
ISeCure
The ISC Int'l Journal of
Information Security

January 2024, Volume 16, Number 1 (pp. 37–53)

http://www.isecure-journal.org

Safety Guards for Ethereum Smart Contracts

Morteza Amirmohseni 1 and Sadegh Dorri Nogoorani 1,∗
1Blockchain Laboratory, Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran

A R T I C L E I N F O.

Article history:

Received: October 17, 2022

Revised: May 10, 2023

Accepted: May 22, 2023

Published Online: November 20, 2023

Keywords:

Blockchain, Runtime Monitoring,
Smart Contract, Vulnerability

Type: Research Article

doi: 10.22042/isecure.2023.

365808.846

dor: 20.1001.1.20082045.2024.

16.1.3.7

A B S T R A C T

Smart contracts are applications that are deployed on a blockchain and can be

executed through transactions. The code and the state of the smart contracts

are persisted on the ledger, and their execution is validated by all blockchain

nodes. Smart contracts often hold and manage amounts of cryptocurrency.

Therefore, their code should be secured against attacks. Smart contracts can be

secured either by fixing their source/byte code before deployment (offline) or by

inserting some protection code into the runtime (online). On the one hand, the

offline methods do not have enough data for effective protection, and on the

other hand, the existing online methods are too costly. In this paper, we propose

an online method to complement the offline methods with a low overhead.

Our protections are categorized into multiple safety guards. These guards are

implemented in the blockchain nodes (clients), and require some parameters to

be set in the constructor to be activated. After deployment, the configured

guards protect the contract and revert suspicious transactions. We have

implemented our proposed safety guards with small changes to the Hyperledger

Besu Ethereum client. Our evaluations show that our implementation is effective

in preventing the corresponding attacks, and has low execution overhead.

© 2024 ISC. All rights reserved.

1 Introduction

Ethereum is the world’s leading public blockchain
for smart contracts and decentralized applica-

tion (DApp) development. It has revolutionized ap-
plications of blockchain and created a new era for
blockchain technology. Smart contracts are small pro-
grams which are stored on-chain, and are triggered
by special transactions (i.e. method calls). A contract
verifies each request’s conditions and performs ap-
propriate action(s) automatically and without third
party intervention. Smart contracts are unstoppable,

∗ Corresponding author.

Email addresses: m.amirmohseni@modares.ac.im,
dorri@modares.ac.i

ISSN: 2008-2045 © 2024 ISC. All rights reserved.

and are executed exactly as programmed without ma-
nipulation or censorship.

Ethereum smart contracts are written in a Turing-
complete language and can implement any algorithms.
Since contracts usually hold and facilitate the ex-
change of cryptocurrency, they can be used to keep
record of digital assets and stocks. Smart contracts
are also used in a wide variety of other applications
such as supply chain management, Internet of Things
(IoT), digital identity management, electronic health
record (EHR) systems, electronic voting, etc.

One of the most important issues with the
blockchain technology is the security of smart con-
tracts. Smart contracts are often used for financial
purposes, and once deployed it is impossible to change

ISeCure

38 Safety Guards for Ethereum Smart Contracts — Amirmohseni and Dorri

their code even for bug fixes 1 . Therefore, their code
should be secured against vulnerabilities and attacks.
Smart contract security methods can be divided into
two categories: offline and online. Offline methods
take the source or byte code of a contract and report
its vulnerabilities to the developer for corrections.
Online methods insert the protection code into the
source code, the byte code, or the runtime code.

Offline methods cannot detect all vulnerabilities
due to the lack of access to real-time execution in-
formation. Online methods are also limited and have
high overhead. Adding new code to a contract in-
creases its gas consumption. In addition, it may not be
possible for big contracts. For example, the Ethereum
virtual machine (EVM) bytecode which corresponds
to a smart contract is limited to be up to about
25KBs.

In this paper, we introduce an online method
that complements the available offline methods, can
protect the contract from significant attacks, and
does not have the mentioned limitations of other
online methods. By using our method, the contract
owner can define customizable safety guards to pre-
vent threats which may be caused even by unknown
vulnerabilities. The guards are implemented in the
blockchain runtime, and are enabled by inserting
short code snippets (guards parameters) into the con-
tract constructor. Our contributions are as follows:

• Safety guards are new contract protection meth-
ods which can be customized for each contract
by its owner.

• Our method is not limited to known vulnerabil-
ities and can also prevent some attacks which
exploit zero-day vulnerabilities.

• Only a short code snippet is required to use a
guard. The code is generated by a simple user
interface (UI) and can be added to the contract
with a minimum programming knowledge.

We present the related background material in Sec-
tion 2; survey the related work in Section 3; explain
our proposed method in Section 4; discuss our imple-
mentation in Section 5; perform a case study on each
guard in Section 6; evaluate our method and compare
it with the previous work in Section 7; and conclude
the paper in Section 8.

2 Background

2.1 Blockchain and Smart Contracts

Blockchain is a trusted distributed ledger that shares
data in a peer-to-peer network. This technology was
first used by the Bitcoin network for the exchange of

1 In many public blockchains including the Ethereum.

cryptocurrencies without the need for a trusted third
party. As the name implies, blockchain is an ordered
chain of blocks. Each block is identified by a hash
value and is referenced by its successive block [1].

Blockchain applications are not limited to financial
cases. It is possible to create programs called smart
contracts that involve complex transactions and run
automatically. The main idea is to embed contrac-
tual concepts in computer components. They provide
better observability, verifiability, and enforceability.
The parties of a contract can be informed about each
others’ performance, and are not concerned about
correct execution of the code. Smart contracts can
protect the privacy of the parties to some extent, and
keep/publish as much information as needed [2].

