
ISeCure
The ISC Int'l Journal of
Information Security

January 2024, Volume 16, Number 1 (pp. 55–77)

http://www.isecure-journal.org

Artificial Intelligence and Dynamic Analysis-Based Web

Application Vulnerability Scanner

Mehmet Ali Yalçınkaya 1,∗ and Ecir Uğur Küçüksille 2

1Computer Engineering Department, Kırşehir Ahi Evran University, Kırşehir, Turkey
2Computer Engineering Department, Süleyman Demirel University, Isparta, Turkey

A R T I C L E I N F O.

Article history:

Received: October 30, 2022

Revised: July 25, 2023

Accepted: August 7, 2023

Published Online: November 20, 2023

Keywords:
Data Mining, Machine Learning,
Web Application Penetration Tests,

Web Application Vulnerabilities

Type: Research Article

doi: 10.22042/isecure.2023.

367746.847

dor: 20.1001.1.20082045.2024.

16.1.4.8

A B S T R A C T

The widespread use of web applications and running on sensitive data has

made them one of the most significant targets of cyber attackers. One of the

most crucial security measures that can be taken is detecting and closing

vulnerabilities on web applications before attackers. This study developed a

web application vulnerability scanner based on dynamic analysis and artificial

intelligence, which could test web applications using GET and POST methods

and had test classes for 21 different vulnerability types. The developed

vulnerability scanner was tested on a web application test laboratory, created

within this study’s scope and had 262 different web applications. A data set

was created from the tests performed using the developed vulnerability scanner.

In this study, web page classification was made using the mentioned data set

as a first stage. The highest success rate in the page classification process

was determined by 95.39% using the Random Forest Algorithm. The second

operation performed using the dataset was the association analysis between

vulnerabilities. The proposed model saved 21% more time than the standard

scanning model. The page classification process was also used in crawling the

web application in this study.

© 2024 ISC. All rights reserved.

1 Introduction

Nowadays, users can perform many operations,
such as shopping, research, file transfer, and com-

munication with social media using web applications.
Such widespread use of web applications and the pro-
cessing of very sensitive data using these applications
have made them the number one target of cyber at-
tackers.

Security breach reports informed by various orga-
nizations emphasize the significance of ensuring the

∗ Corresponding author.

Email addresses: mehmetyalcinkaya@ahievran.edu.tr,
ecirkucuksille@sdu.edu.tr

ISSN: 2008-2045 © 2024 ISC. All rights reserved.

security of web applications. According to Verizon’s
research report, 73% of security incidents in 2022
were due to attacks on web applications. When the re-
port is examined, most attacks after web applications
have been carried out to users’ emails using phishing.
Nevertheless, this attack rate is about 35%. When
these results are examined, it is seen that the target-
ing rate of web applications is almost twice that of
emails. [1]. According to the 2022 report published
by the ITRC, data of 422,143,312 users were stolen
due to attacks on various websites last year. The rea-
son for such high rates of attacks is various security
vulnerabilities in the developed web applications [2].

One of the methods used to identify security vulner-
abilities in a web application is the dynamic analysis

ISeCure



56 AI and Dynamic Analysis-Based Web Application Vulnerability Scanner — Yalçınkaya and Küçüksille

method. In the dynamic analysis method, harmful
inputs are sent to a web application that is actively
serving, the application’s response is analyzed, and
security vulnerabilities are identified according to the
responses obtained [3]. Since detecting vulnerabili-
ties on a web application with the dynamic analysis
method takes a very long time, and there is the possi-
bility of overlooking the pages and points that should
be tested, automated web application vulnerability
scanners have gained significant importance.

In this study, a dynamic analysis and artificial
intelligence-based web application vulnerability scan-
ner named Sansar was developed. Sansar performs a
classification process in the web application crawling
and testing the vulnerabilities. The following chrono-
logical order was followed in the development of the
Sansar. The first version of Sansar, which had crawl-
ing and vulnerability scanning modules and did not
have artificial intelligence, was developed. While col-
lecting URL addresses from the page HTML codes,
the crawling module of first Sansar filled in the form
and input fields on the web pages with default values
and enabled the page to pass to the next stage. The
mentioned tool also could test 21 different vulnerabil-
ities, including vulnerabilities such as SQL injection,
XSS, and LFI.

Then, to test the adequacy of Sansar, 250 different
web applications developed in ASP and PHP pro-
gramming languages were installed on both the local
and remote servers. With the establishment of dif-
ferent types of web applications, such as shopping,
news, sports, school automation, hospital automa-
tion, and library automation, which have been put
into use by their developers on repositories such as
Github, Gitlab, and Sourceforge, the broadest and
most diverse web application penetration testing lab-
oratory in the literature has been established. The
Sansar tool also included a feature extraction module
that allowed recording various data on the web page,
form, and input where the vulnerability was tested.
With this module, various features belonging to se-
curity vulnerabilities detected in web applications in
the laboratory mentioned in the previous paragraph
were recorded, and a data set was created. To our
knowledge, the data set obtained from the data col-
lected within the scope of this study is again the first
in the literature on subjects such as features the data
set had, the number of samples, and the variety of
vulnerabilities.

Using the data set obtained in this study, firstly,
the page classification process was performed accord-
ing to the data obtained. The highest accuracy rate
was obtained from the Random Forest Algorithm,
with 95.39% in the tagging classification of page types.

Page classification was first used in the crawler mod-
ule. After this step, the page classification function
was added to Sansar. Page classification was first
used in the crawler module. During crawling, Sansar
classified the pages it visits. If the page is a “login
page,” it uses the valid username and password infor-
mation and successfully performs the login process.
This feature created a unique value that none of the
existing web application vulnerability scanners had.
Page classification was also used when associating
the detected vulnerabilities with the page types was
initiated. This stage corresponded to another original
part of this study. The association rules obtained us-
ing the Apriori algorithm on the dataset enabled the
establishment of an association between page types
and vulnerability types. Thanks to this developed
technique, the page type in question was determined
when Sansar performed a vulnerability test on a page.
Then, the tests that must be carried out ’primarily’
on the related page were conducted according to the
association rules.

The contributions of the presented study can be
summarized as follows:

• Sansar includes a comprehensive set of 21 dif-
ferent vulnerability testing modules.

• To our knowledge, this study established the
largest web application security laboratory doc-
umented in the literature.

• The uniqueness of the laboratory used for the
tests, along with the original vulnerability scan-
ner, allowed for the creating of a distinctive
dataset from the conducted tests. This original
dataset was utilized to establish relationships
between vulnerabilities and classify page types
through labelling.

• Also, association analysis was applied for the
first time to determine the relationships be-
tween web application vulnerabilities.

• Additionally, for the first time, this study con-
ducted the process of directly detecting login
pages in web applications without any input
from the user.

• The findings indicate that the newly developed
model offers a 21% speed improvement com-
pared to the standard scanning model.

In the second section of this study, a summary of the
related studies in the literature is presented. In the
third section of this study, web application security,
web application penetration tests, the random forest
algorithm, and the Apriori algorithm, which form the
basis of the present study, were addressed. The fourth
section discusses the modules belonging to the devel-
oped web application vulnerability scanner, the per-
formed page classification, and association analysis

ISeCure



January 2024, Volume 16, Number 1 (pp. 55–77) 57

processes. In the fifth section, the evaluation of this
study and the tool developed was performed by com-
paring them with previous studies in the literature.

2 Related Work

When we review the studies in the field of web ap-
plication vulnerability scanners in the literature, it
has been seen that the studies have mostly focused
on detecting specific vulnerabilities. The main vul-
nerability scanners in the literature and the types of
vulnerabilities they can detect are shown in Table 1
below.

When the page classification processes in the lit-
erature are examined, it is observed that web pages
have been classified into seven different categories,
such as art, technology, engineering, and health, in a
study conducted in 2017 [15]. As mentioned earlier,
seven different classification algorithms were tested
in the study, and the highest 92% accuracy rate was
achieved. Another study on page classification was
conducted in 2015 [16]. In this study, web pages were
classified using words and word sets in HTML tags,
and an 80% accuracy rate on average was achieved.
In the study conducted in 2012 [17], the classification
process was performed using the SVM, KNN, and
GIS algorithms on the data set formed from pages
collected from a news site. The highest success rate
was obtained at 84% in the study in question. In
Klassen’s [18] study, search forms were classified us-
ing text data in HTML tags. A 91% success rate was
achieved in the classification process performed using
artificial neural networks. Rui and Horovitz used an
artificial neural network to classify HTML forms and
achieved a 94.7% success rate [19].

Sansar’s contribution to the literature: It uses arti-
ficial intelligence in vulnerability tests and crawling
steps. When Sansar visits a page for testing or crawl-
ing, it first classifies the page and then acts according
to the classification result. It is the only known vul-
nerability scanner in the literature with this function.

3 Materials And Methods

This section examined web application vulnerabilities,
the dynamic analysis method, the Random Forest
Algorithm, and the Apriori Algorithm, which formed
this study’s outlines.

3.1 Web Application Security

Nowadays, web applications consist of HTML content
that runs in a static or dynamic structure. In static
web applications, any queries are not executed in the
database according to the inputs received from the
user. These web applications are generally used for
promotion and information delivery, and the content

of which does not change according to user prefer-
ences [20].

