access permission
based on attributes of three entities named subject,
resource, and environment. The subject submits its
access request to the access control system for desired
resource. The environment represents the required
context information to be used in decision-making
process. The context information is not related to a
specific subject or resource. Several research articles
show that the ABAC model provides more flexibility,
granularity, and dynamics compared with other ac-
cess control models [6–13]. Some of these articles have
introduced a new access control model or architecture
based on ABAC model. Singh et al. [12] proposed a
scalable and flexible authorization model for large-
scale distributed systems based on ABAC model. In
the proposed model, a policy decision point has been
considered as a combination of different policy deci-
sion points. In this article, a policy information point
has also been implemented as a combination of dif-
ferent policy information points. In another article, a
multiple-policy model within large-scale device collab-
oration systems, based on ABAC model, is introduced
by Liang et al. [10]. In their proposed model, each
single policy includes a priority and the final decision
is made based on the combination of several policies
with different priorities.

In a recent work, the strength and weakness of
ABAC model are listed by Verma et al. [9]. The list
shows that in a large open system, ABAC model has
more granularity, flexibility, and dynamics compared
with role-based access control model. The article also
represents that the authorization system based on
ABAC model is complex to manage and maintain.

To overcome the aforementioned complexity and
improve the scalability, availability, and flexibility
of the authorization system, some researchers have
used a message-centric or a publish-subscribe archi-
tecture for communication among access control com-
ponents [11, 18]. In order to reduce the overhead of
administration, and to increase the availability of au-
thorization system, and improving the software de-
velopment process, a publish-subscribe model is used
among policy decision points and policy enforcement
points by Wei et al. [18]. In another article, a dis-
tributed authorization middleware for attribute-based
policy evaluation is presented by Goovaerts et al. [11].
They use a lifecycle and dependency management of
authorization components to guarantee that configu-
rations are consistent with respect to deployed poli-

cies and applications. In this article a message-centric
middleware is used for message delivery among en-
forcement, decision, and information components.

Some researchers have used the OASIS model in
their work and show that OASIS is a promising ap-
proach for securing large-scale publish-subscribe mid-
dlewares and multi-domain systems [21, 23–25].

To best of our knowledge, in our work, DDS has been
used for the first time in an access control middleware.
The OASIS model has also been used for the first time
in a data-centric middleware.

3 Background

A brief introduction to DDS and OASIS model is
presented in this section.

3.1 Data Distribution Service Middleware

The Object Management Group (OMG) DDS specifi-
cation [15] provides a data-centric publish-subscribe
communication standard for wide variety of com-
puting environments. DDS is a scalable, platform-
independent, and location-independent middleware,
using a peer-to-peer communication model [26]. Over
the last few years, DDS has been extended to improve
its efficiency over the world-area network and improve
its scalability for ULS systems [27–29].

Figure 1 illustrates the main entities of DDS. In
this figure, there is a domain consisting of two domain-
participants. A domain-participant is an entity that
represents an application’s participation. The domain-
participants are bound together within a same domain,
since more than one domain may exist.

Figure 1. The DDS concepts and entities.

Each domain provides a virtual communication en-
vironment for domain-participants having the same
domain identity. A domain-participant acts as a man-
ager for publishers and subscribers entities. A pub-
lisher is a container to group together individual data-
writers. Similarly, a subscriber is a container that
groups together individual data-readers. A data-reader
can obtain its subscribed data in the DDS middleware,
via listener-based asynchronous or waitset-based syn-

ISeCure

6 Access Control in Ultra-Large-Scale Systems — S. Shokrollahi, F. Shams, and J. Esmaeili

chronous mechanism. A topic is a data holder, which
makes connection of data-writers and data-readers
possible. Each topic has a defined data type and is
identified by a name. DDS can interpret the exchanged
data-samples of topics, and provides data-caching and
content-based-filtering. A data-sample can be some
data value, and an instance is some data-samples
with the same key value. Communication via topics is
anonymous and transparent. It means that publishers
and subscribers are not concerned about how and who
creates, reads, and writes topics. When a topic pub-
lished by a data-writer matches the topic subscribed
by a data-reader, the communication may occur.

The DDS middleware also supports parametric QoS
policies. A QoS is a set of characteristics that con-
trols some aspects of the behavior of the DDS service.
These QoS policies can be configured at various levels
of granularity such as topics, publishers, data-writers,
subscribers, and data-readers. All of these issues are
handled by the DDS middleware, to simplify the de-
velopment of distributed applications, and relieve the
applications from the burden of transmitting and man-
aging data.

3.2 OASIS

The OASIS model [19–21, 23] provides an architecture
for role-based access control in open, distributed envi-
ronments. In OASIS, roles are autonomously managed
in a decentralized way. Each service in this model is re-
sponsible for the classification of its users into named
roles, using a formal logic to specify precise conditions
for entering each role. The specification of conditions
comprises a set of rules, where a role-activation-rule
for a target role, named r, takes the form:

r1, · · · , ri, a1, · · · , aj , e1, · · · , ek ` r (1)

Where rx are prerequisite roles, ay are appointment
certificates, and ez are environmental constraints. The
environmental constraints restrict the activation of
a role in a specific time and location. If a user holds
all the rx , ay, and ez in such activation-rule, a Role
Membership Certificate (RMC) is issued for the user
to enter the target role. A principal is a user that
has satisfied the conditions for possession of a role.
An RMC is an encryption-protected capability, which
includes the role name, the identity of the principal
to which it was issued, and a reference to the issuing
service. Each issuing service creates and maintains
a Credential Record (CR) for each RMC. The CR
indicates the predicates against which the RMC was
issued and lists all other services which have issued
RMCs to the principal based on this CR. Any predicate
that must remain true for the principal to remain
active in the role is tagged as a role-membership-
condition. Such predicates are monitored, and their

violation triggers revocation of the role and related
privileges from the principal.[A1] A mechanism is used
to achieve rapid revocation of the dependent RMCs
issued by other services. An authorization rule for
some privilege pr takes the form:

r, e1, · · · , ek ` pr (2)

According to such rules the privilege pr is assigned to
the role r, if all the environmental constraints are sat-
isfied. An authorization policy comprises a set of such
rules. OASIS roles and rules are parameterized that al-
lows fine-grained policy requirements to be expressed
and enforced. Another OASIS concept is appointment,
by which a principal that has an appointment certifi-
cate may delegate a role that does not itself possess.

4 The Proposed Access Control
Middleware

A two-layer AC Middleware is proposed to make an
attribute-based authorization system more suitable
for ULS systems. Figure 2 shows an overview of the
proposed middleware, which is used by authorization
components of domains to authorize the subjects of a
ULS system to access the resources of the system. A
subject can be a user, service or any other entity on
behalf of a user. A resource can be a data, service, soft-
ware or any other peripheral, or processing devices. In
our basic model, an access control policy for a resource
is specified and done at two sides, the authorization
system side and the resource owner side. In the au-
thorization system side, each administrator specifies
an independent, domain-internal ABAC policy that
defines the access rights granted to the subjects, and
the resource owner has no control over that. In the
basic model a centralized ABAC policy specification
is assumed, and the resource owner trusts the admin-
istrator to specify the ABAC policies. A decentralized
policy specification model is introduced later, as an
extension of the basic model. In the owner side, the

Figure 2. An overview of the proposed access control middle-
ware.

resource owner authorizes the related domains of the
authorization system to access its resources. However,
each resource owner may independently have its own
access control model, which is an issue that our model
is not concerned about. The proposed middleware may
be used by more than one domain.Figure 3 shows more
details of the AC middleware used by two domains.

ISeCure

January 2014, Volume 6, Number 1 (pp. 3–22) 7

Figure 3. The proposed access control middleware, for two domains.

Each domain consists of several components. One
administrator component, called PAP, which admin-
istrates the other components of the domain. The
rest of the components in the domain are classified in
four component types: PEP to enforce ABAC policies,
PDP to make decisions, PIP to provide a collection
of attributes of related entities such as subjects and
resources, and PLP to log authorization processes.
The multiple-instances of each type of component may
exist in the domain. For example PEP1 to PEPn in-
stances of PEP component type. The number of in-
stances in each type may dynamically vary according
to special requirements.