Ethereum is the first blockchain which supports
general-purpose smart contracts. The Ethereum vir-
tual machine (EVM) is the runtime environment for
the Ethereum smart contracts, and each network node
executes an implementation of EVM [3]. Solidity is
the most popular high-level programming language
to write smart contracts for the EVM [4]. The source
code is compiled into EVM bytecode and is deployed
(stored) on the blockchain. Once deployed, the con-
tract can be accessed by an address, has a dedicated
storage, and can receive, keep, and transfer cryptocur-
rency, All Ethereum miners execute the contract’s
code, and record state changes on the blockchain [3].
When smart contract variables are set, their values
are written to storage slots. Each Ethereum smart
contract has a dedicated storage array of 32-bytes
slots, initially set to zeros. The total number of stor-
age slots is 2256. Each slot is identified by a number
starting from zero [5].

Ether is the native cryptocurrency of the Ethereum
blockchain. Users send transactions to the Ethereum
network for three purposes: (1) deploying new con-
tracts, (2) invoking a contract’s function, and (3)
transferring Ether to users or contracts [6]. The his-
tory of all transactions is stored on the Ethereum
public blockchain which is an append-only data struc-
ture. Each contract can hold an amount of Ether and
has a dedicated storage. The sequence of transactions
on the blockchain determines the balance and the
state of the contracts [3].

2.2 Ethereum Clients

The Ethereum network consists of a distributed set
of miner nodes that validate transactions, execute
smart contracts, and store blocks. A fee is paid to the
miners for their service which is measured in terms
of gas. Gas can be considered as the fuel required
to run the Ethereum network. It is the fee payed for
transaction validation, block mining, and smart con-

ISeCure

January 2024, Volume 16, Number 1 (pp. 37–53) 39

tract execution. Gas payment also acts as an inhibitor
against wasting network resources by low-value and
useless transactions. The gas price (in Ether) dynam-
ically changes in a competitive manner according to
a supply and demand mechanism [3].

A node runs an Ethereum client. The client imple-
ments the Ethereum protocols that verify transac-
tions, create blocks, keep its data accurate, and secure
the network. The Ethereum community maintains
multiple open-source clients, developed by different
teams using different programming languages [7]. Ta-
ble 1 summarizes the specifications of these different
clients.

3 Related Works

In this section, we introduce the researches in the
field of smart contract security focusing on the pro-
tection of Ethereum smart contracts. Our review of
the related works is categorized into offline and online
methods which are presented subsequently.

3.1 Offline Methods

Luu et al. [14] investigated the security of Ethereum
smart contracts, and highlighted four security weak-
nesses which may be exploited by an adversary to
manipulate the execution of a smart contract and
gain profit: (1) transaction-ordering dependence, (2)
timestamp dependence, (3) mishandled exceptions,
and (4) reentrancy. They developed the Oyente tool
for symbolic execution of Ethereum smart contracts
to detect these vulnerabilities. Among the 19,366
Ethereum smart contracts under their review, the
Oyente flags 8,833 of them as vulnerable. TheDAO
vulnerability which led to the loss of 60 million USD
in June 2016, was also identified by Oyente.

Tsankov et al. [15] present Securify, a security ana-
lyzer for Ethereum smart contracts that is scalable,
fully automated, and able to prove contract behaviors
as safe/unsafe with respect to a given property. The
input to Securify is the EVM bytecode of a contract
and a set of security patterns. Securify’s analysis con-
sists of two steps. First, it symbolically analyzes the
contract’s dependency graph to extract precise se-
mantic information from the code. Then, it checks
compliance and violation patterns that capture suf-
ficient conditions for proving if a property holds or
not. To enable extensibility, all patterns are specified
in a designated domain-specific language (DSL).

MythX [16] automatically scans for security vul-
nerabilities in smart contracts written for EVM-
compatible blockchains. When developers submit
their code to the MythX API, it gets analyzed by
multiple microservices in parallel: A static analyzer

that parses the abstract syntax tree (AST) of the So-
lidity code, a symbolic analyzer that detects possible
vulnerable states, and a greybox fuzzer that detects
vulnerable execution paths. These tools cooperate
to generate the results. Finally, MythX provides an
analysis report which lists all the weaknesses found
in the code, including the exact position of the issue.

Tikhomirov et al. [17] provide a comprehensive clas-
sification of code issues in Solidity and implement the
SmartCheck static analysis tool. The tool translates
Solidity source code into an XML-based intermediate
representation and checks it against weakness signa-
tures specified by XPath patterns. SmartCheck has
its limitations, as detection of some bugs requires
more sophisticated techniques such as taint analysis
or even manual audit.

Kalra et al. [18] present the ZEUS framework to
verify the correctness and validate the fairness of
smart contracts. They consider correctness as adher-
ence to safe programming practices, while fairness
is adherence to an agreed-upon higher-level business
logic. ZEUS leverages both abstract interpretation
and symbolic model checking, along with the power
of constrained horn clauses to quickly verify contracts
for safety. A prototype of ZEUS was developed and
run against over 22.4K smart contracts. The evalu-
ation indicated that about 94.6% of the contracts
(keeping cryptocurrency worth more than 0.5 billion
USD) are vulnerable.

Mossberg et al. [19] present Manticore, that em-
ploys symbolic execution to find unique computation
paths in EVM (and ELF) binaries. It checks the traces
for vulnerabilities like reentrancy and reachable self-
destruct operations, and reports them in the context
of the source code.

Mythril [20] is a command-line tool in Python for
analyzing smart contracts interactively. It uses sym-
bolic execution, SMT solving and taint analysis to
detect a variety of security vulnerabilities. It detects
security vulnerabilities in smart contracts built for
Ethereum, Hedera, Quorum, Vechain, Roostock, Tron
and other EVM-compatible blockchains.

3.2 Online Methods

Azzopardi et al. [21] developed the ContractLarva
tool for runtime verification of Solidity smart con-
tracts. ContractLarva takes the contract code as well
as a contract-related specification as its input, and
generates a new contract in the Solidity language that
behaves like the original contract and also monitors
its runtime behavior against the specification.