Dynamic web applications are web applications
whose content and behaviour change according to user
requests. In dynamic web applications, the inputs re-
ceived from users are interpreted by the web server
and added to the queries run on the database server.
The user-oriented flexible operation of dynamic web
applications also brings about many security vulner-
abilities. Nowadays, the vast majority of web appli-
cation vulnerabilities arise because the input state-
ments given to the web application by the user do
not pass through any control or supervision. A list of
the most critical vulnerabilities in web applications
is published by OWASP [21]. The web application
vulnerability scanner developed within the scope of
this study tests 21 different web vulnerabilities dy-
namically using the GET and POST methods. These
vulnerabilities are as follows:

• SQL Injection (Error-Based, Time-Based,
HTTP Header-Based)

• Cross-site scripting (XSS)
• HTML injection
• Bash command injection (Shellshock)
• LDAP injection
• PHP code injection
• OS command injection
• File injection vulnerabilities (LFI, RFI)
• XPATH injection
• SSI injection
• Server-side template injection
• Directory traversal (for Linux and Windows

Systems)
• CRLF injection
• Buffer overflow
• Open redirect
• XML External Entity (XEE)
• Cross-Site Tracing (XST)

3.2 Web Application Penetration Tests

Detecting vulnerabilities in a web application was
carried out by two methods: static and dynamic anal-
ysis. In the static analysis, also known as the white
box analysis method, the source code of the web ap-
plication is examined, and all program branchings
are tried to detect possible security vulnerabilities.
However, the disadvantage of static code analysis is
that it remains insufficient in determining security
vulnerabilities that can only be detected during the
execution of the application. Besides, since the soft-
ware development process is a cycle, the static analy-
sis method remains insufficient in this cycle.

Another method used to detect vulnerabilities in
web applications is dynamic analysis, also known as

ISeCure



58 AI and Dynamic Analysis-Based Web Application Vulnerability Scanner — Yalçınkaya and Küçüksille

Table 1. The current studies on web application vulnerability scanners

Studies The Name of Developed Tool Vulnerabilities it can Detect

Kals et al. [4] Secubat SQL Injection (SQLi), Cross Site Scripting (XSS)

Kosuga et al. [5] SANIA SQL Injection (SQLi)

Halfond [6] SDAPT SQL Injection (SQLi)

Artunes and Vieira [7] - SQL Injection (SQLi)

Chen and Wu [8] - SQL Injection (SQLi), Cross Site Scripting (XSS)

Galan et al. [9] - Cross Site Scripting (XSS)

Ali et al. [10] MySQLlInjector SQL Injection (SQLi)

Singh and Roy [11] NVS SQL Injection (SQLi)

Djuric [12] SQLIVDT SQL Injection (SQLi)

Lee et al. [13] Link Cross Site Scripting (XSS)

Xiaopeng and Di [14] -

SQL Injection (SQLi), Cross Site Scripting (XSS),

Local and Remote File Inclusion (LFI- RFI),
Cross Site Request Forgery (CSRF)

black-box analysis. In the dynamic analysis method,
harmful inputs are sent to a web application, which
is actively serving, the application’s response is an-
alyzed, and security vulnerabilities are detected ac-
cording to the obtained responses. Since the results
obtained with the dynamic analysis method are pro-
duced based on the runtime behaviours of the appli-
cation, they are more reliable than the static analysis
method, which produces a high rate of false-positive
results. Furthermore, since all possible areas of the ap-
plication cannot be tested, fewer results may emerge
compared to the static analysis [3].

The first process to be performed in the dynamic
analysis-based web application penetration test to
detect vulnerabilities in a web application is to deter-
mine the scope of the test. In some cases, it is desired
to test only the home page, which is the most fre-
quently visited place by users, while in some cases, it
is desired to test only subdomains. To perform a full
web application penetration test, including all web
pages belonging to the application in the scope will
provide the most reliable results.

Another issue that should be determined in web
application penetration tests is whether to use the
HTTP GET method over the URL in the tests, the
HTTP POST method through the forms in the pages,
or both them. In the tests carried out over the URL,
the parameters within the URL address are targeted.

• https://www.teztest.com/sales.html?
product=computer

When the URL address shown above was exam-
ined, it was observed that the computer value was
assigned to the product parameter, and the content
displayed on the page was shaped according to this

assignment. In the tests to be carried out over the
URL, the product parameter should be taken as a
target, and by assigning payloads that will trigger
various vulnerabilities to that parameter, the page’s
response should be measured. For example, the URL
can be changed through the relevant parameter to
check if the page has SQL injection vulnerability.

• https://www.teztest.com/sales.html?
product=1 ’ OR ’ 1 ’ = ’ 1

In this case, if the statement 1 ’ OR ’ 1 ’ = ’
1 assigned by the user to the relevant parameter is
sent to the database server without any filtering to
be added to the query, an SQL injection vulnerability
will be detected.

Nowadays, URL rewrite engines make complex
URL addresses clearer for search engines and users.
Another purpose of this process is to prevent the un-
derstanding of the site’s internal process and query
logic. An example of a URL simplified by the URL
rewrite technique is presented below.

• https://www.teztest.com/sales.html?
product=computer

• https://www.teztest.com/sales.html/computer/

In testing, URL addresses are simplified by the
URL rewrite technique; it is placed between the test
payloads/characters. As mentioned earlier, the URL
testing that addresses the SQL injection vulnerability
should be administered as follows.

• https://www.teztest.com/sales.html /1 ’ OR ’
1 ’= ’ 1/

When a request is made to the URL address presented
above, the rewrite engine will parse the components
in the URL and use them in the query process. As in

ISeCure



January 2024, Volume 16, Number 1 (pp. 55–77) 59

the previous example, the web page containing SQL
injection will react to the related payload.

Another attack vector used in web application pene-
tration tests is input; in other words, user input fields
are present in forms on web pages. The process to
be carried out while performing penetration tests on
web applications is to test the application’s reaction
by entering harmful payloads that will trigger vari-
ous vulnerabilities into each input field on the page.
Each form element should be addressed separately in
the tests to be performed on forms. Thus, it can be
observed in which element there is vulnerability.

3.3 Random Forest Algorithm

The random forest algorithm is a supervised machine
learning algorithm. As the name implies, a random
forest, a collection of trained decision trees, is created
in the random forest algorithm. In the random forest
algorithm, the results from different learning models
are combined to obtain a more accurate and stable
prediction. The algorithm in question is a bagging
version to which the randomness feature is added and
which is improved. Instead of choosing the best branch
among all the available variables, the random forest
algorithm divides each node into branches using the
best one among randomly selected variables in each
node. All datasets in the random forest algorithm
are produced by replacing the original dataset. After
producing data sets, trees are developed by selecting
a random feature. Given that the developed trees
are not pruned, it increases the accuracy rate of the
random forest algorithm. Another advantage of the
random forest algorithm is that it is a high-speed
algorithm [22].

The user was first asked to define two parameters
to run the random forest algorithm. These variables
were m, which represented the number of variables
to be used in each section, and N, which represented
the total number of trees to be developed. The first
step after this process was to determine the training
and test sets. From the data set used, n samples were
selected by the bootstrap method. Of each sampling
data selected, 2/3 was used to create trees. This part
is called the training set, also known as the inbag.
The remaining 1/3 of the sampling data is the test
set for calculating the error rate. The test set is also
called out-of-bag.

Among the variables randomly selected from the
created training set, the variable with the highest
information gain is used as a branching variable. This
method is known in the literature as the classification
and regression tree (CART) algorithm. The formula
used to determine the information gain is presented
in Equation 1.

InformationGainV alue(D,X) =

E(D)−
n∑
i

p(Di)E(Di)
(1)

The components of Equation 1 refer to are listed
below;

• X=The variable to be divided,
• D=Subsets belonging to the feature to be di-
vided,

• E(D)=Entropy value before division according
to variable X,

• E(Di)=Entropy value of the i-th subset after
division according to variable X.

The threshold value required for branching in the
random forest algorithm is determined with the Gini
index. The described processes were repeated in the
random forest algorithm until the terminal node was
obtained.

In the random forest algorithm, the estimates
formed from n samples and produced by n trees are
combined to estimate which class a new datum be-
longed to. The class with the most votes at the end
of the combination becomes the class estimated for
the data. The error rate of the test set determined
this vote.

This algorithm calculated the error rate by apply-
ing the test data set on each tree created using the
training data set. This error rate was calculated de-
pending on the error rate of each tree in the forest
and the correlation between them. In the developed
model, the error rate obtained was low since the data
and variables differed in each tree. As the error rate
obtained decreases, the performance of the classifica-
tion algorithm used increases [23].

When the random forest algorithm is used as a
classification model for many data sets, it provides
more precise results than the Adaboost and Support
Vector Machine algorithms. Furthermore, the algo-
rithm in question gives results in a very short time.
Another advantage of the random forest algorithm is
that it produces results with high accuracy, even in
data sets with an unbalanced distribution containing
thousands of variables and many class tags [24].

3.4 Apriori Algorithm

Although various algorithms have been proposed in
the literature to create association rules, the most
famous and widely used algorithm is the Apriori al-
gorithm [25]. The Apriori algorithm is an associa-
tion inference algorithm developed by Agrawal and
Srikant in 1994. The term apriori, the algorithm’s

ISeCure



60 AI and Dynamic Analysis-Based Web Application Vulnerability Scanner — Yalçınkaya and Küçüksille

name, comes from the expression of “previous” -
“prior” since the algorithm uses the a priori knowledge
of common cluster elements. In other words, it takes
the knowledge from the previous step [26].

According to the basic logic of the Apriori algo-
rithm, if the k-item set exceeds the specified mini-
mum support threshold, the subsets of that set also
provide the related minimum threshold value. The
set expression mentioned in this expression consists
of one or more elements. The k-item set’s expression
means the set contains k elements [27].