In the proposed middleware, the lower layer, named
DDL, is a DDS used for loosely-coupled and platform-
independent communication among the authorization
components. DDS uses a publish-subscribe architec-
ture that allows authorization systems to easily pro-
vide multi-information and multi-decision capability.
DDS is also a data-centric middleware consisting of
many QoS policies that can reduce the complexity of
communication among the authorization components
and improve their development process.

The upper layer, named AL, is used for conf and re-
conf of the authorization components, independent of
the lower layer. Publish-subscribe architecture that is
used in DDS may cause two threats to the authoriza-
tion systems [18]. First, a malicious component can
attempt to lower the performance of an authorization
system. For example, a malicious publisher compo-
nent can send a large number of junk data-samples to
DDS to increase its load, and a malicious subscriber
component can register a large number of junk sub-
scriptions in DDS to increase its time in finding an
interested subscriber. Second, a malicious component
can subscribe to any ongoing request and publish false
response. To prevent these attacks, the AL layer helps
authorization systems to provide a mechanism to al-
low only authorized components to read and write
data in the DDL layer, and also receive the related
conf and reconf information. The provided mecha-
nism exploits the OASIS policies that are defined by

the PAP components.

When a subject from one domain is allowed to access
some resources in other domains, we have the concept
of cross-domain access. To enable this concept in the
AC middleware, a component should be allowed to
join other domains. Hence, a subject from one domain
can be authorized by other domains. This kind of
authorization, called cross-domain authorization, is
achieved by exploiting the OASIS model in the AC
middleware. Each PAP component has two policies
repositories, named OASIS and ABAC, to hold its
OASIS and ABAC policies.

The details of the proposed AC middleware are pre-
sented in the following three subsections. Section 4.1
discusses the administration of authorization compo-
nents including the conf and reconf processes, and
explains the consisting elements of the conf and reconf
information. Section 4.2 discusses the needed processes
for enforcing policies such as dependency-recognition,
decision-making, and information-providing processes.
Section 4.3 discusses the logging process of authoriza-
tion activities.

4.1 Administration of Authorization
Components

The PAP component of a domain is responsible for
creating and sending required conf and reconf infor-
mation of the authorization components. In the AC
middleware, authorization components need initial
conf-information to join a domain. Since the confs may
change after the join process, reliable and dynamic
reconf-information is also needed. The conf and re-
conf information of a component consist of topics-list,
ABAC-policies, combining-algorithms, and priorities
of policies, decisions, and information. Each compo-
nent gets the related conf and reconf information
based on its roles. The PAP component defines and ex-
ploits the OASIS policies to classify the authorization
components into named roles. All the roles and their
role-activation-rules are held in a table, called Com-
ponent Roles Table (see Table 1), which is saved in
the OASIS repository. In this table, each type of com-

ISeCure

8 Access Control in Ultra-Large-Scale Systems — S. Shokrollahi, F. Shams, and J. Esmaeili

ponent has a conceptual role, e.g., PEP has Enforce-
ment Role (ER), PDP has Decision Role (DR), PIP
has Information Role (IR) and PLP has Logging Role
(LR). On the basis of the OASIS model, the concep-
tual role could be parameterized to create new roles,
e.g., ER(1) to ER(4) roles for PEP component type.
Note that the parameterized roles for each component
type are conceptually the same in action, similar to
a function which is applied with different arguments.
Each row of the table holds a component type fol-
lowed by a sequence of needed roles for the component
type. An RMC is issued for an authorization compo-
nent to enter each target role. A component should
hold all the prerequisites roles and certificates pre-
scribed in the role-activation-rule to receive the RMC
certificate, and to be considered as a principal compo-
nent. An authorization component may join several

Table 1. Component roles table.

Component

Type
Sequence of needed roles

PEP ER(1) ER(2) ER(3) ER(4) · · ·

PDP DR(1) DR(2)

PIP IR(1) IR(2)

PLP LR(1) LR(2) LR(3)

domains with proper certificates from a decentralized
trust management and RMC certificates from PAP
components. This kind of join process, supported by
OASIS, provides an authorization, previously called
cross-domain authorization. For cross-domain autho-
rization, the PAP components must specify the proper
role-activation-rules based on the issued certificates.

The description of applying a decentralized trust
management is presented by Pesonen et al. [21]. The
key issue in the cross-domain authorization is to map
the external subject’s privileges to the corresponding
privileges in the local domain. In the ABAC model, at-
tributes reflect subject’s privileges. Therefore, the AC
middleware exploits the attribute-mapping-approach
presented by Long et al. [30].

4.1.1 Conf and Reconf Information

The PAP component of a domain creates and sends
conf and reconf information of the authorization com-
ponents. Each principal component, based on its RMC
certificates that indicate its roles, gets the related conf
and reconf information. The conf and reconf informa-
tion consist of topics-list, ABAC-policies, combining-
algorithms, and priorities of policies, decisions, and in-
formation, which are explained in the following three
subsections.

4.1.1.1 Topics List

The DDL layer handles the actual distribution of data
on behalf of the AL layer and authorization compo-
nents. The topics defined in the DDL layer are basic
connection points between the authorization compo-
nents. The authorization components use the topics
for different communication types such as conf, reconf,
decision-making, information-providing, and policy-
specification which are shown in the first column of Ta-
ble 2. Each type of topics has some attributes, placed
in the first row of the table, and a brief explanation
of those attributes is as follows.

The content of each topic is represented in some
structured fields, similar to tuples. For example,
the topic-content of RPEP has two fields: reconf-
information (RE) and expected-time (ET). The
content-filtering is used to ensure that the data-
samples of a topic are sent to only one specific
corresponding component, by which the performance
of the AC middleware could be improved. The pub-
lisher and subscriber attributes of a topic show which
component types can write or read that topic. For
example, the PAP components can write and the PEP
components can read the RPEP topic. The topic mul-
tiplicity attribute indicates that whether a topic type
can have single-instance or multiple-instances in a do-
main. As an example, RPEP type can have RPEP1 to
RPEPn instances. The PAP component defines multi-
ple instances of a topic to create proper dependencies
among the authorization components, and prevents
the components from receiving the unrelated data.
Suppose we have two instances of PEP component,
PEP1 and PEP2, and reconf-information of these
two instances are different, then the PAP component
can define two instances of RPEP topic, RPEP1 and
RPEP2, so that PEP1 is allowed to read only RPEP1,
and PEP2 is allowed to read only RPEP2. In this
case, the reconf-information of PEP1 cannot be read
by PEP2. A topics-list of a role determines which
topics can be accessed to read or write by the compo-
nents that possess the role. The topics-list consists
of two lists for write and read permissions, heading
with write-list and read-list labels. The topics-list
may have all types of topics except JOIN and CONF
which are always used in joining process. Figure 4
shows a typical example of a topics-list that allows
the components that possess the role ER(1) to write
three topics and read two topics. The description of
type of these topics is presented in Table 2. The name
and type of all the needed topics in a domain are
defined by the PAP component of the domain.

A topics-list of a role determines which topics can
be accessed to read or write by the components that
possess the role. The topics-list consists of two lists

ISeCure

January 2014, Volume 6, Number 1 (pp. 3–22) 9

Table 2. All topic types used in the proposed access control middleware.

Type of

Communication

Topic Attribute

Topic type Topic-content
Content-
filtering

Publisher Subscriber
Topic
multi-
plicity

Conf

JOIN Join-request NO
PEP,PDP,
PIP,PLP

PAP Single

CONF Initial conf-information Yes PAP
PEP,PDP,
PIP,PLP

Single
...

Reconf

RPEP Reconf-information of PEP NO PAP PEP Multiple

APEP Apply-time of PEP NO PEP PAP Multiple

RPDP Reconf-information of PDP NO PAP PDP Multiple

APDP Apply-time of PDP NO PDP PAP Multiple

RPIP Reconf-information of PIP NO PAP PIP Multiple

APIP Apply-time of PIP NO PIP PAP Multiple

RPLP Reconf-information of PLP NO PAP PLP Multiple

APLP Apply-time of PLP NO PLP PAP Multiple
...

Decision-making

QPEP Required-attributes of PEP NO PEP PDP,PLP Multiple

DREQ Decision-request Yes PEP PDP,PLP Multiple

DREP Decision-reply Yes PDP PEP,PLP Multiple
...

Information-providing

QPDP Required-attributes of PDP NO PDP PIP,PLP Multiple

IREQ Information-request Yes PDP PIP,PLP Multiple

IREP Information-reply Yes PIP PDP,PLP Multiple
...