Wang et al. [22] introduced ContractGuard which
is an intrusion prevention system (IPS) for Ethereum

ISeCure

40 Safety Guards for Ethereum Smart Contracts — Amirmohseni and Dorri

Table 1. Notable Ethereum clients [7]

Client Language Operating systems Networks

Geth [8] Go Linux, Windows, MacOS Mainnet, Sepolia, Görli,

OpenEthereum [9] Rust Linux, Windows, MacOS Mainnet, Sepolia, Görli, and more

NEthermind [10] C# .NET Linux, Windows, MacOS Mainnet, Sepolia, Görli, and more

Hyperledger Besu [11] Java Linux, Windows, MacOS Mainnet, Sepolia, Görli, and more

Trinity [12] Python Linux, MacOS Mainnet, Sepolia, Görli

Erigon [13] Go Linux, Windows, MacOS Mainnet, Sepolia, Görli, and more

smart contracts. The protection is provided in three
phases: (1) training, (2) protection, and (3) alarm-
verification. ContractGuard’s code is embedded in the
contracts to profile context-tagged acyclic paths and
stop abnormal control flows. It is optimized for a min-
imal gas consumption with respect to the Ethereum’s
gas-oriented performance model.

Wang et al. [23] introduced the FSFC input-
filtering framework for smart contracts. FSFC is
designed to allow Ethereum smart contracts to run
normally even in the face of attacks. In particular, it
dynamically identifies and rejects bad inputs before
they are given to contracts for processing. In this ap-
proach, a contract owner can add new filters to FSFC
and protect his/her contract without disrupting its
service. Once a contract is found to be vulnerable,
the detection tools can generate the required filters
to be added to guard against bad inputs.

Rodler et al. [24] introduced Sereum for protecting
existing smart contracts againts re-entrancy attacks
based on runtime monitoring and validation. It does
not require any modification of existing contracts and
is able to cover the actual execution flow of a smart
contract to detect and prevent re-entrancy attacks.

Torres et al. [25] introduced ÆGIS, a dynamic
analysis tool that protects smart contracts during
runtime. Their idea is to bundle every Ethereum
client with a runtime analysis tool, that interacts with
the EVM and is capable of interpreting some attack
patterns, and reverting transactions that match the
patterns. Attack patterns are described using their
domain-specific language (DSL), and are voted upon
and stored via a smart contract.

Li et al. [26] introduced Solythesis, a source to
source Solidity compiler which takes a smart contract
code and a user specified invariant as the input and
produces an instrumented contract that rejects all
transactions that violate the invariant. It automati-
cally instruments a Solidity smart contract with cus-
tom invariants. Compared to Solidity, its specification
language for invariants contains additional features,

including quantifiers and sums. It also has a high gas
overhead because of the runtime checks.

4 The Proposed Method

An overview of our proposed method is depicted in
Figure 1. The contract developer starts the process
and analyzes the source code using the existing offline
methods, and fixes the identified weaknesses. Then,
the contract owner uses our user interface (UI), selects
the appropriate guards, and sets their parameters.
The UI generates small pieces of code to be added to
the contract’s source code. Once a transaction is sent
to the contract, our enhanced version of the Ethereum
client determines the enabled guards, and protects
the contract from potential attacks.

The safety guards reassure the contract owner that
if there is a vulnerability in the contract, it cannot be
exploited. Our method is not bound to specific vulner-
abilities or attack methods. Therefore, this method is
proactive and preventive and the guards can prevent
all related potential attacks even if they exploit zero-
day vulnerabilities. In addition, the safety guards
have access to all the runtime information which may
not be accessible to offline methods and within a con-
tract’s code. Our method can be easily applied to pri-
vate and enterprise implementations of the Ethereum
network. Nonetheless, a soft-fork is required for wide-
scale use in the Ethereum mainnet.

If our method is not used, the respective restric-
tions must be implemented in the source code of the
contract (if possible). For the following reasons, we be-
lieve that the runtime enforcement is a better choice
than integrating the guards in the source code:

• The safety checks will be spread out in different
parts of the source code. The checks can be
easily forgotten or not properly enforced (e.g., in
assembly code). In addition, there are possible
ways to bypass them in delegate calls.

• The checks can complicate the code of the con-
tract and make it less readable.

• There is an about 25KBs limit on the size of
the bytecode of a contract. If the checks are

ISeCure

January 2024, Volume 16, Number 1 (pp. 37–53) 41

1 2

4

8

Contract call

(transaction)

Execute
Protect

the contract

Continue

execution

Developer

3

Owner

User

Smart contract

Safety guards
Protection-ready

smart contract

Contract

deployment

(transaction)

User interface
Code Snippet for

guard setup

5

6

7

Correct identified

weaknesses

Miner

Analyze with

offline tools

Blockchain

1 2

4

8

Contract call

(transaction)

Execute
Protect

the contract

Continue

execution

Developer

3

Owner

User

Smart contract

Safety guards
Protection-ready

smart contract

Contract

deployment

(transaction)

User interface
Code Snippet for

guard setup

5

6

7

Correct identified

weaknesses

Miner

Analyze with

offline tools

Blockchain

Figure 1. An overview of our proposed method

integrated into the source code, they will make
more pressure on the implementation of the
main functionality of the contract.

• The checks in the source code will increase gas
consumption of all method calls, while in our
proposal, the miners get an extra fee (the re-
maining gas) for the violating transactions.

• Adding the checks to a contract’s code in a
proper way requires a sufficient level of pro-
gramming knowledge that the contract owner
may not have.

• A wider range of safety guards can be imple-
mented in the runtime than in the source code
because the contracts do not have access to all
the runtime data.

The last point is an important advantage of our
method and needs more explanation. There is data
that is not directly accessible by the contract code
because it is related to the Ethereum network and
its nodes. As an example consider the accurate gas
consumption, for which we have also implemented
a guard. While it may be possible for a contract to
keep an eye on gas consumption in specific points
in the contract, but it is not possible to track gas
consumption. Other examples are as follows:

• Transactions in the current block and their or-
der

• Network statistics
• All other real-world data is not exposed by EVM
to contracts

More detail about our proposal is given subse-

quently.