The concepts of support and confidence explain
each of the rules obtained after executing the apriori
algorithm on data, namely the association rule be-
tween the elements. The support expression means
the frequency of association between items due to the
rule. The confidence expression refers to the accuracy
of the association between the two items [28].

An example will be given to understand the Apri-
ori algorithm’s working logic. A and B are different
products sold in a market. The support threshold for
product A is the ratio of baskets from which product
A is purchased to all baskets. The support value for
product A is shown in Equation 2:

Support(A) =

NumberOfBasketsContainingProductA

NumberOfAllBaskets
(2)

The support threshold for products A and B was
calculated as the ratio of the number of baskets from
which both products were bought together to the total
number of baskets. The calculation of this support
value is shown in Equation 3:

Support(A,B) =

NumberOfBasketsContainingProductsAandB

NumberOfAllBaskets
(3)

The probability that product B will be in the basket
from which product A is bought is expressed with the
confidence value. This confidence value can be calcu-
lated using one of the processes in Equation 4 or 5.

Confidence(A,B) =

NumberOfBasketsContainingProductsAandB

NumberofallbasketscontainingproductA
(4)

Confidence(A,B) =
Support(A,B)

Support(A)
(5)

While conducting an association analysis on the
data with the Apriori algorithm, the user was first
asked to enter the support and confidence threshold

to determine the validity of the rules to be obtained.
For the association between the two products to be
significant, both support and confidence criteria must
be high. Determining a high support threshold will
make the algorithm run faster while at the same time
causing a decrease in the number of rules obtained.
For example, not buying the same number of products
during shopping will result in the inability to obtain
the association rule regarding these products when
combined with a high support threshold. A researcher
who wants to obtain an association rule for each
product should lower the support threshold and filter
the results according to the high confidence value.

4 The Structure of Web Application
Security Scanner- Sansar

Sansar web application vulnerability scanner was
developed in the PyCharm environment, using the
Python programming language, as a console-based.
Under this heading, the modules of Sansar will be
discussed first. Then, the development of the web
penetration test laboratory and the data set creation
will be mentioned. After explaining the page classi-
fication process and association analysis processes
performed on the data set obtained, the integration
of these processes into Sansar will be mentioned.

4.1 Crawler Module

The developed web application vulnerability scanner
used three different methods to extend the scope of
the tests to be performed as follows:

(1) Subdomain collection process using search en-
gines

(2) Determination of hidden URL addresses with
the brute force method

(3) Browsing the whole web application using the
links and forms given on the page

Within this study’s scope, the “domain” operator
of the Bing search engine was used to collect the
subdomain addresses of a domain address. To explain
with an example, when the search was performed as
“domain: sdu.edu.tr” in the Bing search engine, it was
observed that records belonging to subdomains of
“sdu.edu.tr” returned. The URL address generated at
the end of the search is as follows.:

• https://www.bing.com/search?
q=domain%3Asdu.edu.tr&first=10

The developed tool sends a request by adding the
scanned domain address to the dark part of the URL
address above and collects the sub-domain addresses
from the response page. The process continues by
moving to the next page with the “first” variable in
the URL pattern. The process in question will con-

ISeCure



January 2024, Volume 16, Number 1 (pp. 55–77) 61

Figure 1. The algorithm followed in determining URL ad-

dresses from the page source

tinue until no more results are displayed. Pages, such
as robots.txt or admin panels, hidden by application
developers, are significant for attackers.

A module was added to Sansar’s crawler module
that detected hidden pages not linked in the site
by brute force technique. The module in question
added the URL extensions. It takes from a dictionary
to the end of the domain and subdomain addresses
obtained from the web application and creates a new
URL address. The tool then tried to detect hidden
addresses by testing whether the new URL address
it had created was valid.

Another method that the crawler module used to
collect the web application addresses was the URL
addresses detected on the page sources and the forms
on the page. The algorithm followed in this process is
shown in Figure 1. The developed tool started crawl-
ing first by visiting the URL address sent to it. Then,
“script,” “iframe,” “a,” “frame,” “iframe,” “button,”
and “meta” HTML tags included in the page source
to the visited URL are extracted. After this step, URL
addresses assigned to the “src,” “href,” “action,” and
“help-equiv” fields included in the mentioned tags were
collected. The collected URL addresses were added to

the list of URL addresses to be visited after checking
whether they belong to the page domain navigated.
Afterwards, the developed tool detects the forms on
the visited web page. After the forms on the web
page were detected, each was submitted by filling in
the default values by the tool. Thus, if a redirection
process were performed after submitting the form in
the web application, that URL address would also be
added to the list. Thanks to all the components it
included, the developed crawler module produces a
completed list of URLs.

4.2 Vulnerability Test Module

A list containing URL addresses collected by the
crawler module is taken as a parameter by the test
module of Sansar. The developed module performs
vulnerability scanning on all URL addresses in the
said list through HTTP GET and POST methods.
The test module uses 21 different vulnerability test
classes, as mentioned earlier.

Among the vulnerability test classes developed
within the scope of this study, there are the following
methods:

• a constructor method
• a method called get, which enables testing over
GET

• a method called a post, which enables testing
over POST

• a method named login process, which goes to
the login page and performs the login process
again in the case of a session break

Thanks to this structure created, when a new web
vulnerability test class is added to the application, it
will be sufficient to determine the payload list that
will trigger the vulnerability in question and to de-
termine the reaction (e.g., error messages and late
viewing) that the application will give if the vulner-
ability is triggered. The operation steps of the test
class belonging to the error-based SQL injection class
from the created test classes are shown in Table 2.

When Sansar detected vulnerability while scanning
a web page, various feature data belonging to the
web page on which the vulnerability was detected,
form, and inputs were collected. A unique dataset
was created due to the collection of these data for
the detected vulnerability. This data set was used
in the following sections of this study to perform
page classification and association analysis between
vulnerabilities.

In the extraction of the features of the page with
vulnerability, firstly, the Wappalyzer library was used.
The Wappalyzer library methods were developed to
obtain the feature values of the page, form, and input.

ISeCure



62 AI and Dynamic Analysis-Based Web Application Vulnerability Scanner — Yalçınkaya and Küçüksille

Table 2. The functioning of the test class of error-based SQL injection vulnerability

No Testing steps of error-based SQL vulnerability

1
The values of the URL, session, login page address, username, and password sent as parameters are assigned to the

class variables.

2
The GET and POST methods are run according to the user’s request. (Since the operation logic of both methods is
the same, it will be explained as a single process.).

3
It has tried to reach the page to be tested. If the page which is desired to be accessed directs the user to the login
page, test processes are started by logging in.

4 SQL injection payloads are taken from the Payloads.py file.

5 The list of errors likely to be displayed as a result of injection is taken from the Errors folder.

6
The payloads taken are injected into the URL patterns prepared by the ’getParser’ method if the GET method is
run and into the POST patterns prepared by the ’FormScraper’ method if the POST method is run.

7 The request is sent by using the created URL or POST patterns.

8 It is checked whether error messages prove vulnerability in the response corresponding to the sent request.

9
If an error message is encountered in the returned response, data, such as the name of the vulnerability, its address,

and the session, are sent to the feature extraction module.

10 The features sent from the feature extraction module are sent to the reporting class.

After running all the developed methods, 70 features
belonging to the page, form, and input where web
vulnerability was detected were obtained. The list of
the features collected by the developed tool is shown
in Table 3.

When vulnerability is detected on the tested web
page, after extracting the features shown in Table 3,
the collected feature data are sent to the reporting
module to add to the test report. When the test
processes were completed, the reporting module sent
the data together and wrote them into an Excel file.

4.3 Creation of the Web Application
Penetration Testing Laboratory and
Realization of the Test Processes

A web application penetration testing laboratory had
to be established to measure Sansar’s adequacy in
testing vulnerabilities during the development and to
form a data set by collecting data with the tests to
be performed after the development. Thanks to the
created laboratory, web applications can be tested
with different types of structures prepared for differ-
ent purposes. PHP and ASP-based web applications
were used in the web application penetration test-
ing laboratory created within the scope of this study.
Web applications used to create the laboratory are
open-source projects developers share on the Github,
Gitlab, and Sourceforge platforms. There are 262 dif-
ferent web applications in total in the web laboratory.
Two hundred seven of these web applications are PHP-
based, and 55 of them are ASP-based web projects.
In this study, PHP-based projects were installed on
Apache and MYSQL servers in the XAMMP and
WAMP environments. IIS and MSSSQL were used

Figure 2. Scan reports of the tests performed

for the installation of ASP-based projects.

After the development of the Sansar and the com-
pletion of the web application penetration testing
laboratory, the vulnerability testing processes were
started. Vulnerability tests were completed by testing
all web applications installed in the laboratory. The
results of each test were recorded in an Excel file with
the day, month, year, hour, and minute information
of the completion date of the test. The screen image
showing some of the results obtained after the test
processes were performed is given in Figure 2. A data
set was created by combining the results obtained af-
ter the test. The obtained data set had a unique value
since it was created using a vulnerability scanner we
developed in a laboratory we have established.