ABAC-policy-specification
SPOL Specified-policy NO PAP,PSP PAP Single

APOL Apply-time of specified-policy Yes PAP PAP,PSP Single

for write and read permissions, heading with write-list
and read-list labels.

The topics-list may have all types of topics except
JOIN and CONF which are always used in joining
process. Figure 4 shows a typical example of a topics-
list that allows the components that possess the role
ER(1) to write three topics and read two topics. The
description of type of these topics is presented in Ta-
ble 2. The name and type of all the needed topics in a
domain are defined by the PAP component of the do-
main. The AL layer of the AC middleware creates the

Figure 4. Topics list of ER(1) role.

structure of the topics, and sets the content-filtering
attribute for desired topics. The AL layer also sets the
needed QoS policies of the topics. The QoS policies
control the distribution of data, to reduce the complex-
ity of administration. Table 3 shows the QoS policies
for each type of topics, which are defined by the PAP
components. The QoS policies that are shown in the
first column of Table 3 are as follows:

Durability: presents the lifetime of data-samples
of each topic type. The volatile value specifies that
once data-sample is published, it is not maintained by
the DDL layer for delivery to late-joining-components.
The persistent value indicates that the DDL layer
stores the data-sample persistently to make it available
to late-joining-components even after restarting of
shutting down the whole authorization system.

History: specifies the number of data-samples of
each topic type that must be stored for authorization
components.

Ownership: determines which data-writer owns
the write-access to a topic when there are multiple
data-writers and the ownership policy value is exclu-
sive. In case of shared values, data-writers can concur-
rently update the topic.

Destination-order: defines the order of changes
made by authorization components to instances of
each topic type, based on the source or destination
time-stamps. The AC middleware uses source-time-
stamp values in order to provide data-samples in the
same order for the subscriber components.

Reliability: shows the level of reliability associated

ISeCure

10 Access Control in Ultra-Large-Scale Systems — S. Shokrollahi, F. Shams, and J. Esmaeili

Table 3. Quality of service policies of the topic types.

QoS

Topic type
Join CONF QPEP, QPDP

DREQ, DREP,
IREQ, IREP

RPDP, RPEP,
RPIP, RPLP

APDP, APEP,
APIP, APLP

Durability persistent persistent persistent volatile persistent persistent

History keep-all keep-all keep-last-one keep-last-one keep-all keep-all

Ownership shared Exclusive shared shared shared shared

Destination-order
source-time-

stamp
source-time-

stamp
source-time-

stamp
source-time-

stamp
source-time-

stamp
source-time-

stamp

Reliability reliable reliable reliable reliable reliable reliable

Time-based-filter zero zero zero zero zero zero

Deadline infinite infinite infinite infinite infinite infinite

Lifespan infinite infinite infinite LS infinite infinite

Latency-budget LB3 LB3 LB2 LB2 LB1 LB2

Transport-priority TP3 TP3 TP2 TP2 TP1 TP2

with data diffusion of each topic type. The reliable
value specifies that a data-sample should be resent
until its acknowledgement is received.

Time-based-filter: sets a minimum period of time,
in which a data-reader can receive at most one data-
sample and the rest of them are filtered. The zero value
means that the data-reader receives all data-samples
and no one is filtered.

Deadline: sets a maximum time in which an update
for instances must be published. The deadline policy
of all topic types is infinite by default, otherwise the
PAP components may set it.

Lifespan: sets the period of time during which a
data-sample is valid. The lifespan policy of the DREQ,
DREP, IREQ, and IREP topic types, which contain
decision and information request and reply, is set to the
LS value. It means that the LS value is the maximum
duration that each request or reply is valid.

Latency-budget: specifies the maximum accept-
able delay from time a data-sample is written by a
publisher component until it is inserted in data-cache
of a subscriber component. The AC middleware uses
three levels of latency-budget which indicates the ur-
gency associated with transmitted-data of each topic
type: LB1, LB2, and LB3. These three levels comply
with the following formula.

LB3 > LB2 > LB1 ≥ 0 (3)

Transport-priority: allows the DDL layer to opti-
mize the transporting of data-samples of topic types
with different priorities. The AC middleware uses three
levels of priority which indicates the data-samples
importance: TP1, TP2, and TP3. These three levels
comply with the following formula.

TB1 > TB2 > TB3 (4)

More description of attributes of topics and the ap-
plications of the QoS policies will be presented in the
next sections.

4.1.1.2 ABAC Policies

In the AC middleware, the ABAC-policies of a do-
main are centrally specified by the PAP component
of the domain. The policies are stored in the ABAC-
policies repository, and distributed to the related
PDP components. The PAP components exploit the
XACML standard [31] to specify the ABAC-policies.
Each ABAC-policies includes five fields: identity,
change-time-stamp, policy-target, rule-set, and rule-
combining-algorithm. The identity field is a unique
label assigned to each policy in the authorization
system. The label consists of a domain name followed
by a unique number in the domain. The change-time-
stamp field indicates the last time that the policy has
been updated. The policy-target field identifies a set
of subjects, resources, actions, and environments to
which the policy is applicable. The rule-set is a set of
rules. Each rule itself consists of three elements named
rule-target, rule-condition, and effect. The rule-target
element has the same structure as the policy-target.
The rule-condition element specifies restrictions on
the attribute values in a request, and the effect ele-
ment indicates that the request should be permitted
(P) or denied (D). The rule-combining-algorithm field
is used to resolve conflicts among applicable rules
with different effects. If a request does not satisfy
both the rule-target and rule-condition elements, the
decision response would be not-applicable (NA). If an
error occurs in the evaluation process of a rule, the
decision response would be indeterminate (IN).

An extension of the basic model is shown in Fig-

ISeCure

January 2014, Volume 6, Number 1 (pp. 3–22) 11

ure 5. In this extension, unlike the basic model, a
decentralized policy specification is provided. In the
extended model, each domain has Policy Specifica-
tion Point (PSP) type. The PSP component in a do-
main specifies the ABAC-policies of the domain or the
ABAC-policies required by the other domains. A PAP
component may receive policies specified by different
languages. Therefore, the received policies should be
compiled to produce the specification policies con-
formant with XACML. The compiler assigns and at-
taches the identity and change-time-stamp fields to
each produced policy. Note that the extended model
allows the resource owners to specify their own ABAC-
policies, which could be used later by the PAP com-
ponents. In the extended model, each domain can
have several redundant instances of the PAP compo-
nent to increase the availability of the PAP compo-
nent. In Table 2, the last type of communication row
shows the topic types needed for the extended model.
Ardagna et al. [32] provide a formalization of concepts
that have to be supported for enforcing the new ac-
cess control paradigm needed in open systems. They
illustrate how the concepts can be deployed in the
XACML standard by exploiting its extension points
for the definition of new functions. This extension of
XACML can be used in the above extended model.
Bonnati et al. [33] propose an algebra for composing
independent authorization specifications, possibly in
different languages and according to different policies.
This work can also be used in the extended model to
compose and compile different policies.

4.1.1.3 Combining Algorithms and Priorities

An authorization system, which is applied in a ULS
system, needs to combine the result of multiple poli-
cies to make a decision. The multiple decisions and
multiple information, received from different compo-
nents, should also be combined to make the final-
decision and provide the needed-information, respec-
tively. The AC middleware exploits three types of
combining-algorithms: Policy Combining-algorithm
(PCA), Information Combining-algorithm (ICA), and
Decision Combining-algorithm (DCA). The descrip-
tions of these combining-algorithms are as follows.

a. Policy Combining-algorithm (PCA): this
type of combining-algorithm is applied by the PDP
components to combine the result of multiple ABAC-
policies to make a decision. The identity and change-
time-stamp of polices, which are combined to make
a decision, are returned along with the decision in
order to check consistency and integrity of policies.
The ABAC-policies for the PDP components may
have different policy-priorities. The policy-priorities

are used by PCAs to combine the result of policies
that have the highest priority.

The PAP components use a tuple of four decision-
elements EP , ED, ENA, and EIN , to express PCAs.
Each decision-element expresses a condition that is
not overlapped with conditions of other elements in
the tuple. Hence, the conditions of elements could be
evaluated in any order. By satisfying EP , ED, ENA,
and EIN , the result of combination will be Permit,
Deny, Not-applicable, or Indeterminate, respectively.
This tuple, named decision-tuple, is inspired by the
PCL Language [34]. PCL is based on automata theory
and linear constraints, and it has been integrated with
XACML. The four decision-elements of decision-tuple
can be filled by different approaches. In this section
two approaches are explained.