4.1 The User Interface

There is no need for fundamental changes in the con-
tract’s source code for using the guards; only the re-
quired parameters are necessary to be added to the
code. The contract owner selects the guards through
a simple user interface (UI) and sets their parame-
ters. Subsequently, small Solidity code snippets are
generated to be inserted in the contract’s code. Our
user interface is similar to Figure 2.

4.2 The Enhanced Runtime

In order to activate and use each guard, it is nec-
essary for the contract owner to insert the guards’
parameters in the source code of the contract, so that
when the contract is deployed, the parameters are
also sent to the network.

The general flow of the guards are depicted in Fig-
ure 3. During the processing of a transaction, our
enhanced runtime determines if the contract involves
some safety guards. If so, their conditions are checked
for the transaction and in case of encountering the
prohibited conditions, the transaction is aborted and
the network state will not be updated. All the remain-
ing gas will also be consumed as a motivation for the
miners for implementing the safety guards. Since the
guards are implemented at the lowest level and in the
runtime, it is not possible to bypass them.

ISeCure

42 Safety Guards for Ethereum Smart Contracts — Amirmohseni and Dorri

Guard Selector Interface

Get Code

Balance Guard

Select the guard and set the parameters:

Variable Guard

Gas Guard

Guard Parameter:

Admin Address:

Add this code to your contract:

Figure 2. The user interface of the proposed method

Determine the parameters

Update housekeeping

data in the contract

Abort

transaction

Yes

Contract call transaction

Other transaction types

No

Continue

execution

Check

transaction

type

Is

the guard

activated?

Guard

1

Guard

2

Guard

3

Transaction

Check the

conditions

Pass Fail

Figure 3. The transaction execution process and the general flow of the guards

4.3 Administration of the Guards

The guard administration feature allows a predefined
administrator to update the value(s) of a guard’s
parameter(s). The feature is optional and can be
enabled by defining a guard update function in the
contract’s code which is generated by the UI. All
modifications to the slots containing the parameters
of the guards, either by this function or any other
way, are checked by the enhanced runtime to be only
from the administrator’s address (if defined). By the
way, manipulation of housekeeping data related to
the guards are totally prohibited.

4.4 The Safety Guards

Although the main focus of the paper has been on
the idea of using the safety guards, we propose three
guards in this section to better showcase our pro-

posal. Nonetheless, the proposal is not limited to these
guards, and other safety guards can also be integrated
into the implementation. The proposed safety guards
are explained in the following subsections. We also
state some of the smart contract weaknesses (base
on SWC-Registry [27]) that can be protected by each
guard.

4.4.1 Contract Balance Guard

The balance guard sets a limit on the amount of with-
drawals from the contract during a time interval. If a
zero-day vulnerability occurs that can be exploited to
completely drain the contract balance, this guard can
protect the contract and slow down such an attack. In
particular, the guard monitors the amounts decreased
from the contract’s balance in a predefined time-

ISeCure

January 2024, Volume 16, Number 1 (pp. 37–53) 43

frame. If the amount exceeds an owner-set threshold,
no more transfers are allowed, and the related trans-
actions will be reverted until a new time-frame begins.
It gives the contract owner, the opportunity to use
compensatory solutions and prevents a fatal attack.
Some weaknesses such as SWC-104 2 , SWC-105 3

and SWC-107 4 can be protected by this guard.

4.4.2 Contract Variable Guard

This guard protects the storage slots (data fields) of
the contract from being changed inadvertently. For
example, a variable containing the address of the
contract’s owner(s) is a typical target for attackers.
It is common for smart contract attackers to first
exploit a vulnerability to change the owner(s) and
then, misuse the authority of the owner(s) for their
benefit. This guard can prevent these types of attacks,
in the first place. Some weaknesses such as SWC-
106 5 , SWC-109 6 and SWC-124 7 can be protected
by this guard.

4.4.3 Gas Guard

This guard monitors the average gas consumption re-
lated to the contract’s transactions, and keeps them
below an owner-set threshold. This guard would have
been used to stop the well-known attack to the Fair-
Win contract which drained the contract’s balance.
The sign that made researchers suspicious for the at-
tack was unusual and high consumption levels of gas
over a period of one month [28]. By using this guard,
the attacker’s ability for misuse is totally confined.
Some weaknesses such as SWC-105 8 , SWC-107 9

and SWC-128 10 can be protected by this guard.

4.4.4 Motivation for the Miners

In order to account for the extra processing required
for safety guards, we take an approach similar to
Wang et al. [23]. In particular, we avoid from chang-
ing the gas consumption of EVM opcodes but if a
transaction is aborted because of violating a guard,
the entire gas amount assigned to that transaction
is paid to the miners and no gas is refunded to the
caller.

By the way, if attackers are able to extract a large
amount of asset by exploiting vulnerable contracts,

2 https://swcregistry.io/docs/SWC-104
3 https://swcregistry.io/docs/SWC-105
4 https://swcregistry.io/docs/SWC-107
5 https://swcregistry.io/docs/SWC-106
6 https://swcregistry.io/docs/SWC-109
7 https://swcregistry.io/docs/SWC-124
8 https://swcregistry.io/docs/SWC-105
9 https://swcregistry.io/docs/SWC-107
10https://swcregistry.io/docs/SWC-128

this can adversely affect the cryptocurrency price and
subsequently the miners’ profits. So, it is good for
miners to run guards and try keeping the contracts
secure.

4.5 The Guards’ Parameters

We reserve specific smart contract storage slots to
store the guards’ parameters and their housekeeping
data. There are a total of 2256 free storage slots, and
we use at most 7 slots for guards’ parameters and
20 slots for housekeeping data (in case all guards
are enabled). The guards’ parameters are set in the
constructor of the contract using the SStore EVM
assembly instruction.

The balance guard needs one storage slot to store
the withdrawals limit amount, the variable guard
needs four storage slots to store the sensitive variable’s
index and three valid values, and the gas guard needs
one storage slot to store the gas usage threshold. The
gas guard also requires 20 more storage slots to store
some housekeeping data. In particular, 10 slots keep
block numbers, and 10 others keep the gas usage per
block. All the guards share the same parameter which
stores the administrator’s address (if defined) or a
non-zero value (if no administrator defined). Should
one of these slots be updated, only the admin is
allowed to do so.