4.4 Realization of Classification Processes
Using the Data Set Created

Before mentioning the classification studies conducted
using the data set created, it is necessary to mention
the data set used. There were 7781 samples, and 70
were attributed to each sample in the unique data

ISeCure



January 2024, Volume 16, Number 1 (pp. 55–77) 63

Table 3. Features collected by the vulnerability scanner

Feature Type Features

Wappalyzer library features

‘Payload’, ‘CMS’, ‘Message Boards’, ‘Database Managers’, ‘Documentation Tools’, ‘Widgets’, ‘Ecom-

merce’, ‘Hosting Panels’, ‘Javascript Frameworks’, ‘Comment Systems’, ‘Font Scripts’, ‘Web Frame-
works’, ‘Editors’, ‘LMS’, ‘Web Servers’, ‘Rich Text Editors’, ‘Javascript Graphics’, ‘Mobile Frame-

works’, ‘Programming Languages’, ‘Operating Systems’, ‘Search Engines’, ‘Web Mail’, ‘Marketing
Automation’, ‘Web Server Extensions’, ‘Databases’, ‘Payment Processors’, ‘Dev Tools’, ‘Live Chat’

Page features

‘description’, ‘keywords’, ‘generator’, ‘content-type’, ‘title’, ‘Num Of Forms’, ‘Num Of Inputs’, ‘Num
Of Password Areas’, ‘Num Of Search Areas’, ‘Num Of Select’, ‘Num Of Radio’, ‘Num Of Option’,

‘Num Of Checkbox’, ‘Num Of Text’, ‘Num Of Email’, ‘Num Of Text Areas’,’Num Of File’, ‘Num Of

Buttons’

Form features

‘Num Of Inputs In Vulnerable Form’,’ Types of Inputs In Vulnerable Form’, ‘Num Of Password Areas
In Vulnerable Form’, ‘Num Of Search Areas In Vulnerable Form’, ‘Num Of Text Areas In Vulnerable

Form’, ‘Num Of Select In Vulnerable Form’, ‘Num Of Radio In Vulnerable Form’, ‘Num Of Option
In Vulnerable Form’,‘Num Of Checkbox In Vulnerable Form’, ‘Num Of Buttons In Vulnerable Form’,
‘Action Of Form’, ‘Text of Form’

Input features ‘name’, ‘type’, ‘src’, ‘size’, ‘required’, ‘value’, ‘max’, ‘min’, ‘maxlength’, ‘accept’

Table 4. Sample numbers according to vulnerabilities in the
data set

Type of Vulnerability Number

Blind SQL Injection 1747

Buffer Overflow 46

Command Execution 1119

Header SQL Injection 58

Carriage Return and Line Feed 3

Directory Traversal 850

HTML Injection 352

Local File Injection 750

Open Redirect 360

PHP-Code Injection 952

Header Based Cross-Site Scripting 2

Remote File Inclusion 9

Shellshock 83

Error Based SQL Injection 596

Server-side Includes 166

Server-Side Template Injection 224

XML External Entity 2

Cross-Site Scripting (XSS) 462

set. The number of samples of vulnerability types in
the data set is shown in Table 4.

Web vulnerability may emerge at many points ac-
cording to the level of attention and knowledge of the
encoder, the way of using the data, and the versions
of other factors used, such as a server, media inter-
preter, and language. Rather than developing a model
that produces direct and precise predictions between
a vulnerability type and a page type, it would be

the most reasonable approach to determine the page
type and then list the vulnerability types that may
be encountered according to the page type. Through
scans carried out using such an approach, both pos-
sible vulnerability points due to the nature of web
vulnerabilities will be thoroughly tested, and vulner-
abilities that are less likely to be observed will not
be tested depending on the user’s request.

The classification processes carried out within the
scope of this study continued with the page-type clas-
sification process. In the page type classification pro-
cess, the URL addresses of each sample in the data
set were visited individually, and it was tagged which
type the page was. When deciding on the page tag
types, attention was paid to identifying the types com-
monly encountered on web pages and have different
characteristics from other page types. In this study,
eight different page types were determined under the
mentioned criteria. These are as follows:

• Login Page
• Register Page
• Search Page
• List Page
• Info Page
• Forgot Password Page
• Contact Us Page
• Submit Page

Tagging was done by the first author and verified
by the second author. After the tagging process on the
created data set, the sample numbers of the obtained
page types are shown in Table 5. The number of
pages of the Submit page type was high among the
tagged samples, and the reason for this was that all
the pages in the web applications that did not fall
into other categories but were processed by taking
user data were included in this group. There were

ISeCure



64 AI and Dynamic Analysis-Based Web Application Vulnerability Scanner — Yalçınkaya and Küçüksille

Table 5. The number of page types in the dataset after tagging

Page Type Number

Contact Us Page 249

Forgot Password Page 102

Info Page 799

List Page 353

Login Page 932

Register Page 1209

Search Page 440

Submit Page 3707

many form pages created for different purposes in
different applications. Since creating a different type
for each page in question was impossible, these pages
were included in the submit page.

After labelling, the required features for page clas-
sification were determined. The number of 70 features
included in the data set was reduced to 13 accord-
ing to various criteria, such as the effects of the fea-
tures on the classification result and the correlation
between features. The Weka program was used for
feature selection. During feature selection, CfsSub-
setEval is used as the attribute evaluator algorithm,
and BestFirst is used as the search method algorithm.
The features used in determining the page type in
this study are listed below:

• Number of Forms
• Number of Inputs
• Number of Password Areas
• Number of Search Areas
• Number of Select
• Number of Radio Buttons
• Number of Option
• Number of Checkbox
• Number of Email Area
• Number of Textarea
• Number of Text
• Number of File
• Number of Buttons

Each listed feature shows the number of input com-
ponents specified with its name on the web page to
be classified. In applying each classification algorithm
to the data set, the Pandas, NumPy, Sklearn, and
Pickle libraries of Python were used. In the classifica-
tion processes performed, 80% of the total data set
was used to train the model, and 20% was used to
test the trained model.

Classification processes were carried out on the
data set created within the scope of this study using
logistic regression, artificial neural networks, support
vector machines, decision trees, and random forest

Table 6. The number of page types in the dataset after tagging

Random Forests 95.39%

Decision Tree 95.24%

Support Vector Machines 88.44%

Neural Networks 86.17%

Logistic Regression (Newton) 84.19%

Logistic Regression (Sag) 80.40%

algorithms, respectively. The prediction values ob-
tained from the classification processes performed are
shown in Table 6.

When the classification results shown in Table 6 are
examined, it was observed that the highest success
rate was obtained using the random forest algorithm.
The decision tree algorithm obtained the closest suc-
cess rate to the random forest algorithm. Sag, saga,
liblinear, lbfgs, and newton-ng analyzers were used in
the logistic regression algorithm’s classification pro-
cesses. Since the accuracy rates obtained from other
analyzers were close, sag and newton-ng analyzers
were included in the table. Figure 3 shows the screen
images obtained by running the classes created for
classification processes.

The confusion matrix for the classification pro-
cess, which was performed using the random forest
algorithm and in which the highest success rate was
achieved, is shown in Figure 4. When the confusion
matrix was examined, it was observed that the most
inaccurate predictions were made on the pages of the
Forgot Password Page type. Web applications have
various types of “I forgot my password” pages. In
some applications, there is an email input, to which
the user’s email address is entered, and a send button.
The classifier can mix such pages with login pages.
In some applications, different information about the
user and the new password are requested, and if the
information entered by the user is correct, the pass-
word renewal process is performed. The classifier can
mix this forgot password page type, to which different
user information and new passwords are entered, with
the register page type, which contains similar inputs.

Precision, recall, f1 and weighted avg. Metrics are
given in Table 7. As it is known, Macro-average gives
equal weight to all classes regardless of the imbalance
in the data set. It is, therefore, more susceptible to
low scores than underrepresented classes. For this
reason, we included weighted average measurements
in our study.

Two new classes were written for Sansar to use
the classification model developed using the Random
Forests Algorithm. The first one of these classes will
visit the page to be classified, extract the feature

ISeCure



January 2024, Volume 16, Number 1 (pp. 55–77) 65

Figure 3. Accuracy rates obtained from the classes written for various algorithms

Figure 4. The confusion matrix of the classification process

performed using the Random Forest Algorithm

Table 7. Metrics of classification process with random forests
algorithm

Precision Recall F1-Score

Contact Us Page 0.80 0.88 0.84

Forgot Password Page 0.75 0.25 0.38

Info Page 0.96 0.99 0.97

Login Page 0.98 0.97 0.98

Register Page 0.92 0.99 0.96

Search Page 0.94 0.94 0.94

Submit Page 0.98 0.95 0.96

Accuracy ∗ ∗ 0.95

Weighted Avg. 0.95 0.95 0.95

values to be used in the classification from the source
codes of the page, and send them to the second class.
The second class will put the data sent by the feature
extractor class into the previously saved classification
model and decide on the page’s class. Figure 5 shows
the method which puts the values returned from the
feature extraction class into the created classification
model and returns the page type.

The first point at which the page classification pro-
cess was used is the crawler module of Sansar. The de-
veloped model was used to recognize the login pages
during the indexing of the pages by the navigation
module and log in successfully. None of the existing
web application vulnerability scanners in the litera-
ture can perform an artificial intelligence-based login
process. After adding the page classification function,
the URL addresses visited by the navigation module
were first subjected to the classification process, and
if the page was classified as a ’Login Page,’ user lo-
gin processes were initiated. A short block of code
from the class where the processes in question are
performed is presented in Figure 6.

Figure 7 shows the automatic detection of the
login page and logging in during the crawling of
http://testphp.vulnweb.com address. The vulnerabil-
ity test module is another module that uses the clas-
sification function in the web application vulnerabil-
ity scanner. This process will be explained after the
realization of association analysis with the Apriori
algorithm under the next heading.