In the first approach, the tuple can be filled by four
regular expressions over Σ = {P,D,NA, IN}, which
expresses a set of acceptable strings that yields the
corresponding result, such as P in EP. For example,
the first-applicable PCA can be expressed using reg-
ular expressions as follows. Remind that P, D, NA,
and IN denotes Permit, Deny, Not-applicable, and
Indeterminate decisions, respectively.

(EP = NA∗PΣ∗, ED = NA∗DΣ∗, (5)

ENA = NA∗,EIN = NA∗INΣ∗)

The first approach cannot directly express the
counting-based PCAs such as the weak-majority
PCA, in which a decision (P or D) wins if it has more
votes than the opposite. In the second approach, the
tuple can be filled by four linear constraints. The
linear constraint is a predicate consisting of variables
]P,]D,]NA, and]IN using relational, conjunctive
and disjunctive operators. The]P,]D,]NA, and]IN
variables represent the number of policies that return
P, D, NA, and IN decision, respectively. For example
by using the second approach, the deny-override PCA
can be expressed as the following decision-tuple.

(EP =]P > 0 ∧]D = 0 ∧]IN = 0, (6)

ED =]D > 0,ENA = φ,EIN =]D = 0 ∧]IN > 0)

b. Information Combining-algorithm (ICA):
this type of combining-algorithm is applied by the
PDP components to combine information received
from different PIP components. The PDP compo-
nents may receive the information-responses with
different information-priorities from PIP components
of different domains. The information-priorities are
used by ICAs to combine the information-responses
that have the highest priority. If no response received
from PIP components, the related ICA sends a Null
message to the PDP component. In this case, the PDP
component sends indeterminate result for the related
evaluation. ICA is used for the following purposes.

ISeCure

12 Access Control in Ultra-Large-Scale Systems — S. Shokrollahi, F. Shams, and J. Esmaeili

Figure 5. Decentralized policy specification.

• Information Availability: to achieve higher
information-availability, the information-request
of a PDP component is published to several re-
dundant PIP components. The redundancy of
PIP component increases the chance of receiv-
ing at least one acceptable information-response
on time, even some of the PIP components fail.
Regarding this purpose, ICA returns the first
information-response and discards the other re-
sponses.

• Information Composition: sometimes the en-
tire required information to make a decision is not
provided by just one PIP component. Hence, re-
garding this purpose, ICA merges different parts
of needed information, which is received from
different PIP components.

• Information Consistency and Integrity:
when a PDP component receives information-
responses from several redundant PIP com-
ponents, the information inconsistency and
non-integrity problems may occur. These pos-
sible problems should be checked and resolved
by ICA. To resolve the problems, ICA selects
at least n, n ≥ 2, information-responses and
compares change-time-stamps and values of
information-responses. An information-response
may have several fields and each field has its own
change-time-stamp and value. If the information-
responses have different change-time-stamps,
it means some fields are not updated yet, and
there is inconsistency problem. In this case, ICA
returns the information-response with the most
recent change-time-stamp. If the information-
responses have the same time-stamps, but the
different values, it means that there is a non-
integrity problem and ICA cannot return any
response.

c. Decision Combining-algorithm (DCA): this
type of combining-algorithm is applied by the PEP
components to combine decisions received from dif-
ferent PDP components. The PEP components may
receive the decision-responses with different decision-
priorities from the PDP components of different do-
mains. The decision-priorities are used by DCAs to

combine the decision-responses that have the highest
priority. DCA is used for the following purposes.

• Decision Availability: the redundant PDP
components provide more decision availability. In
this case, DCA returns the first decision-response
of PDP components as a final-decision.

• Decision making: when decision-responses are
received from different PDP components, the
final-decision is made by combining the responses.
In this case, DCA is expressed by a decision-tuple
that is filled by four linear constraints. For exam-
ple, the at-least-two-permit DCA is expressed as
the following decision-tuple.

(EP =]P > 1, ED =]P < 1 ∧]D > 0, (7)

ENA = φ,EIN =]P < 1 ∧]D = 0 ∧]IN > 0)

• Decision Consistency and Integrity: DCA is
used to check and resolve the inconsistency of de-
cisions and non-integrity of decisions. These prob-
lems may occur when a PEP component receives
decision-responses from several redundant PDP
components. In this case, DCA selects at least n,
n ≥ 2, decision-responses and compares identi-
ties, change-time-stamps, and values of decision-
responses. If the decision-responses have the same
identities and different change-time-stamps, it
means some policies are not changed yet and there
is an inconsistency problem. In this case, DCA
returns the decision-response with the most re-
cent change-time-stamp. If the decision-responses
have the same identities and the same change-
time-stamps but the different values, it means
that there is a non-integrity problem and DCA
cannot return any response.

To summarize the issues discussed in this section, Ta-
ble 4 shows the types of combining-algorithms and
priorities for each enforcement role and decision role.

4.1.2 Conf Process of an Authorization
Component

When an authorization component wants to join a
domain, it needs an initial conf-information that is
defined and issued by the PAP component of the

ISeCure

January 2014, Volume 6, Number 1 (pp. 3–22) 13

Table 4. Combining algorithms and priorities of roles.

Role Type Combining algorithms Priorities

Enforcement
Role

Decision
Combining-algorithm

Decision-
priorities

...

Decision Role

Policy
Combining-algorithm

Policy-
priorities

Information
Combining-algorithm

Information-
priorities

domain.

An example of a conf process for one PDP com-
ponent, named PDPi, is shown in Figure 6. The
join-request of PDPi is sent to the AL layer of PDPi

(AL.PDPi). By receiving the join-request, AL.PDPi

creates a data-writer for the JOIN topic and writes
an instance of this topic, which consists of five fields:
certificate (CE), domain-name (DN), identity (ID),
requested-role (RR), and active-roles (AR) of the com-
ponent. After the write operation, AL.PDPi creates a
data-reader for the CONF topic, waiting to receive
the conf-information. The join-request is received by
the AL layer of the PAP component (AL.PAP), and is
passed to the PAP component. The PAP component
checks the join-request based on its OASIS policies,
and replies the related conf-information. Based on the
replied conf-information, AL.PAP writes an instance
of the CONF topic, which consists of seven fields:
domain-name (DN), identity (ID), role-certificate
(RC), topics-list (TL), combining-algorithms (CA),
priorities (PR), and policies (PO). Note that the PEP,
PIP, and PLP components have no policy repository,
so the policies fields for them are set to the empty
value. Since the CONF topic has content-filter on
domain-name and identity fields, only one component
whose domain-name and identity matches the content
of the CONF instance receives the instance. After

Figure 6. An example of a conf process for one PDP compo-

nent.

receiving the conf-information, AL.PDPi deletes the
data-writer and data-reader, and according to the
conf-information creates publishers, data-writers,
subscribers, data-readers, combining-algorithms, and
policy-repository of PDPi. Finally, AL.PDPi sends a
join-result to PDPi to inform the result of join-request.

Referring to Table 3, the ownership value for the
CONF topic is set to exclusive value. It means that if
a domain, in the extended model of AC middleware,
has several redundant instances of the PAP compo-
nent, the conf-information can only be written by one
instance of the PAP component. The durability value
for the JOIN and CONF topics is set to persistent,
and the history value for these topics is set to keep-
all, as well. Therefore, when the DDL layer receives
instances of the JOIN and CONF topics, it is not
concerned about the possible failure of the AL layer
during the conf process.

4.1.3 Reconf Process of an Authorization
Component

The roles of an authorization component and the conf-
information of a role may be changed by the PAP
components, dynamically. Hence, the authorization
components must be reconfigured in these cases.