The contract owner should ensure that the set
parameters reflect the normal behavior of the contract
and minimize the chance that a normal transaction is
stopped by a guard. This setting can be found during
the test phase of the contracts (beta test, before the
final release of the contract), and the parameters of
the guards should be set accordingly.

4.6 Possible Side Effects

One may be concerned about the side effects of the
guards and worry about new attacks which misuse the
guards. We elaborate on three possibilities for this:

(1) The contract has not been under attack and
normal transactions have been canceled by mis-
take (false positive). In order to prevent this,
the owner should set the guards’ parameters,
carefully.

(2) An attacker somehow benefits from the fea-
ture of canceling suspicious transactions, and
arranges conditions so that a certain transac-
tion is not executed successfully. Since it is not
possible for the attacker to interfere in the exe-
cution of other users’ transactions, he/she can
only persuade others to execute a transaction
that will be canceled. In this case, the guard
performs its purpose and properly stops the at-

ISeCure

https://swcregistry.io/docs/SWC-104
https://swcregistry.io/docs/SWC-105
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-109
https://swcregistry.io/docs/SWC-124
https://swcregistry.io/docs/SWC-105
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-128

44 Safety Guards for Ethereum Smart Contracts — Amirmohseni and Dorri

tacker.
(3) If the performance of the transaction execution

is dramatically affected because of the guards,
they may limit the blockchain’s TPS (transac-
tions per second). We will later demonstrate
that our guards have a little overhead. However,
in the case that some guards other than the
proposed ones are implemented in the runtime,
great care should be taken about their imple-
mentation efficiency. In addition, the guards
should be enabled only when necessary, and the
other offline code analysis methods should be
used as much as possible to prevent vulnerabili-
ties.

We explain the second point above as follows. Con-
sider a case where the attacker aims to prevent the
execution of some transactions by misusing the bal-
ance guard. In this case, in the presence of a balance
guard, the attacker can make a weaker attack than
normal, because:

• The guards prevent the rapid discharge of the
contract balance, so when there is a vulnerabil-
ity in the contract, it gives the contract owner
the opportunity to use compensatory solutions
and prevents a fatal attack.

• The attacker’s offensive action has a temporary
effect on the contract and by passing the time
frame, the users can withdraw from the contract
again.

• There is no guarantee that the attacker can
repeat his attack again at the beginning of the
next frame, because the order of transactions
in a block and what transaction goes in a block
is not set by the attacker.

• This attack has costs for the attacker because
he must first deposit a balance in the contract
to be able to withdraw that.

5 Implementation

Performance and evaulation of safety guards depends
on each specific guard and its method of implementa-
tion. It is also essential to ensure that the implemen-
tation is done with minimum overhead. The guards’
parameters themselves usually do not take up much
space, but can be troublesome if a guard needs to lot
of storage slots to maintain state. In the following sub-
sections, we explain the details of our implementation
of the three proposed guards in the open-source Hy-
perledger Besu client [11]. Our main focus has been
on the idea of using the safety guards and introduced
these three sample guards for a better understanding
of the idea and evaluations. More guards should be
implemented according to our proposal to make a
full-featured product.

5.1 Reserved Slots

In our implementation, the reserved slots for the
guards are fixed for all contracts, and each slot is used
to store the value of a specific parameter. For example,
if we consider S1 to S7 as the reserved slots, S1 is
always used to store the address of the guards’ admin.
We also look at the guard admin slot to determine
whether the contract owner has enabled any guards
or not. In particular, the storage slots are empty by
default, and a non-zero value in one of the reserved
ones indicates that the related guard is enabled.

5.2 Implementation of the Balance Guard

We limit the time-frame for the balance guard
according to the number of confirmed blocks. In
this implementation, we keep track of the total
amount of withdrawals from the contract’s bal-
ance in successive block groups each containing a
hundred block. The guard is implemented in the
MainnetTransactionProcessor class of the Besu
client, and a total of three storage slots are reserved
for the guard—one for the amount limit, and two
additional slots to store the last block number and
the accumulative amounts of withdrawals in the cur-
rent time-frame. If a transaction involves a transfer,
its block number is divided by 100 and compared to
the last transfer block number (also divided by 100).
If the results are different, it means that the new
transaction is in a new frame and the withdrawal
limit have to be reset (e.g., blocks 199 and 200 are
in different time-frames). Otherwise, the frame has
not ended yet, and the transfer is validated against
the set threshold. If the threshold is exceeded, the
transaction will be aborted and the network state
will not be updated. All the remaining gas will also
be consumed.

5.3 Implementation of the Variable Guard

Whenever a value is assigned to a contract variable
(slot), or its value is updated, the SStore opcode is
executed in the EVM. Therefore, we implemented the
variable guard inside the SStoreOperation class of
Besu (besides other EVM operations). The inputs to
SStore are a slot number (key) and a new value. The
implementation simply checks the inputs against the
guard parameters. If the slot number is different or the
new value is valid, the normal execution will proceed.
Otherwise, the transaction will be aborted and the
network state will not be updated. All the remaining
gas will also be consumed. In our implementation,
the contract owner can specify at most three different
valid values for a variable. Hence, the guard requires
four parameters in addition to the admin address.
The first parameter defines the storage slot of the

ISeCure

January 2024, Volume 16, Number 1 (pp. 37–53) 45

Table 2. An example “block number – gas usage” array

Block Number Gas Usage

110 63,900

101 21,300

.

129 42,600

sensitive variable, and the other parameters specify
the three valid values. Nonetheless, the guard can also
be implemented for range checks in a similar way.