ISeCure



66 AI and Dynamic Analysis-Based Web Application Vulnerability Scanner — Yalçınkaya and Küçüksille

Figure 5. The classifyPage method of the randomForestClassifier.py class

Figure 6. Spider.py class user login processes

Figure 7. The automatic detection of the login page and logging in at the time of testing

ISeCure



January 2024, Volume 16, Number 1 (pp. 55–77) 67

4.5 Association Analysis with the Apriori
Algorithm

This study uses the apriori algorithm to extract as-
sociation rules between vulnerability types. In other
words, when a vulnerability is detected on a page, it
is aimed to detect other vulnerabilities that can be
seen on the same page with that vulnerability.

Samples included in the unique data set created
differ in terms of the page type, the vulnerability dis-
covered, and the type of method discovered (GET
and POST). One thousand seven hundred seventy-
eight of the vulnerability samples in the data set were
determined over the URL; in other words, using the
HTTP GET method. The remaining 6003 vulnera-
bilities were detected using the forms on the web
pages; in other words, using the POST method. After
the studies were carried out, it was observed that it
was not possible to associate the vulnerabilities ob-
tained using the GET method over the URL in the
tests administered with the page types because, in
the classification of page types, forms on the page,
user input fields in the forms, and buttons are used.
In the vulnerabilities detected over the URL address,
the components on the page are not important. The
URL address is segmented in the tests administered,
payloads are embedded in the relevant fields, and
attack attempts are carried out. For this reason, in
the association analysis performed using the Apriori
algorithm, only vulnerabilities detected in the com-
ponents on the page (vulnerabilities determined by
the POST method) were used.

To perform the association analysis over the exist-
ing data set, the data set was put into a form suitable
for the Apriori algorithm. The vulnerability encoun-
tered on a web page was added to the new data set to
be used in the Apriori algorithm by putting a comma
between them. The process in question was conducted
separately for each URL address and added as a sep-
arate row to the data set. The screen image of the
new data set formed after the process performed is
shown in Figure 8.

The association analysis process was performed af-
ter creating the data set to be used. The association
analysis process was done in the Spyder environment
using Python programming. There are two param-
eters to be considered when using the Apriori algo-
rithm. These are support and confidence values. The
default support value for the Apriori algorithm is 0.1.
Figure 9 shows the association rules obtained at the
support values = 0.1 and confidence = 0.8.

When the rules shown in Figure 9 were examined,
it was observed that the rules of the most common
vulnerabilities in the data set emerged. Furthermore,

Figure 8. The data set to be used in association analysis

Table 8. The number of page types in the dataset after tagging

Type of Vulnerability Number

Blind SQL İnjection 1565

Command Execution (CE) 852

Directory Traversal (DTRAV) 774

PHP Injection 704

Local File Inclusion (LFI) 642

Basic SQL Injection 538

HTML Injection 262

Cross Site Scripting (XSS) 320

Server-Side Template Injection (SSTI) 216

Server-Side Inclusion (SSI) 143

Buffer Overflow 13

Carriage Return and Line Feed (CRLF) 2

XML External Entity (XEE) 2

a very low number of one-to-one rules between vulner-
abilities was obtained. The first reason the mentioned
result is so inadequate is that the support value is de-
termined as 0.1. Table 8 demonstrates the number of
vulnerabilities in the data set subjected to association
analysis.

When the number of vulnerabilities demonstrated
in Table 8 is examined, it is observed that each vul-
nerability is of a different number. By their nature,
web vulnerabilities can be observed on any web page.
In a web page type, it would be false to say that a
specific kind of vulnerability cannot be observed. The
reason for not being able to reach certain opinions
about web vulnerabilities is that every web program-
mer has a different programming habit and attaches
different levels of importance to secure programming.
Therefore, it is necessary to create an association rule
for every vulnerability in the data set being studied

ISeCure



68 AI and Dynamic Analysis-Based Web Application Vulnerability Scanner — Yalçınkaya and Küçüksille

Figure 9. The association rules obtained with the support = 0.1 and confidence = 0.8 values

as much as possible. The way to achieve this would
be to lower the support value, which is set as 10%.
The figures given in Table 8 were examined, and it
was decided to exclude the least encountered CRLF
and memory overflow vulnerabilities from the analy-
sis. This was because obtaining rational association
rules for these vulnerabilities was not possible. The
support threshold value for the process in question
was 0.02.

Another reason for the low number of rules ob-
tained in the first association analysis is that the con-
fidence threshold value is determined to be 80%, as
stated earlier. A confidence threshold set at a high
level makes it difficult to obtain the association rule
for vulnerabilities, such as Blind SQLi, encountered
in many samples in the data set. Many web develop-
ers know and have blocking instincts against error-
based SQL injection. However, it would not be cor-
rect to mention the same situation for the time-based
blind SQL injection. Thus, the number of time-based
blind SQL injections detected on the tested pages
exceeded the number of error-based SQL injections.
When the association analysis between two vulnera-
bilities was performed, the probability of observing
the error-based SQL injection on the pages where
the time-based blind SQL injection was observed was
found to be 33%. Even if this rate is initially con-
sidered low, it would be wrong to say that there is
little association between these vulnerabilities, which
are tested with the same logic and of which only pay-
loads used for the test differ. Therefore, the support
threshold value was determined to be 0.02, and the
confidence threshold value was 0.3 in the association
analysis. The rule table of the association analysis
conducted is presented in Figure 10.

After determining the rules following the associ-
ation analysis conducted according to the data set,
the mentioned rules were integrated into the Sansar.
Table 8 shows the number of vulnerabilities detected
in each page type in the data set used in page classi-
fication and association analysis. The algorithm will
work as follows in the process of using association
analysis after page classification. Firstly, the page

type of the URL address tested will be determined.
Then, the most common five vulnerabilities in the
specified page type will be detected from the data set.
After this process, the first vulnerability test class
will be called. Suppose the tested vulnerability is de-
tected on the page this time. In that case, it will be
referred to the rule table obtained from the associa-
tion analysis, and vulnerabilities most likely to be ob-
served on the page where the vulnerability is detected
will be tested. For each vulnerability detected on the
page, the association rule will be examined, and the
associated vulnerabilities will be tested. Suppose no
vulnerability to test in the association rule is left. In
that case, the system will go back and continue the
process with the vulnerability observed on the page
most commonly but not tested. If no vulnerability to
be tested is left in the list of most common vulnerabil-
ities and the association rules, the scanning will end.
Before reporting the obtained data, if there is any
class which has not been scanned or about which an
association rule has not been found while scanning,
they will be asked whether these classes should be
scanned before reporting. Thanks to this algorithm
established, the vulnerability testing process will be
based on certain logic instead of using all test classes
with the brute force method, as standard web appli-
cation vulnerability scanners do. In this way, vulner-
abilities associated with each other will be scanned
one after another. Another advantage of this system
is that the test processes produce more successful
results by the successive scanning of associated vul-
nerabilities, which may trigger each other. Another
advantage of the developed algorithm is that fewer
test classes will be used to test a page. In this way,
the test classes of vulnerabilities, which are likely to
degrade the web page and database structure and of
which the possibility of being observed on the page
is low, will not be run.

To better understand the method used, the vulner-
ability test steps built on a sample URL address are
numbered below.

(1) http://teztest.com/addinventory.php URL ad-
dress is taken from the URL list sent from the

ISeCure



January 2024, Volume 16, Number 1 (pp. 55–77) 69

Figure 10. The association rules obtained with the support = 0.02 and confidence = 0.3 values

ISeCure



70 AI and Dynamic Analysis-Based Web Application Vulnerability Scanner — Yalçınkaya and Küçüksille

Table 9. The number of vulnerabilities by the page type included in the data set

Submit Page Register Page Login Page List Page Info Page Search Page Contact Us Page Forgot Password Page

Blind SQLi 723 271 366 28 50 41 60 26

Command Exec. 573 50 31 40 90 18 38 12

DTRAV 532 55 37 24 8 18 387 32

PHPi 468 40 34 31 68 16 34 13

SSTi 123 34 6 49 1 3 0 0

LFi 457 53 36 32 16 14 23 11

SQLi 227 134 93 2 5 51 24 2

HTMLi 131 83 6 1 2 35 4 0

Open Redirect 49 120 127 0 56 4 3 1

SSI 80 37 4 14 9 5 3 0

XSS 49 88 66 3 2 103 8 1

Buffer Overflow 0 0 4 0 9 1 0 0

CRFL 0 0 2 0 1 0 0 0

XXE 0 0 0 2 0 0 0 0

Crawler module and inserted into the classifier.
(2) The “Submit Page” value returns from the clas-

sifier.
(3) The most common vulnerabilities in the Submit

Page class are determined according to the data
set.

(4) The testing process starts with blind SQLi, the
first of the most common vulnerabilities in the
Submit Page type (1. Blind SQLi, 2. Command
Execution, 3. Directory Traversal, 4. Code In-
jection).

(5) The blind SQLi vulnerability is detected on
the page. According to the Apriori Algorithm,
scanning continues with SQLi, the vulnerability
with the highest possibility of being observed
with the blind SQLi and then with command
execution.

(6) Both of the tested vulnerabilities cannot be
detected. Since there is no other vulnerability
related to the blind SQLi, according to the rule
table, the scanning process continues with the
next element among the vulnerabilities observed
most commonly on the Submit page.

(7) The command execution vulnerability, the sec-
ond element in the list of most observed ones
on the Submit page, was previously tested due
to its association with blind SQLi. Therefore,
the testing process will continue with the di-
rectory traversal test, the third most common
vulnerability on the Submit page.