An example of a reconf process for two PDP com-
ponents, named PDPi and PDPj , is shown in Fig-
ure 7. A reconf-information and its expected-time
made by the PAP component are sent to AL.PAP.
The time that the PAP component expects that the
reconf-information can be applied, is called expected-
time. Hence, the apply-time of a reconf-information
cannot be less than its expected-time. By receiving
the reconf-information for PDPi and PDPj , AL.PAP
writes an instance of the RPDPk topic, which consists
of two fields: reconf-information (RE) and expected-
time (ET). Note that the RPDP, RPEP, RPIP, and
RPLP topics are used by AL.PAP to send reconf-
information to the PEP, PDP, PIP, and PLP compo-
nents, respectively. The instance of RPDPk is read
by AL.PDPi and AL.PDPj , and the expected-time
is passed to PDPi and PDPj . If there is a request
whose sending-time is greater than the expected-time,
then the request will be suspended. When the reconf-

Figure 7. An example of a reconf process for two PDP

components.

information is applied, AL.PDPi and AL.PDPj send
a reconf-applied message to the related components.
Each related component sends back an apply-time
in response. Consequently, AL.PDPi and AL.PDPj

write an instance of the APDPk topic, which con-

ISeCure

14 Access Control in Ultra-Large-Scale Systems — S. Shokrollahi, F. Shams, and J. Esmaeili

sists of three fields: domain-name (DN), identity (ID),
and apply-time (AT). Note that AL.PAP component
receives apply-times of the related PEP, PDP, PIP,
and PLP components via the APEP, APDP, APIP,
and APLP topics, respectively. AL.PAP returns the
minimum of all received apply-times for each reconf-
information to the PAP component. This returned
value is referred as base-time. The decision and infor-
mation requests whose sending-times are greater than
the base-time for a new reconf-information are con-
sidered as new requests. Hence, the related PDP and
PEP components that have already applied the new
reconf-information should reply new requests, other-
wise, an inconsistency problem may occur. By setting
the values of latency-budget and transport-priority of
topics according to Table 3 and formula Equation 3
and Equation 4, it is expected that the mentioned
inconsistency problem is decreased. As mentioned be-
fore, the combining-algorithms will resolve this incon-
sistency problem, as well.

A reconf-information may cause revocation of some
roles from an authorization component. Based on the
mechanism used in OASIS, the AL layer revokes the
dependent RMCs issued by the PAP components of
other domains.

4.2 Enforcing Access Control Policies

The PEP components are mainly responsible for en-
forcing ABAC-policies, based on decisions made by
the PDP components. To make decisions, the PDP
components may need the information provided by
the PIP components.

The PAP components define the connection points
between PEP and PDP components by creating the
DREQ and DREP topics, for making the final-decision
about requests which are received from subjects. The
process of making the final-decision is called decision-
making process. Similarly, the PAP components define
the connection points between PDP and PIP com-
ponents by creating the IREQ and IREP topics, for
providing the needed information. The process of pro-
viding the needed information is called information-
providing process.

The PAP components define the connection points
between PEP and PDP components by creating the
DREQ and DREP topics, for making the final-decision
about requests which are received from subjects. The
process of making the final-decision is called decision-
making process. Similarly, the PAP components define
the connection points between PDP and PIP com-
ponents by creating the IREQ and IREP topics, for
providing the needed information. The process of pro-
viding the required information is called information-
providing process. The PAP components define the

DREQ, DREP, IREQ, and IREP topics, based on the
attribute dependencies of components. The creation
of these topics may be ignored if there is not any de-
pendency between components. These attributes can
be attributes of ABAC-policies plus any attribute de-
fined by the PAP components. For example, a PAP
component can assign a binary field as a new at-
tribute of components, to show the sensitivity-level
of the components. The components with different
sensitivity-levels have no attribute dependency. Since
the attribute dependencies are changed dynamically,
the related topics must be reconfigured, subsequently.
This sort of changes increases the complexity and
cost of administration. To reduce this complexity and
cost, the AC middleware uses dependency-recognition
processes, by which the PDP and PIP components
recognize attribute dependencies.

4.2.1 Dependency Recognition Process

Two types of dependency between authorization
components are as follows. The first type is named
attribute-dependency, which refers to dependency
between PDP and PIP components. This dependency
is recognized by the PIP components, based on their
provided-attributes and required-attributes of PDP
components. Required and provided attributes are
expressed in terms of the attributes of subjects and re-
sources. For example in an e-bank system, owner and
balance are two attributes of an account. An example
of a dependency-recognition process for one PDP
component and one PIP component, named PDPi

and PIPj , is shown in Figure 8 Figure 8. After joining
of PDPi or every time that the required attributes
of PDPi are changed, the new required attributes of
PDPi are sent to AL.PDPi. Similarly, after joining
of PIPj or every time that the provided attributes of
PIPj are changed, the new provided attributes of PIPj

are sent to AL.PIPj . By receiving the new required
attributes, AL.PDPi writes an instance of the QPDPk

topic, which consists of three fields: domain-name
(DN), identity (ID) and required-attributes (RA).
The instance of QPDPk is read by AL.PIPj , and the
required attributes of PDPi are compared with the
provided attributes of PIPj . If there is no attribute
dependency between them, PDPi is added to the filter-
list of PIPj , which contains components that should
be filtered by content-filtering of the IREQk topic for
PIPj . Therefore, information-requests of PDPi are
notsent to AL.PIPj . A PDP component is removed
from the filter-list of a PIP component, if an attribute
dependency between the filtered component and the
PIP component is recognized in the next comparison.
By receiving new provided attributes of PIPj , the
new provided attributes of PIPj and the last required
attributes of PDPi are compared to update filter-list.

ISeCure

January 2014, Volume 6, Number 1 (pp. 3–22) 15

When PDPi wants to leave the domain, AL.PDPi

writes an instance of QPDPk, whose RA field is empty.
It means that AL.PIPj must remove PDPi from the
filter-list and delete its previous required attributes.

Figure 8. An example of a dependency-recognition process
for one PDP component and one PIP components.

The second type of dependency is named action-
dependency, which refers to dependency among PEP
and PDP components. This dependency is recognized
by the PDP components, based on their provided-
actions and required-actions of PEP components. Re-
quired and provided actions are expressed in terms
of the actions on resource types of a policy-domain-
model.

For example, in the policy- domain-model of an e-
bank system, deposit and withdraw are two actions
on an account. The dependency-recognition processes
in two types of dependency are essentially the same,
while in the second type, the QPDP topics are used
instead of the QPEP topics.

4.2.2 Decision Making and Information
Providing Processes

When a PEP component receives a request from a
subject to access some resources, the decision-making
process is started to make the final-decision about the
request.

An example of a decision-making process for one
PEP component, named PEPm , and two PDP com-
ponents, named PDPi and PDPi, is shown in Fig-
ure 9. When PEPm receives a request from a subject,
a decision-request is sent from PEPm to AL.PEPm,
and then AL.PEPm writes an instance of the DREQk

topic. This topic consists of three fields: domain-name
(DN), identity (ID), decision-request (RQ). If PEPm is
not in the filter-list of PDPi and PDPj , the instance of
DREQk, which has been written by PEPm, is read by
AL.PDPi and AL.PDPj . Consequently, the decision-
request is passed to PDPi and PDPj and each PDP
component sends back a decision-reply in response,
based on its ABAC-policies and provided information.
Both AL.PDPi and AL.PDPj writes an instance of the
DREPk topic in reply to PEPm. The replied topic con-
sists of three fields: domain-name (DN), identity (ID),

decision-reply (RP). Since DREPk has content-filter,
the instance of DREPk is received only by AL.PEPm.
Based on decision-combining-algorithm of PEPm, the
final-decision is made and sent to PEPm.

Figure 9. An example of a decision-making process for one
PEP component and two PDP components.

Referring to Table 3, the durability value of the
DREQ and DREP topics is set to volatile value, and
the lifespan value of them is set to a positive integer
value, called LS. This value shows the maximum dura-
tion that a decision-request or decision-reply is valid,
starting from the write operation of each of them.

When a PDP component receives a decision-request
from a PEP component, an information-providing pro-
cess is started to provide the needed information. The
process of decision-making and Information-providing
are essentially the same, while in the later, the IREQ
and IREP topics are used instead of the DREQ and
DREP topics, respectively.

4.3 Logging of Instances

The PLP components are responsible for logging in-
stances of the QPEP, DREQ, DREP, QPDP, IREQ,
and IREP topics. The PAP components determine
that which of these topics should be subscribed and
logged by each PLP component. The logged instances
may be audited and the result of audition could be
used in new decision-making processes, while the AC
middleware is in progress.