5.4 Implementation of the Gas Guard

We implemented the gas guard in the
MainnetTransactionProcessor class of the Besu
client. In this implementation, the gas consumed in
the last 10 blocks (with transactions targeting the
protected smart contracts) is always examined (10
blocks are considered as a simple implementation and
more blocks can be considered). The contract owner
sets the desired limit on average gas consumption
in the guard’s parameter. If several transactions are
sent to the contract in one block, the sum of their
consumed gas is considered as the gas consumption
of the contract in the block. In the case that no
transaction is sent to the contract in a block, a zero
gas value will be accounted for that block.

The block numbers and the gas consumed in each
block are stored in the contract storage slots, and
the guard has access to this array of data (see Ta-
ble 2). In this array, the remainder of dividing the
block number by 10 determines the row to be up-
dated or overwritten. If the existing data is older than
the 10 preceding blocks, it will be overwritten. Other-
wise, the value will be updated. The gas guard uses
this data to calculate the average gas consumption in
the last 10 blocks and compare it with the threshold
value. If the amount exceeds the threshold, the trans-
action will be cancelled, and all the remaining gas is
consumed. Otherwise, the gas usage and the block
number of the transaction are stored in the contract
storage for future checks.

6 Case Study

This section provides practical examples of using each
guard and shows how a guard can protect a contract.

6.1 Contract Balance Guard Case Study

This guard limits the Ether withdrawal from the
contract’s account. We consider an initial contract
which is listed in Contract 1. This contract has two
functions. The pay function is defined to deposit to

the contract’s account and the withdraw function
is defined for withdrawal. By enabling the contract
balance guard, it will monitor the changes in the
contract’s balance during a 100-block time-frame.

1pragma solidity ^0.4.0;

2contract GUARD1 {

3function pay() public payable {

4}

5function withdraw(uint32 amount) public {

6msg.sender.transfer(amount);

7}

8}

Contract 1. The initial contract before enabling the balance

guard

For using the balance guard, the owner enters the
desired threshold in the unit of Wei (10−18 Ether) and
the address of the guard admin in the UI. In our exam-
ple, the address of the guard admin is 0xFE3B...Bd73
and the amount of the threshold is 5× 109 Wei. Af-
ter entering these values, the user interface generates
the required Solidity code to be added to the con-
tract’s source code. The final source code is listed
in Contract 2. The guard parameters are set in the
constructor of the contract (EVM assembly), and
a function named updateGuard1 has been added to
the contract. The admin can update the withdrawal
threshold by calling this function. The calls to the
method from other addresses will be aborted.

1pragma solidity ^0.4.0;

2contract GUARD1 {

3constructor() public {

4assembly {

5sstore(10000,

60xFE3B557E8Fb62b89F4916B721be55cEb828dBd73)

7sstore(10001, 5000000000) }

8}

9function pay() public payable {

10}

11function withdraw(uint32 amount) public {

12msg.sender.transfer(amount);

13}

14function updateGuard1(uint256 update) public {

15assembly {

16sstore(10001, update)

17}

18}

19}

Contract 2. The contract’s code with the balance guard

6.2 Contract Variable Guard Case Study

This guard controls the changes in the sensitive stor-
age variables of the smart contract. We consider an

ISeCure

46 Safety Guards for Ethereum Smart Contracts — Amirmohseni and Dorri

initial contract which is listed in Contract 3. In this
contract, the contract’s owner address is stored in a
variable called owner. There is also a function named
changeOwner that can be called to change the ad-
dress of the contract owner.

1pragma solidity ^0.4.0;

2contract GUARD2 {

3address owner;

4constructor() public {

5owner = msg.sender;

6}

7function changeOwner() public {

8owner = msg.sender;

9}

10}

Contract 3. The initial contract before enabling the variable
guard

For demonstration purposes, we consider that only
the following three addresses are allowed to be set
as the owner: 0xFE3B...Bd73, 0xF17F...B732, and
0xAC8A...BE17. In order to enable the variable guard,
the owner enters the name of the sensitive variable,
the allowed values, and the address of the guard
admin (0xFE3B...Bd73) in the UI. Subsequently, it
generates a few lines of Solidity code to be added to
the contract’s code.

The final source code is listed in Contract 4. The
guard parameters are placed in the constructor of
the contract (EVM assembly), and a function named
updateGuard2 has been added to the contract. Only
the admin can update the three allowed values by
calling the update function.

6.3 Gas Guard Case Study

This guard cancels a transaction when the average
gas consumption exceeds an owner-defined thresh-
old. As an example, we consider an initial contract
which is listed in Contract 5. For using the gas guard,
the contract owner specifies the threshold amount.
For instance, he/she may choose 200,000 gas, and
enter it in the UI along with the admin address
(0xFE3B...Bd73). The UI generates the required So-
lidity code, and the owner integrates them into the
contract’s code. The threshold amount and the ad-
min address are stored in their respective slots in the
constructor, and the updateGuard3 function is added
to the contract for updating the threshold amount
(only by the admin). The resulting code is listed in
Contract 6.

1pragma solidity ^0.4.0;

2contract GUARD2 {

3address owner;

4constructor() public {

5owner = msg.sender;

6assembly {

7sstore(10000,

80xFE3B557E8Fb62b89F4916B721be55cEb828dBd73)

9sstore(10002, owner_slot)

10sstore(10003,

110xFE3B557E8Fb62b89F4916B721be55cEb828dBd73)

12sstore(10004,

130xF17F52151EBEF6C7334FAD080C5704D77216B732)

14sstore(10005,

150xAC8A541C8FC62b89F7956B141be75cED828ABE17) }

16}

17function changeOwner() public {

18owner = msg.sender;

19}

20function updateGuard2(uint256 update1,

21uint256 update2, uint256 update3) public {

22assembly {

23sstore(10003, update1)

24sstore(10004, update2)

25sstore(10005, update3) }

26}

27}

Contract 4. The contract’s code with the variable guard

1pragma solidity ^0.4.0;

2contract GUARD3 {

3uint256 a = 1;

4uint256 b = 2;

5function fun1() public view returns (uint256) {

6return a;

7}

8function fun2() public view returns (uint256) {

9return b;

10}

11}

Contract 5. The initial contract before applying the gas guard

6.4 The SimpleDAO Case

This section introduces a real-world vulnerable con-
tract and uses a safety guard for its protection. This
contract, the SimpleDAO 11 , is a simplified version
of TheDAO contract which raised about 150M USD
before being attacked in 2016. SimpleDAO allows par-
ticipants to donate Ether to fund other contracts at
their choice, and the selected contracts can later with-
draw the allocated funds. The vulnerable code [29] is
listed in Contract 7.