(8) The testing process will continue until no test
classes are left to run in the ordered list and
the association rule lists.

(9) The tests will end When no class is run for

testing in the ordered list and the association
rule list is left. However, as the last step before
reporting, users are asked if they want to run the
remaining test classes in the scanning process.
However, they are the test classes about which
an association rule has not been found and,
therefore, have not been run.

(10) After the necessary process, if any, is carried out
according to the user preference, it is passed to
the reporting step, and the scanning process is
completed.

After the classification model and association rules
are integrated, the class diagram of Sansar’s vulnera-
bility test module is shown in Figure 11. Sansar has
the following capabilities after the addition of classi-
fication and association rules:

• to perform tests using both GET and POST,
• to perform multithreading with dynamically
produced threads according to the number of
computer cores,

• to log in by scanning the user login pages au-
tomatically by giving only username and pass-
word information, and to scan the pages on the
user panel,

• to produce more successful and logical test re-
sults by running test classes associated with
each other one after another instead of running
all test classes directly, as in other vulnerability
scanners in the literature.

5 Discussion

In this study, an artificial intelligence and dynamic
analysis-based web application vulnerability scanner

ISeCure



January 2024, Volume 16, Number 1 (pp. 55–77) 71

Figure 11. Class diagram showing the association between classes

named Sansar was developed. Sansar gives better
results than the previous studies in the literature
from various aspects. The comparison of the present
study conducted with other studies in the literature
will be dealt with separately for each module.

When the Sansar is compared with WASCAN,
WAPITI, VEGA, Arachni, Skipfish and NIKTO,
which are six open-source scanners commonly used
in web penetration testing by security experts, it
provides superiority concerning the number of vul-
nerability types it tests. WASCAN tests 16 different
vulnerabilities.

WAPITI, widely used in the black box web pene-
tration tests, can test 12 vulnerabilities. VEGA vul-

nerability scanner also used as a proxy in penetration
tests, can test about ten different types of vulnerabili-
ties. Developed with the Ruby language, Arachni can
successfully test 14 different types of vulnerabilities.
The Skipfish tool, installed by default in Kali Linux
and widely used, can test vulnerabilities at 19 differ-
ent criticality levels. NIKTO, on the other hand, can
test 14 different vulnerabilities. Sansar contains 21
different vulnerability test classes. Furthermore, vul-
nerability test classes were planned and coded so that
it was very easy to adapt when a new vulnerability
was to be added.

The largest web penetration testing laboratory in
the literature was created in this study. Within the
laboratory are also types of sites, such as a blog,

ISeCure



72 AI and Dynamic Analysis-Based Web Application Vulnerability Scanner — Yalçınkaya and Küçüksille

news, shopping and banking, and automation ap-
plications, such as schools, restaurants, hotels, hos-
tels, libraries, planes, and buses. Within the prepared
web penetration testing laboratory were 207 PHP
and 55 ASP-based web applications. Thanks to the
laboratory-created, the opportunity to test the most
probable web applications in real life was obtained.
When the studies in the literature are examined, it
is seen that most studies use existing vulnerable web
applications such as WebGoat and DVWA. In some
studies, researchers have developed their vulnerable
web applications or set up laboratories consisting of
several applications. In their study, Karakaya and
Uçar tested the effectiveness of different web appli-
cation vulnerability scanners on various web appli-
cations. This study used three different web applica-
tions in testing processes [29]. Yang and others have
developed a laboratory for cybersecurity testing. One
web application was published over a web server in
the developed laboratory [30]. Basin et al. discussed
the vulnerabilities that may arise in web applica-
tions, and they set up a basic laboratory for these
vulnerability tests. The developed laboratory has two
web applications, namely OWASP WebScarab and
OWASP WebGoat [31]. Wenliang Du has developed
an open-source lab environment that offers a practical
approach to computer security education, allowing
students to experience security scenarios similar to
real-world situations. This laboratory has five differ-
ent web applications to test different types of web
vulnerabilities [32]. Chen and Tao have developed a
web application called SWEET, which contains many
different types of vulnerabilities [33].

Using the web application vulnerability scanner de-
veloped in this study, each application in the created
web application penetration testing laboratory was
tested. A data set was obtained using the vulnerabil-
ity data acquired after the tests. In the literature, the
data sets used in the page classification processes us-
ing HTML tags contain features formed by segment-
ing the text data in the mentioned tags. However, in
the data set formed in this study, HTML tags were
addressed numerically. Within the data set, there is
information on how many HTML tags are on the page
and the form where the vulnerability is detected. In
the related dataset, 70 different features belong to
the page, form, and input where the vulnerability is
found. To our knowledge, the data set created within
the scope of this study is the only data set in the liter-
ature considering the features it contains. In this way,
the classification and association analysis processes
carried out using the mentioned data set are unique.

The first process performed using the data set ob-
tained in this study is the page classification process.
The samples in the data set are tagged in eight dif-

ferent types: login page, register page, submit page,
search page, info page, list page, forgot password
page, and contact us page. The page classification
process was carried out after tagging the samples in
the data set. Five different classification algorithms
were used in the page classification process. The high-
est accuracy rate among the performed classification
processes was obtained with the random forest al-
gorithm, with a success rate of 95.39%. This rate is
unique in the literature regarding the originality of
the data used and the page type classified.

In page classification studies on HTML tags in
the literature, web pages were classified for purposes
such as indexing and advertisement under categories
such as sports, news, and technology. Furthermore,
the content of the determined HTML tags, i.e., text
data, was used in these studies. In this study, the only
classification process performed using the amount of
HTML input fields available on the page was carried
out. The success rate also included an original and
successful study in the literature.

Another feature of Sansar is using a classifier while
recording the URL addresses to be tested for vulner-
ability by crawling the web application before the
test. In this way, the developed tool recognizes the
user login pages of the web application and logs in
successfully. None of the commercial and open-source
web application vulnerability scanners used widely in
web tests nowadays have this feature. Open-source
WASCAN, WAPITI, VEGA and Skipfish tools need
valid cookie data to log in. User login should be made
to the web page to be scanned; the cookie data gen-
erated after the login should be obtained somehow
and given as a parameter to the mentioned tools.
This process is challenging to realize for users, time-
consuming, and unsustainable. NIKTO web vulnera-
bility scanner, on the other hand, cannot log in dur-
ing scanning. Arachni can log in to web applications
with form-based login (autologin) and Script-based
login (login script) methods. However, this tool also
requests the address of the login page from the user
before scanning. The two leading web application vul-
nerability scanners among commercial web applica-
tion vulnerability scanners in the cybersecurity world
are Netsparker and Acunetix. The Netsparker tool
requests the login page’s URL address, username,
and password information from the user to scan the
pages behind the verification by logging in to a web
application. The Tenable Nessus tool also uses the
same method as Netsparker. The Acunetix tool re-
quests the user to log in to the web application to
be scanned using a scanner. It opens within itself be-
fore scanning. In this way, it records the information
about the address the user has entered and inputs in
which the user name and password have been written

ISeCure



January 2024, Volume 16, Number 1 (pp. 55–77) 73

and then repeats later. The Portswigger Burp Suite
tool asks the user to save the login steps, as in the
Acunetix tool. Sansar needs only valid username and
password information to log in. It classifies the pages
it navigates when running one by one and checks
whether there is a login page. When the login page
is detected in the classification process, the inputs
on the page are automatically filled in with the user-
name and password information, and the login pro-
cess is performed successfully. This feature is a new
function brought to the literature in web application
vulnerability scanners.

In this study, a new test model, produced by com-
bining page classification and association analysis pro-
cesses, was developed to be used in web application
security tests. The answer to the question, “What
type of vulnerability is more likely to appear on a
page where vulnerability is detected?” was searched
in the association analysis process performed in the
developed model. After the association analysis was
conducted, the web application vulnerability scanner
was updated to run the test class of the vulnerability
associated with that vulnerability when it detected
vulnerability. Experienced web application penetra-
tion testing specialists verified the results obtained
at the end of the association analysis. In the opinions
received, it was stated that the obtained associations
between vulnerabilities fitted the structures of the vul-
nerabilities. According to the developed model, firstly,
the web page to be tested is classified according to
the page type detected after classification, based on
the data set, the test class of the most commonly
observed vulnerability is run. During the testing pro-
cesses, if a vulnerability is detected, according to the
association rules obtained with the association anal-
ysis, other vulnerability test classes that are most
likely to be observed on pages where that vulnerabil-
ity is observed are run. Thus, the tests continue in a
way that they are based on the experience and logic
of a true penetration testing expert. Thanks to the
developed model, test classes of vulnerabilities not
associated with the detected vulnerabilities will not
be run. Thus, the degradation of the page structure
or database tables due to unnecessary tests will be
prevented. The findings obtained in this study sug-
gest that the developed model provides faster results
than the classical model, in which all test classes are
run in sequence without considering an association.

In Figure 12, the testing process was carried out
using two versions of the developed vulnerability
scanner: in one of them, standard scanning was per-
formed, and in the other, scanning was performed
using the model of “page classification-association
analysis.” The testing process was carried out on the
http://testphp.vulnweb.com address. The reason for

choosing this address for testing is that this website
is a laboratory developed by Acunetix, which has vul-
nerabilities and is open to everyone. These test pro-
cesses, performed on the same target, using the same
test classes, and with the same internet connection,
allowed comparing the developed page classification-
association analysis-based model with the classical
scanning method. As is observed in Figure 12 (a),
scanning using the classical method was completed
in 2428 seconds; in other words, in approximately
40 minutes. As Figure 12 (b) shows, the scanning
process using the developed model was completed in
1912 seconds; in other words, in approximately 31
minutes. After both scans were performed, 29 vulner-
abilities, including seven blind SQL injections, two
error-based SQL injections, four command executions,
four HTML injections, four local file injections (LFI),
four PHP code injections, and four cross-site script-
ings (XSS), were determined. When the results were
examined, it was detected that the developed model
had the same effect as the standard scanning model
but ran faster. According to the findings obtained,
it was observed that the developed new model pro-
vides a speed gain of 21% compared to the standard
scanning model.