5 An Executable Model of the AC
Middleware

The OASIS policies and the conf and reconf informa-
tion are defined by administrators. These definitions
should be correct and consistent, and make the behav-
ior of the AC middleware more efficient. Evaluation
of the new definitions and their effects on behavior
and performance of the AC middleware is a huge and
complicated work for administrators. Therefore, an
executable model of the AC middleware helps the ad-
ministrators to see whether the new definitions are
correct, consistent and efficient. Constructing a CPN
model of the AC middleware could be a promising
approach to provide such an executable model.

ISeCure

16 Access Control in Ultra-Large-Scale Systems — S. Shokrollahi, F. Shams, and J. Esmaeili

CPN is a well-proven formal language for construct-
ing models of complex systems and analyzing their
properties [35, 36]. A CPN model is an executable
representation of a system consisting of the states of
the system and the events that cause the system to
change its state. By the CPN model, it is possible to
analyze different scenarios and explore the behavior of
systems [35]. CPN Tools [37] is a visual and graphical
software tool that is applied to create, edit, simulate,
and analyze the CPN models.

Enterprise-integration patterns are appropriate to
design a middleware system conceptually, before ac-
tually implementing it. Fahland et al. [38] introduced
an approach to translate each of these patterns into
a CPN model. The approach is used to investigate
middleware system designs in early stages of devel-
opment. In another article, Abidi et al. [39] proposed
publish-subscribe models using CPN Tools. We use
these two works to represent an executable model of
the AC middleware. The model consists of a main
page which represents the overall form of a domain of
the AC middleware, and several related subpages. The
needed input files are created by the administrator
of the domain and will represent the initial marking
of the CPN model. The input files contain the com-
ponents that want to join the domain, the rules of
OASIS policies, and the elements of conf and reconf
information. Lets consider a simple scenario of a do-
main with the input files containing the fields that are
shown in Table 5. Snapshots of execution of this sce-
nario by the CPN tools are displayed in the following
figures. The main page of the proposed model, called
MAIN, is shown in Figure 10.

Figure 10. The MAIN page.

This page has six substitution transitions,
named CONF, RECONF, DECISION-MAKING,
INFORMATION-PROVIDING, LOGGING, and
FAILURE-HANDLING, which are associated with
six subpages with the same name. A short explana-
tion of selected part of some subpages is given in this
paper to have a taste of corresponding executable
model. Each substitution-transition is similar to a
function-call, while the body of that function is repre-
sented in the corresponding subpage. The main page

Table 5. Fields of input files of a simple scenario.

Fields of input files
Number of instances

of each field

Authorization component 1046

OASIS rule 320

Topics-list 320

ABAC-policy 100

Combining-algorithm 120

Priority 120

Reconf-information 20

helps the administrator to monitor and analyze the
components that have joined and left the domain,
as well as the components whose join-requests have
been rejected. The number of tokens for the PEP,
PDP, PIP, and PLP places are shown by the circled
numbers next to each place. These circled numbers
indicate that the domain currently has 478, 285, 187,
and 93 instances of PEP, PDP, PIP, and PLP com-
ponents, respectively. By clicking on each of these
circled numbers, the content of tokens can be seen,
which consists of eight fields: certificate, identity,
domain-name, role-certificate, topics-list, combining-
algorithms, priorities, and policies. Each token of
the REJ place consists of three fields: domain-name,
identity, and requested-role of the components whose
join-requests are rejected. The circled number for the
REJ place shows that the join-requests of two compo-
nents have been rejected. For example, the first token
of the REJ place is (D(1),ID(1991),(ER,3)), which
shows its three corresponding fields. Each token of the
DEL place consists of nine fields: certificate, identity,
domain-name, role-certificate, topics-list, combining-
algorithms, priorities, policies, and time-stamp. The
circled number for this place shows that just one PEP
component has left the domain, at time-stamp 24.

The CONF subpage is shown in Figure 11. This
subpage is used to simulate the conf process of the
AC middleware. The subpage has three substitution-
transitions, named JOIN-PUBLISHING, CONFIG-
URING, and CONF-PUBLISHING. The JOIN-
PUBLISHING transition specifies the active-roles of
components, which are needed to make join instances.

The CONFIGURING transition checks the join-
requests based on the OASIS policies and prepares the
related conf-information. The CONF-PUBLISHING
transition sends the conf-information to the AL layer
of components and updates the active-roles of the
components.

The circle number for the SUB place shows that
four components have currently subscribed to the
CONF topic, to receive the conf-information. The join

ISeCure

January 2014, Volume 6, Number 1 (pp. 3–22) 17

Figure 11. The CONF subpage.

instances that are received by the CONFIGURING
subpage are processed based on OASIS policies, and
the related conf information are sent to the ALPAP
place. If a join instance is not acceptable, a rejected
message is sent to the REJ place. The inconsistent
and incomplete OASIS polices is detected if a join
instance received by the CONFIGURING subpage
does not exit from the subpage.

The RECONF subpage is shown in Figure 12. This
subpage is used to simulate the reconf process of the
AC middleware. The subpage has one substitution-
transition, named RECONFIGURING. This transi-
tion first sends a reconf-information, read from input
file, to the ALPAP place and receives the apply-times
of that change from the APPLYTIME place, conse-
quently. In one page of CPN we cannot have places
with the same name. Hence, to have several places
with the same concept, we annotate the correspond-
ing name of the concept by one or more than one ‘+’
at the beginning of the name. The data produced and
displayed by the RECONF subpage helps the admin-
istrator to monitor the effects of the changes on the
authorization components and the whole authoriza-
tion system.

The DECISION-MAKING subpage is shown
in Figure 13. This subpage is used to simulate the
decision-making process of the AC middleware. The
subpage has five substitution-transitions, named
D-REQUESTING, ED-RECOGNITION, DREP-
MAKING, DREP-WAITING, and D-COMBINING.
The D-REQUESTING transition sends the decision-
requests of PEP components to the REQ place. The
ED-RECOGNITION transition updates the list of
dependencies between the PEP and PDP compo-
nents, by receiving a new attribute from the RAPEP
or PAPDP place, and the old list from the ED-
DEPENDENCYLIST place. The DREP-MAKING
transition receives tokens from the SPDP place and

makes a decision-reply about the request field of each
token, and the decision-reply is sent to the DREP
place. The DREP-WAITING transition sets the max-
imum response time of decision-requests. The circled
number for the SUB place shows that five decision-
requests are waiting for decision-replies. When the re-
sponse time expires, the DREP-WAITING transition
sends the decision-requests to the UNSUB place, in
order to make the final-decision for each request. The
D-COMBINING transition makes the final-decision
based on the replies received from the REPS place,
using the decision combining-algorithm of the related
PEP component, and the final-decisions are sent to
the ALPEP place. The circled number for the ALPEP
place currently shows that two final-decisions have
been received. Each token of this place contains the
attributes and elements of the components, such as
identity, domain-name, combining-algorithms, poli-
cies and information. The data displayed by these
tokens helps the administrator to find the inconsistent
and incomplete conf and reconf elements. Data in
these tokens are related to the components that have
been used to make the final-decision.

Each token of ++ALPLP, +ALPLP, and ALPLP
places contains the instance of QPEP, DREQ, and
DREP topics, respectively. The LOGGING subpage
uses these tokens to simulate the logging process.

The INFORMATION-PROVIDING transi-
tion in the main page is used to simulate the
information-providing of the AC middleware. The
INFORMATION-PROVIDING subpage is similar
to DECISION-MAKING subpage. The FAILURE-
HANDLING transition in the main page is also used
to simulate the failures of the components, as well as
handling of the failures.

ISeCure

18 Access Control in Ultra-Large-Scale Systems — S. Shokrollahi, F. Shams, and J. Esmaeili

Figure 12. The RECONF subpage.

Figure 13. The DECISION-MAKING subpage.

6 Performance Analysis

In the CPN model of the AC middleware there is a
subpage called RESPONSETIME. Execution of this
subpage displays some parameters that could be used,
interactively, to evaluate the response-time of access
requests. The response-time of an access request is the
total time that it takes from receiving the request by a
PEP component until the component sends back the
access response. This time depends on three issues.

(1) The maximum-response-time of decision re-
quests, related to the received access request.

Note that, the PEP component sends these
decision requests to the related PDP compo-
nents in order to make a final-decision. The
response-time of a decision request is the total
time that it takes from receiving the request by
a PDP component until the component sends
back the decision response.