The re-entrancy vulnerability of this contract al-
lows an adversary to steal all its Ether. The first

11https://swcregistry.io/docs/SWC-107#simple_daosol

ISeCure

https://swcregistry.io/docs/SWC-107#simple_daosol

January 2024, Volume 16, Number 1 (pp. 37–53) 47

1pragma solidity ^0.4.0;

2contract GUARD3 {

3uint256 a = 1;

4uint256 b = 2;

5constructor() public {

6assembly {

7sstore(10000,

80xFE3B557E8Fb62b89F4916B721be55cEb828dBd73)

9sstore(10007, 200000) }

10}

11function fun1() public view returns (uint256) {

12return a;

13}

14function fun2() public view returns (uint256) {

15return b;

16}

17function updateGuard3(uint256 update) public {

18assembly {

19sstore(10007, update) }

20}

21}

Contract 6. The contract’s code with the gas guard

1pragma solidity 0.4.24;

2contract SimpleDAO {

3mapping (address => uint) public credit;

4function donate(address to) payable public{

5credit[to] += msg.value;

6}

7function withdraw(uint amount) public{

8if (credit[msg.sender]>= amount) {

9require(msg.sender.call.value(amount)());

10credit[msg.sender]-=amount;

11}

12}

13function queryCredit(address to) view public

14returns(uint) {

15return credit[to];

16}

17}

Contract 7. The SimpleDAO contract before applying the gas

guard

step of the attack is to publish another contract,
the Mallory contract, which is listed in Contract 8.
Then, the adversary donates some Ether for Mallory,
and invokes the Mallory’s fallbackfunction. Sub-
sequently, the function invokes withdraw, and the
Ether is transferred to Mallory. Now, the function
call used for this purpose has the side effect of in-
voking the Mallory’s fallback again, which mali-
ciously calls back withdraw for a second time. Note
that the withdraw function transfers the fund before
updating the credit, and the check at line 11 suc-
ceeds again [29]. The attack continues in the same
fashion until the attacker-set limit on the number of
re-entrant calls is reached.

1pragma solidity 0.4.24;

2contract Mallory {

3SimpleDAO public dao = SimpleDAO(0x354...);

4address owner;

5uint n;

6constructor() public {

7owner = msg.sender;

8}

9function () {

10if (n > 0) {

11n--;

12dao.withdraw(dao.queryCredit(this));

13}

14}

15function attack(uint limit) {

16n = limit-1;

17dao.withdraw(dao.queryCredit(this));

18}

19function getJackpot (){

20owner.send(this.balance);

21}

22}

Contract 8. The Mallory contract

The gas guard is a good choice for protecting the
SimpleDAO contract and limiting the attacker’s ben-
efit. In order to use the guard, we set a limit of 1M
gas for the guard. The modified source code is listed
in Contract 9.

When the attacker wants to exploit the (existing)
re-entrancy vulnerability, after a few transactions,
the gas consumption limit will be exceeded and the
attacker’s transactions will be failed. In the mean-
time, the contract stakeholders have some time to
ban any further deposits to the contract.

7 Evaluation

In this section, we demonstrate the results of our
evaluations and compare our proposed method with
some other smart contract protection methods. First,
a qualitative comparison is made between the features
of the proposed method and the other methods, then
the details of the costs and overheads are provided.

7.1 Comparison with the Related Works

In order to have a fair comparison, we selected the
most important criteria and discuss them one-by-
one in the following. The evaluations related to the
overheads are performed in a separate subsection, and
we do not discuss them here. Table 3 summarizes the
results of the comparison.

ISeCure

48 Safety Guards for Ethereum Smart Contracts — Amirmohseni and Dorri

Table 3. Comparison between the proposed method and the other methods

 Feature

Tool

Protection

Time

Changes

in the Contract

Changes

in the Runtime
Overhead Customizability

Practical

Restrictions

User

Friendliness

Proposed Mechanism
After

Deployment
Little Changes Little Changes Low Yes No Yes

Offline Tools [14]-[20]
Before

Deployment

Little to Extensive

Changes
No Change

No

Overhead
No Yes No

Online

Tools

Contract

Larva [21]

After

Deployment
Extensive Changes No Change Medium Yes Yes No

Contract

Guard [22]

After

Deployment
Extensive Changes Little Changes High No Yes No

FSFC [23]
After

Deployment
Little Changes Extensive Changes Medium No No No

Sereum

[24]

After

Deployment
No Change Extensive Changes Low No Yes Yes

ÆGIS [25]
After

Deployment
No Change Extensive Changes N/A Yes No No

Solythesis

[26]

After

Deployment
Extensive Changes No Change High Yes Yes No

1pragma solidity 0.4.24;

2contract SimpleDAO {

3mapping (address => uint) public credit;

4constructor() public {

5creator = msg.sender;

6assembly {

7sstore(10000,

80xFE3B557E8Fb62b89F4916B721be55cEb828dBd73)

9sstore(10007, 1000000) }

10}

11function donate(address to) payable public{

12credit[to] += msg.value;

13}

14function withdraw(uint amount) public{

15if (credit[msg.sender]>= amount) {

16require(msg.sender.call.value(amount)());

17credit[msg.sender]-=amount;

18}

19}

20function queryCredit(address to)

21view public returns(uint){

22return credit[to];

23}

24function updateGuard3(uint256 update) public {

25assembly { sstore(10007, update) }

26}

27}

Contract 9. The SimpleDAO contract with the 1M gas guard

7.1.1 Protection Time

Our proposal is an online method, and starts working
right after the contract is deployed in the network.
This makes it possible to access real runtime infor-
mation, and protect the contract against real vulner-
abilities, whereas offline methods cannot access such
information which may be critical in spotting the
misuses.