To our knowledge, the page classification-
association analysis-based test model created in this
study is the only study aiming to run test classes
within the framework of certain rules in dynamic
analysis-based web application vulnerability tests.
Vulnerability scanners used nowadays run test classes
after they detect the input fields to be tested. A few
vulnerability scanners (e.g., WAPITI) stipulate run-
ning another class before running some test classes
(e.g., the SQLi test before the BlindSQLi test). How-
ever, to our knowledge, no study aims to model all
testing processes.

The developed tool has been compared with the
WAPITI, WASCAN, VEGA, Arachni, Skipfish,
NIKTO, Netsparker, and Acunetix tools. This is be-
cause these tools are the most commonly used tools
in web application tests nowadays and continue to
be developed and updated due to their widespread
use. The tool developed in this study is superior in
various aspects compared to other studies in the
field of web application vulnerability scanners in the
literature. For example, in SQLi tests, the Secubat
tool [4] creates a confidence value by examining the
post-test return page response and using various
response patterns and keywords to check whether
the test is successful. The SQL injection test class
developed within the scope of this study includes
an extensive error checklist defined for 14 different
types of database servers, such as Oracle, MySQL,
and MS SQL. Sania is another web application vul-

ISeCure



74 AI and Dynamic Analysis-Based Web Application Vulnerability Scanner — Yalçınkaya and Küçüksille

(a)

(b)
Figure 12. Comparison of the developed model and the classical method

nerability scanner developed in the literature [5].
This tool works like a Proxy server between the web
application and the database server and captures
SQL queries sent from the application to the server.
The mentioned tool performs vulnerability testing
by adding SQL injection test payloads to the queries
it captures. The vulnerability scanner developed, on
the other hand, dynamically leads to harmful queries
containing test payloads by examining the form
fields on the page from HTML source codes instead
of catching the queries. Another web application
vulnerability scanner in the literature is SDAPT [6].
This vulnerability scanner uses the static analysis
method to detect potential SQL injection attack
points on the web page. The attack points obtained
with the static analysis method are then tested with
the dynamic analysis method. The tool in question
lags behind the tool developed in this study since it
performs a single vulnerability test and needs the
application’s source codes to be tested. As reported
above, the studies reviewed under the web applica-
tion vulnerability scanner heading in the literature
mostly aimed to test a few specific vulnerabilities. In
the study carried out in 2009 [7], a tool that performs
SQL injection tests on web services was developed.
In the study conducted in 2010 [8], a web application
vulnerability scanner was developed to detect SQL
injection and XSS vulnerabilities. Galan et al. [9]
developed a tool to detect XSS vulnerabilities in
web applications. Ali et al. [10] developed a tool

called MySQLlInjector that performed SQL injection
vulnerability testing on web applications developed
with the PHP language. In their study, Singh and
Roy [11] developed a tool called NVS to detect SQL
injection vulnerabilities on web applications. In the
study conducted by Djuric in 2013 [12], a web appli-
cation vulnerability scanner named SQLIVDT was
developed to detect SQL injection vulnerabilities. In
their study, Qianqian and Xiangjun [34] added an
interface to an open-source web application vulnera-
bility scanner running from the command screen and
published it as a service. Basak et al. [35] present a
review of web application vulnerability scanners that
detect web application vulnerabilities. In addition,
the effectiveness of several vulnerability scanners for
many different types of web application vulnerabil-
ities has been examined. Jain et al. [36] examined
three open-source web application scanners, namely
Arachni, Nikto, and Wapiti and their methods for
detecting and reporting different vulnerabilities. Hu
et al. [37] present a method for automatic vulnerabil-
ity scanning web applications using machine learning
techniques. Shahid et al. [38] conducted a compara-
tive study of web application vulnerability scanners
and evaluated various features and techniques. The
study in question found that automatic scanners out-
perform manual scanners. It was also noted that the
scanners gave different results in terms of accuracy,
sensitivity and specificity. Joshi et al. [39] evaluated
the effectiveness of web application vulnerability

ISeCure



January 2024, Volume 16, Number 1 (pp. 55–77) 75

scanners. Their study tested it in various applica-
tions using 14 different browsers. The results showed
that the scanners differed in accuracy, sensitivity
and specificity. It was also stated that all the tested
scanners could detect different vulnerabilities. Huang
et al. [40] proposed a new web application vulnerabil-
ity scanning method. The method in question can
detect vulnerabilities in applications by combining
deep learning and data mining techniques. The new
method was tested on various applications, and it was
stated that successful results were obtained. In their
study, Rabheru et al. [41] presented an approach
for detecting security vulnerabilities in web appli-
cations using machine learning techniques. In the
study, as mentioned earlier, an automated tool has
been developed for the scanning process. This tool
uses a pre-trained classifier to detect vulnerabilities
commonly found in web applications.

When the reviewed studies and the developed tool
are compared, it has been observed that the Sansar
vulnerability scanner can test more vulnerabilities
compared to the studies in question. In the litera-
ture, there are studies in which artificial intelligence
models are used for vulnerability detection. The de-
veloped Sansar application, unlike these studies, uses
the classification process only to determine the types
of web pages. It is used to determine the type of a
web page, recognize login pages, and login automati-
cally. Sansar was the first software in the literature
to use association rules to detect vulnerabilities in
vulnerability tests.

6 Conclusion

With web applications, many jobs such as product
buying and selling, banking transactions and smart
home control can be performed today [42]. Data
stored and processed in web applications has become a
critical resource for individuals and organizations [43].
Therefore, it is important to protect the data in ques-
tion and to perform vulnerability tests of web ap-
plications at certain intervals. In this study, a web
application vulnerability scanner named SANSAR
was developed. When all the comparisons made have
been summarized, it has been observed that Sansar
has more test classes than open-source vulnerability
scanners that are widely used in penetration tests.
It is the only tool that uses the classification model
in indexing web applications. This way, Sansar can
automatically detect login pages and log in without
needing external input or intervention. In addition, a
model based on page classification-association anal-
ysis has been created to be used in web application
tests, and it is observed that the created model per-
forms faster and more reliable tests than the classical
scanning method. We hope that integrating artificial

intelligence into web application vulnerability scan-
ners will be quite inspiring for future work.

References

[1] Verizon Enterprise data breach investigations
report 2022. https://www.verizon.com/

business/resources/reports/dbir/. Ac-
cessed: 2023-04-15.

[2] ITRC identity theft resource center breach
report hits record high in 2021. https://

www.idtheftcenter.org/publication/2022-

data-breach-report/. Accessed: 2023-04-16.
[3] G Deepa and P Santhi Thilagam. Securing web

applications from injection and logic vulnerabil-
ities: Approaches and challenges. Information
and Software Technology, 74:160–180, 2016.

[4] Stefan Kals, Engin Kirda, Christopher Kruegel,
and Nenad Jovanovic. Secubat: a web vulnera-
bility scanner. In Proceedings of the 15th inter-
national conference on World Wide Web, pages
247–256, 2006.

[5] Yuji Kosuga, Kenji Kono, Miyuki Hanaoka, Miho
Hishiyama, and Yu Takahama. Sania: Syntac-
tic and semantic analysis for automated testing
against sql injection. In Twenty-Third Annual
Computer Security Applications Conference (AC-
SAC 2007), pages 107–117. IEEE, 2007.

[6] William GJ Halfond, Shauvik Roy Choudhary,
and Alessandro Orso. Penetration testing with
improved input vector identification. In 2009 In-
ternational Conference on Software Testing Ver-
ification and Validation, pages 346–355. IEEE,
2009.

[7] Marco Vieira, Nuno Antunes, and Henrique
Madeira. Using web security scanners to de-
tect vulnerabilities in web services. In 2009
IEEE/IFIP International Conference on Depend-
able Systems & Networks, pages 566–571. IEEE,
2009.

[8] Jan-Min Chen and Chia-Lun Wu. An auto-
mated vulnerability scanner for injection attack
based on injection point. In 2010 International
Computer Symposium (ICS2010), pages 113–118.
IEEE, 2010.

[9] Eduardo Galán, Almudena Alcaide, Agust́ın Or-
fila, and Jorge Blasco. A multi-agent scanner to
detect stored-xss vulnerabilities. In 2010 Inter-
national Conference for Internet Technology and
Secured Transactions, pages 1–6. IEEE, 2010.

[10] Abdul Bashah Mat Ali, Mohd Syazwan Abdul-
lah, Jasem Alostad, et al. Sql-injection vulnera-
bility scanning tool for automatic creation of sql-
injection attacks. Procedia Computer Science,
3:453–458, 2011.

[11] Avinash Kumar Singh and Sangita Roy. A net-
work based vulnerability scanner for detecting

ISeCure

https://www.verizon.com/business/resources/reports/dbir/
https://www.verizon.com/business/resources/reports/dbir/
https://www.idtheftcenter.org/publication/2022-data-breach-report/
https://www.idtheftcenter.org/publication/2022-data-breach-report/
https://www.idtheftcenter.org/publication/2022-data-breach-report/


76 AI and Dynamic Analysis-Based Web Application Vulnerability Scanner — Yalçınkaya and Küçüksille

sqli attacks in web applications. In 2012 1st
international conference on recent advances in
information technology (RAIT), pages 585–590.
IEEE, 2012.