(2) The total data-latencies of the DREQ and DREP
topics that are used for sending decision re-
quests and receiving decision responses. The
data-latency of a topic is the amount of time
that a data-sample of that topic travels from

ISeCure

January 2014, Volume 6, Number 1 (pp. 3–22) 19

Table 6. Response time of six access requests using RTI connext DDS

Number of PDP

components

Latency of decision

request

Latency of

decision response

Maximum response
time of decision

requests

Execution-time
Response time of

an access request

1 91µs 91µs 250µs 20µs 453µs

200 97µs 92µs 250µs 20µs 459µs

400 98µs 92µs 250µs 21µs 461µs

600 101µs 92µs 250µs 21µs 464µs

800 102µs 92µs 250µs 22µs 466µs

888 103µs 92µs 250µs 22µs 467µs

its publisher to its subscriber. This latency de-
pends on the number of its subscribers, the size
of its data-samples, and the publication rate
of its data-samples. Note that, the decision re-
sponse times of PDP components include the
data-latencies of the IREQ and IREP topics.

(3) The execution-time of combining algorithms and
other related activities, such as exchanging mes-
sages, used in the AL layer.

Multiple implementations of DDS, such as RTI
connext TM DDS [40], are now available. RTI con-
next DDS analysis demonstrates that the number of
subscribers has no significant impact on sustainable
throughput of a topic. Going from 1 to 888 subscribers
has less than 13% impact on maximum throughput of
a topic. Some parts of analysis of RTI connext DDS
4.3 [41] have been used in our CPN model, to simu-
late six access requests. The result of this simulation
is shown in Table 6 . In this simulation, the rate of
decision requests or the rate of decision responses is
considered 100000 requests or responses per second.
The size of each request or response is 200 bytes. The
maximum number of subscribers is 888. The rate, size,
and the number of subscribers used in our simulation
are equal to those in the RTI’s analysis. These equal-
ities allow us to use the latency values reported by
RTI. The table shows that going from 1 to 888 PDP
components in the AC middleware has less than 4%
impact on the response time of access requests.

In RTI connext DDS, new topics can be added to a
system without impacting latency on other topics. So
the topic-multiplicity attribute in the DDL layer can
improve the performance of the AC middleware. RTI
connext DDS also provide writer-side content-filtering
attribute, in which a data-sample of a topic will not
be sent to a subscriber if that topic has been filtered
by the subscriber in advance. In this case, the publi-
cation of unnecessary data-samples is reduced, and
the performance of the AC middleware is increased.

7 Conclusion and FutureWork

The proposed AC middleware is a DDS-based access
control middleware that makes ABAC model more
suitable for a ULS system. A large number of autho-
rization components can join the middleware dynami-
cally and communicate with each other securely and
anonymously. The middleware supports multi policy,
multi decision, and multi information capability for a
single domain or among several domains. The middle-
ware provides flexible and loosely-coupled dependen-
cies among authorization components. The capability
of dynamic and correctreconf of components is also
supported by the middleware. The integration of new
types of components into the middleware is done eas-
ily. An executable model of the middleware is also
represented by a hierarchical CPN model, using CPN
Tools. The data produced and displayed by the exe-
cutable model helps the administrators to evaluate
the new definitions and their effects on behavior and
performance of the middleware.

Currently, we are designing a rich service for access
control, which exploits ideas applied in the proposed
middleware. We also generalized this middleware to be
used for integration of components in a ULS system.

8 Acknowledgment

The corresponding author thankfully acknowledges
the helpful discussions with Professor Pierangela
Samarati and her valuable comments on the paper.
The author also likes to appreciate the hospitality and
technical cooperation of Prof. Samarati’s group at
“Security, Privacy, and Data Protection Laboratory”,
Computer Science Department of University of Milan,
Crema, Italy.

References

[1] L. Northrop et al., “Ultra-Large-Scale Systems:
The Software Challenge of the Future,” Carnegie
Mellon Software Engineering Institute, Ultra-
Large-Scale Systems Study Report, 2006.

ISeCure

20 Access Control in Ultra-Large-Scale Systems — S. Shokrollahi, F. Shams, and J. Esmaeili

[2] D. Bell and L. LaPadula, “Secure computer sys-
tem: Unified exposition and multics interpreta-
tion,” Technical Report ESD-TR-75-306, The
Mitre Corporation, March 1976.

[3] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman,
“Protection in Operating Systems,” Communica-
tions of ACM, vol.19, no.8, pp.461-471, ACM,
1976.

[4] D. Ferraiolo and R. Kuhn, “Role-Based Access
Control,” In Proceedings of 15th NIST-NCSC
National Computer Security Conference, pp. 554-
563, Baltimore, MD: ACM, 1992.

[5] R.S. Sandhu, E.J. Coyne, H.L. Feinstein and
C.E.Youman, “Role-based Access Control Mod-
els,” IEEE Computer, vol. 29, no. 2, pp. 38-47,
IEEE 1996.

[6] A.R. Khan, “Access control in cloud computing
Environment,” ARPN Journal of Engineering
and Applied Science, vol.7, no.5, pp 613- 615, PK:
ARPN, May 2012.

[7] B. Lang, I. Foster, F. Siebenlist, R. Ananthakr-
ishnan, and T. Freeman, “Attribute based access
control for grid computing,” Math. Comput. Sci.
(MCS) Div., Argonne Nat. Lab., Argonne, IL,
Preprint ANL/MCS-P1367-0806, August 2006.

[8] T. Priebe, W. Dobmeier, and N. Kamprath, “Sup-
porting Attribute-based Access Control in Au-
thorization and Authentication Infrastructures
with Ontologies,” Journal of Software, vol.2, no.1,
pp.27-38, Academy Publisher, February 2007.

[9] S. Verma, S. Kumar, and M. Singh, “Comparative
analysis of Role Base and Attribute Base Access
Control Model in Semantic Web,” International
Journal of Computer Applications, vol.46, no.18,
pp.1-6, USA: FCS, May 2012.

[10] Feng Liang, Haoming Guo, Shengwei Yi, and Shi-
long Ma, “A Multiple-Policy supported Attribute-
Based Access Control Architecture within Large-
scale Device Collaboration Systems,” Journal of
Networks, vol.7, no.3, pp.524-531, Academy Pub-
lisher, March 2012.

[11] Tom Goovaerts, Lieven Desmet, and Wouter
Joosen, “Scalable Authorization Middleware for
Service Oriented Architectures,” In Proceedings
of the Third international conference on Engi-
neering secure software and systems (ESSoS’11),
February 2011, Springer-Verlag, pp.221-233.

[12] S. Singh, K. Singh, and H. Kaur, “Design and
Evaluation of Policy Based Authorization Model
for large scale Distributed Systems,” Interna-
tional Journal of Computer Science and Network
Security (IJCSNS), vol.9, no.11, pp.49-55. Nov
2009.

[13] E. Damiani, S. De Capitani di Vimercati, and P.
Samarati, “New Paradigms for Access Control in
Open Environments,” In Proceeding of 5th IEEE

International Symposium on Signal Processing
and Information, 2005, Greece:IEEE, pp. 540-
545.

[14] S. De Capitani di Vimercati, S. Foresti, S. Jajo-
dia, and P. Samarati, “Access Control Policies
and Languages,” International Journal of Com-
putational Science and Engineering (IJCSE), vol.
3, n. 2, pp. 94-102, Inderscience Publishers, 2007.

[15] Object Management Group (OMG), “Data Dis-
tribution Service for Real-Time Systems Specifi-
cation,” March 2004.

[16] R. Joshi, “Data oriented Architecture: A loosely
Coupled Real time SOA,” Real-Time Innovations,
Inc, CA, Tech. Rep. Aug 2007.

[17] R.Joshi, “Data-Centric Invocable Services: A
Core Design Pattern for Building Scalable Dis-
tributed Real-Time Systems,” In Proceedings of
the 2012 IEEE 15th International Symposium on
Object/Component/Service-Oriented Real-Time
Distributed Computing, Dec 2012, IEEE Com-
puter Society, pp.1-7.

[18] Q. Wei, M. Ripeanu, and K. Beznosov, “Autho-
rization Using the Publish-Subscribe Model,” In
Proceedings of IEEE International Symposium
on Parallel and Distributed Processing with Ap-
plications (ISPA 2008), , December 2008, NSW,
IEEE, pp.53-61.

[19] J. Bacon, K. Moody, and W. Yao, “Access control
and trust in the use of widely distributed services,”
In Middleware 2001, Lecture Notes in Computer
Science 2218, pp. 295-310, Springer, November
2001.

[20] J. Bacon, K. Moody, and W. Yao, “A Model of
OASIS Role-Based Access Control and its Sup-
port for Active Security,” ACM Transactions
on Information and System Security (TISSEC),
vol.5, no.4, pp.492-540, USA: ACM, Noveber
2002.

[21] L. I. Pesonen, D. M. Eyers, and J. Bacon, “Ac-
cess control in decentralised publish/subscribe
systems,” Journal of Networks, vol.2, no.2, pp.57-
67, Academy Publisher, 2007.

[22] E. Yuan, J.Tong, “Attribute Based Access Con-
trol (ABAC) for Web Services,” In Proceeding of
IEEE Conference on Web Services (ICWS 2005),
2005, IEEE, pp.561-569.

[23] A. Belokosztolszki, D. M. Eyers, P. R. Pietzuch,
J. Bacon, and K. Moody, “Role-based access con-
trol for publish/subscribe middleware architec-
tures,” In Proceeding of international workshop
on Distributed event-based systems, 2003, USA:
ACM, pp.1-8.

[24] J. Bacon, D. M. Eyers, J. Singh, and P. R. Piet-
zuch, “Access control in publish/subscribe sys-
tems,” In Proceeding of 2nd International. Confer-
ence on Distributed event-based systems (DEBS),

ISeCure

January 2014, Volume 6, Number 1 (pp. 3–22) 21

2008, USA: ACM, pp.23-34.
[25] J. Bacon ,D. M.Eyers, K. Moody, and L. Pesonen,

“Securing publish/subscribe for multi-domain sys-
tems,” In Proceeding of 6th International Middle-
ware Conference, vol.3790, 2005, Springer, pp.1-
20.

[26] N. Wang , D. Schmidt, H. Hag, and A. Corsaro,
“Toward an adaptive data distribution service for
dynamic large-scale network-centric operation
and warfare (NCOW) systems,” In Proceedings
IEEE Military Communications (MILCOM’8),
2008, IEEE, pp.1-7.

[27] Jose M. Lopez-Vega, Javier Povedano-Molina,
Gerardo Pardo-Castellote, Juan M. Lpez-Soler,
“A content-aware bridging service for publish/-
subscribe environments,” Journal of Systems and
Software, vol.86, no.1, pp.108-124, Elsevier, 2013.

[28] RTI, “Real-Time Innovations (RTI) DDS Data
Distribution Service”, http://www.rti.com/.

[29] Sung Yoon Chae, Sinae Ahn, Kyungran Kang,
Jaehyuk Kim, Soohyung Lee, and Won-tae Kim,
“Fast Discovery Scheme Using DHT-Like Overlay
Network for a Large-Scale DDS,” In Proceedings
of FGIT-CA/CES3, 2011, Springer, pp. 128-137.

[30] Y.H. Long, Z.H. Tang, and X. Liu, “Attribute
mapping for cross-domain access control,” In Pro-
ceedings of Computer and Information Applica-
tion (ICCIA), 2010, IEEE, pp. 343-347.

[31] OASIS. extensible access control markup
language (xacml) version 3.0. Tech-
nical report, OASIS Standard, 2010.
http://docs.oasis-open.org/xacml/3.0/

xacml-3.0-core-spec-cs-01-en.pdf.
[32] C. Ardagna, S. De Capitani di Vimercati, S. Para-

boschi, E. Pedrini, P. Samarati, and M. Verdic-
chio, “Expressive and Deployable Access Control
in Open Web Service Applications,” IEEE Trans-
actions on Service Computing (TSC), vol. 4, n.
2, pp. 96-109, IEEE, April-June 2011.

[33] P. Bonatti, S. De Capitani di Vimercati, and P.
Samarati, “An Algebra for Composing Access
Control Policies,” ACM Transactions on Infor-
mation and System Security (TISSEC), vol. 5, n.
1, pp. 1-35, ACM, February 2002.

[34] N. Li, Q. Wang, W. Qardaji, E. Bertino, P. Rao,
J. Lobo, and D. Lin, “Access Control Policy Com-
bining: Theory Meets Practice,” In Proceeding of
14th ACM Symposium on Access Control Models
and Technologies, 2009, ACM, pp. 135-144.

[35] W.M.P. van der Aalst and C. Stahl, Modeling
Business Processes - A Petri Net-Oriented Ap-
proach, Cambridge, MA: MIT press, 2011.

[36] K. Jensen, L.M. Kristensen, and L. Wells,
“Coloured Petri Nets and CPN Tools for Mod-
elling and Validation of Concurrent Systems,” In-
ternational Journal on Software Tools for Tech-

nology Transfer (STTT), vol.3, no.4, pp. 213-254,
Springer, 2007.

[37] CPN Tools, http://cpntools.org/.
[38] D.Fahland and C.Gierds, “Analyzing and Com-

pleting Middleware Designs for Enterprise Inte-
gration Using Coloured Petri Nets,” In Proceed-
ings of Conference on Advanced Information Sys-
tems Engineering (CAiSE 2013), 2013, Springer
Berlin Heidelberg, pp.400-416.

[39] L. Abidi, C. Crin, and S. Evangelista, “A Petri-
Net Model for the Publish-Subscribe Paradigm
and Its Application for the Verification of the Bon-
jourGrid Middleware,” In Proceedings of IEEE
Services Computing (SCC), 2011, IEEE, pp.496-
503.

[40] “RTI Data Distribution Service”, http://www.
rti.com/products/dds/.

[41] RTI. Connext DDS. http://www.rti.com/

products/dds/ benchmarks- cpp-linux-

scalability.html.

Saeed Shokrollahi is a Ph.D. can-
didate at Computer Engineering De-
partment of Shahid Beheshti Uni-
versity, Tehran, Iran. He spent his
sabbatical leave at “Security, Pri-
vacy, and Data Protection Labora-
tory”, Computer Science Department
of University of Milan, Crema, Italy.

His current research interests are Information Security
and Access Control, Ultra-large-scale Systems, Event-
driven Middleware, Software Architecture, Software
Testing, and Model Verification Using Colored Petri
Nets.

Fereidoon Shams is an associate
professor of Computer Engineering
Department at Shahid Beheshti Uni-
versity, Tehran, Iran. He received his
Ph.D. in Software Engineering from
Department of Computer Science,
Manchester University, England and

his M.S. from Sharif University of Technology, Tehran,
Iran. He is the heading of two research groups namely
ASER (Automated Software Engineering Research)
and ISA (Information Systems Architecture) at Shahid
Beheshti University. His current research interests are
Software Architecture, Enterprise Architecture, Ser-
vice Driven Architecture, Agile Methodologies, Ultra-
Large-Scale Systems, Ontological Engineering and Se-
curity.

ISeCure

http://www.rti.com/
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.pdf
http://cpntools.org/
http://www.rti.com/products/dds/
http://www.rti.com/products/dds/
http://www.rti.com/products/dds/ benchmarks- cpp-linux-scalability.html
http://www.rti.com/products/dds/ benchmarks- cpp-linux-scalability.html
http://www.rti.com/products/dds/ benchmarks- cpp-linux-scalability.html

22 Access Control in Ultra-Large-Scale Systems — S. Shokrollahi, F. Shams, and J. Esmaeili

Javad Esmaeili is an assistant pro-
fessor at the Department of Com-
puter Engineering at Shahid Beheshti
University, Tehran, Iran. He received
his Ph.D. degree in Parallel Process-
ing, Design and Implementation of
Functional Languages, from Univer-
sity of Salford, Greater Manchester,

England. He is a member of Computer Society of Iran.
His current research interests are Distributed and
Parallel Processing, System Analysis, Design and Im-
plementation of Programming Languages, E-banking,
Security and Access Control.

ISeCure

	1 Introduction
	2 Related Work
	3 Background
	3.1 Data Distribution Service Middleware
	3.2 OASIS

	4 The Proposed Access Control Middleware
	4.1 Administration of Authorization Components
	4.2 Enforcing Access Control Policies
	4.3 Logging of Instances

	5 An Executable Model of the AC Middleware
	6 Performance Analysis
	7 Conclusion and Future Work
	8 Acknowledgment