[12] Zoran Djuric. A black-box testing tool for de-
tecting sql injection vulnerabilities. In 2013 Sec-
ond international conference on informatics &
applications (ICIA), pages 216–221. IEEE, 2013.

[13] Soyoung Lee, Seongil Wi, and Sooel Son. Link:
Black-box detection of cross-site scripting vulner-
abilities using reinforcement learning. In Proceed-
ings of the ACM Web Conference 2022, pages
743–754, 2022.

[14] TIAN Xiaopeng and TANG Di. A distributed
vulnerability scanning on machine learning. In
2019 6th International Conference on Informa-
tion Science and Control Engineering (ICISCE),
pages 32–35. IEEE, 2019.

[15] Patrick Dave P Woogue, Gabriel Andrew A
Pineda, and Christian V Maderazo. Automatic
web page categorization using machine learning
and educational-based corpus. Int. J. Comput.
Theory Eng, 9(6):427–432, 2017.

[16] Luca Deri, Maurizio Martinelli, Daniele Sartiano,
and Loredana Sideri. Large scale web-content
classification. In 2015 7th International Joint
Conference on Knowledge Discovery, Knowl-
edge Engineering and Knowledge Management
(IC3K), volume 1, pages 545–554. IEEE, 2015.

[17] WA Awad. Machine learning algorithms in
web page classification. International Journal
of Computer Science & Information Technology
(IJCSIT), 4(5):93–101, 2012.

[18] Myungsook Klassen. A frame work for search
forms classification. In 2012 IEEE International
Conference on Systems, Man, and Cybernetics
(SMC), pages 1029–1034. IEEE, 2012.

[19] Yanbo Ru and Ellis Horowitz. Automated classi-
fication of html forms on e-commerce web sites.
Online Information Review, 31(4):451–466, 2007.

[20] Yılmaz Vural. Enterprise informa-
tion security and penetration test-
ing, June 2007. Available at https:

//tez.yok.gov.tr/UlusalTezMerkezi/

tezDetay.jsp?id=8MxC_qYwjgBUX1uTtgOjhg&

no=ULsA81dv3hIIQ38dGrZdeA.
[21] Khairul Anwar Sedek, Norlis Osman,

Mohd Nizam Osman, and Jusoff Hj Kamaruza-
man. Developing a secure web application
using owasp guidelines. Comput. Inf. Sci.,
2(4):137–143, 2009.

[22] Özlem Akar and Oguz Güngör. Classification of
multispectral images using random forest algo-
rithm. Journal of Geodesy and Geoinformation,
1(2):105–112, 2012.

[23] Ebru Korkem. Random forest and näıve bayes

approach in microarray gene expressions data
sets, June 2013.

[24] Hülya Yılmaz. Studying the missing data prob-
lem in random forestsmethod and an application
in health field, June 2014.

[25] Chih-Hsuan Wang and Su-Hau Nien. Combining
multiple correspondence analysis with associa-
tion rule mining to conduct user-driven product
design of wearable devices. Computer Standards
& Interfaces, 45:37–44, 2016.

[26] Yen-Liang Chen, Jen-Ming Chen, and Ching-
Wen Tung. A data mining approach for retail
knowledge discovery with consideration of the
effect of shelf-space adjacency on sales. Decision
support systems, 42(3):1503–1520, 2006.

[27] D Ay and İ Çil. The use of association rules
in store layout planning at migros türk a. ş.
Endüstri Mühendisliği Dergisi, 21(2):14–29, 2008.

[28] Emre Güngör, Nesibe Yalçın, and Nilüfer Yurtay.
Apriori algoritması ile teknik seçmeli ders seçim
analizi. In Akademik Bilişim, 2013.

[29] Jason Bau, Elie Bursztein, Divij Gupta, and
John Mitchell. State of the art: Automated black-
box web application vulnerability testing. In
2010 IEEE symposium on security and privacy,
pages 332–345. IEEE, 2010.

[30] T Andrew Yang, Kwok-Bun Yue, Morris Liaw,
George Collins, Jayaraman T Venkatraman,
Swati Achar, Karthik Sadasivam, and Ping
Chen. Design of a distributed computer security
lab. Journal of Computing Sciences in Colleges,
20(1):332–346, 2004.

[31] David Basin, Patrick Schaller, and Michael
Schläpfer. Applied information security: a hands-
on approach. Springer, 2011.

[32] Wenliang Du. Seed: hands-on lab exercises for
computer security education. IEEE Security &
Privacy, 9(5):70–73, 2011.

[33] Li-Chiou Chen and Lixin Tao. Teaching web
security using portable virtual labs. In 2011
IEEE 11th International Conference on Ad-
vanced Learning Technologies, pages 491–495.
IEEE, 2011.

[34] Wu Qianqian and Liu Xiangjun. Research and
design on web application vulnerability scanning
service. In 2014 IEEE 5th International confer-
ence on software engineering and service science,
pages 671–674. IEEE, 2014.

[35] Debadri Basak, Dhruv Ramani, and Ghanshyam
Singh. Enhancement of unsupervised object de-
tection using supervised method. In 2020 11th
International Conference on Computing, Com-
munication and Networking Technologies (ICC-
CNT), pages 1–9. IEEE, 2020.

[36] Ravi Kant Jain, Bikash Gupta, Mustaq Ansari,
and Partha Pratim Ray. Iot enabled smart drip

ISeCure

https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=8MxC_qYwjgBUX1uTtgOjhg&no=ULsA81dv3hIIQ38dGrZdeA
https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=8MxC_qYwjgBUX1uTtgOjhg&no=ULsA81dv3hIIQ38dGrZdeA
https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=8MxC_qYwjgBUX1uTtgOjhg&no=ULsA81dv3hIIQ38dGrZdeA
https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=8MxC_qYwjgBUX1uTtgOjhg&no=ULsA81dv3hIIQ38dGrZdeA


January 2024, Volume 16, Number 1 (pp. 55–77) 77

irrigation system using web/android applications.
In 2020 11th international conference on comput-
ing, communication and networking technologies
(ICCCNT), pages 1–6. IEEE, 2020.

[37] Lilan Hu, Jie Chang, Ze Chen, and Botao Hou.
Web application vulnerability detection method
based on machine learning. In Journal of Physics:
Conference Series, volume 1827, page 012061.
IOP Publishing, 2021.

[38] Jahanzeb Shahid, Muhammad Khurram
Hameed, Ibrahim Tariq Javed, Kashif Naseer
Qureshi, Moazam Ali, and Noel Crespi. A
comparative study of web application secu-
rity parameters: Current trends and future
directions. Applied Sciences, 12(8):4077, 2022.

[39] Chanchala Joshi and Umesh Kumar Singh. Per-
formance evaluation of web application security
scanners for more effective defense. International
Journal of Scientific and Research Publications
(IJSRP), 6(6):660–667, 2016.

[40] Yao-Wen Huang, Shih-Kun Huang, Tsung-Po
Lin, and Chung-Hung Tsai. Web application se-
curity assessment by fault injection and behavior
monitoring. In Proceedings of the 12th inter-
national conference on World Wide Web, pages
148–159, 2003.

[41] Rishi Rabheru, Hazim Hanif, and Sergio Maffeis.
A hybrid graph neural network approach for
detecting php vulnerabilities. In 2022 IEEE
Conference on Dependable and Secure Computing
(DSC), pages 1–9. IEEE, 2022.

[42] Salman Sherin, Muhammad Zohaib Iqbal,
Muhammad Uzair Khan, and Atif Aftab Jilani.

Comparing coverage criteria for dynamic web
application: An empirical evaluation. Computer
Standards & Interfaces, 73:103467, 2021.

[43] Kevin W Hamlen and Bhavani Thuraisingham.
Data security services, solutions and standards
for outsourcing. Computer Standards & Inter-
faces, 35(1):1–5, 2013.

Mehmet Ali Yalçınkaya received
her master’s and Ph.D. degrees from
Süleyman Demirel University, Insti-
tute of Science, Department of Com-
puter Engineering. He is currently
working as a member of Kırşehir Ahi
Evran University, Computer Engi-

neering Department. Among his research fields are
Cyber Security, Web Application Security, Computer
Networks.

Ecir Uğur Küçüksille received
her master’s degree from Süleyman
Demirel University, Institute of Sci-
ence, Department of Mechanical Edu-
cation and his Ph.D. from Süleyman
Demirel University, Institute of So-
cial Sciences, Department of Busi-

ness/Numerical Methods. He is currently working as
a member of Süleyman Demirel University Faculty
of Engineering, Computer Engineering Department.
Among his research fields are; Cyber Security, Data
Mining, Natural Language Processing.

ISeCure


	1 Introduction
	2 Related Work
	3 Materials And Methods
	3.1 Web Application Security
	3.2 Web Application Penetration Tests
	3.3 Random Forest Algorithm
	3.4 Apriori Algorithm

	4 The Structure of Web Application Security Scanner- Sansar
	4.1 Crawler Module
	4.2 Vulnerability Test Module
	4.3 Creation of the Web Application Penetration Testing Laboratory and Realization of the Test Processes
	4.4 Realization of Classification Processes Using the Data Set Created
	4.5 Association Analysis with the Apriori Algorithm

	5 Discussion
	6 Conclusion