7.1.2 Changes in the Contract

In our proposed method, some parameters (in the
form of short Solidity code snippets) are added to the
contract’s source code. However, the changes are not
fundamental which is not the case in all the methods
that change the contract’s code. We keep the structure
of the final contract the same as the original contract
and do not hinder its readability. This positive aspect
also opens the possibility for the UI to generate the
code snippets for other smart contract programming
languages.

7.1.3 Changes in the Runtime

In our method, a protection code is added to the run-
time. It is more effective in protecting the contract
than the offline tools and methods that add a protec-
tion code to the contract’s source code. By the way,
our changes to the runtime do not conflict with the
original Ethereum runtime, and can be adopted by
the Ethereum public network in the form of a soft
fork. As we mentioned before, the miners receive all
the remaining gas for transactions aborted by our
guards, it can be considered as a motivation for run-
ning our improved client. In fact, it is not necessary
to use a guard for all contracts, and they can be used
in normal conditions without using the guards.

7.1.4 Customizability

In our proposal, all contracts are not protected in
the same way. The owners of the contracts can select
the guards to be used (or do not enable any guards
at all), and adjust their parameters according to the
nature of their contracts. Therefore, the conditions
are checked differently for each contract. Also, this
method can protect contracts against different attack
types, but some tools such as Sereum [24] only focus
on a single vulnerability.

ISeCure

January 2024, Volume 16, Number 1 (pp. 37–53) 49

7.1.5 Practical Restrictions

Due to the small additions to the contract’s code, our
proposed method can also be used for big contracts.
In other words, we do not decrease the maximum pos-
sible size of code by our protection method. In con-
trast, some other (online) protection methods are not
applicable to big contracts due to the large amounts
of code they require to be added to the source code.

7.1.6 User Friendliness

Most methods require deep knowledge of smart con-
tract programming, but in our method there is no
need for such a deep knowledge, and our user inter-
face generates the required code, and they can sim-
ply be added to the contract’s code with a minimum
programming knowledge.

7.2 Performance Evaluation

We evaluate the performance of our implementation
with respect to (1) the increased code size for incor-
porating the guard parameters (deployment gas cost),
and (2) the extra processing time for guards (execu-
tion overhead for the miners). In order to perform
the evaluations, we ran a local test Ethereum net-
work consisting of three Besu clients and deployed
our test contracts from the preceding section on the
network. Then, we called several methods of the de-
ployed contracts, and measured the gas consumption
and transaction processing time of the transactions.
We followed this process for an original Besu client
as well as our improved version, and compared the
results under the same conditions. In the following,
we report and discuss the results.

7.2.1 Transaction Processing Time

In this section, we report and examine the process-
ing time of different transactions and compare them
with the original Besu client without implementing
the safety guards. Our proposal should have little
impact on normal users. Therefore, we evaluated the
processing time for three cases: (1) sending a contract
deployment transaction to the network; (2) sending a
transaction to a contract without any guards; and (3)
sending a transaction to a contract with a guard that
do not violate any of the terms of the guard. For this
purpose, we launched a private network with three
nodes running the original version of Besu, and an-
other version of the same network by our improved
version (denoted by Besu+). For each guard, we sent
a transaction for 30 times under the same conditions
to both the normal and the improved networks, and
measured the average transaction processing time.

Table 4. The time overhead for method calls to contracts with

the guards in the upgraded environment

Node

Guard
Balance Variable Gas

Node 1 5.65% 24.82% 69.23%

Node 2 7.03% 23.72% 70.18%

Node 3 4.06% 29.82% 60.99%

The experiments were done on a 2.5GHz Intel
4710HQ processor with 4-cores and 8GBs of RAM
running the Ubuntu 20.04 OS. The version of the
original Hyperledger Besu client was 20.10.2. Figure 4
demonstrates the method call processing time (with-
out any guard), and Figure 5 illustrates the contract
deployment processing time for the different guards
for each of the nodes in the two environments.

These results demonstrate that in the two cases
of (1) sending a transaction to a contract without
a guard and (2) deploying a new contract, the two
environments have a processing time difference of
less than 10%. It is noteworthy that according to our
observations, this difference is quite negligible and
fits in the error range of the measurements. We also
measured the method call processing time for the
transactions which were sent to the contracts with
the guards. The results are depicted in Figure 6 and
the overhead is reported in Table 4. The latter repre-
sent the average processing time of one transaction.
According to Table 4, the added overhead when using
the balance guard is about 5% and for the variable
guard is about 30%. However, the overhead is about
70% for the gas guard because it performs more op-
erations to store and calculate the gas consumption
for each block.

We have changed very limited parts of the runtime
code, and as much as possible, we have tried to opti-
mize the changes to reduce the overhead of the newly
added processes. In particular, the overhead of exe-
cution of a guard in comparison to the original Besu
code is not dependent to guard parameters or user
input. In all guards only a few values are stored in
storage slots and a small set of conditions are checked
for each transaction to check for signs of an attack.
It should be noted that in the runtime, many con-
ditions are checked to validate each transaction by
default, and we have added only a limited number
of new conditions to these cases. Also, the necessary
tests have been done on our codes to identify and fix
their possible bugs and make them as bug-free and
vulnerability-free as possible.

Our evaluations were measured for very simple
and basic contracts (with a size between 500 and

ISeCure

50 Safety Guards for Ethereum Smart Contracts — Amirmohseni and Dorri

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Node 1 Node 2 Node 3

P
ro

ce
ss

in
g
 T

im
e
 (

n
s)

M
il

li
o
n

s

Besu

Besu+

Figure 4. Method call processing time for contracts without any guards in normal and upgraded environments

(a) Deployment time for the balance guard

(b) Deployment time for the variable guard

(c) Deployment time for the gas guard

0

0.5

1

1.5

2

2.5

Node 1 Node 2 Node 3

D
e
p

lo
y
m

e
n

t
T

im
e
 (

n
s)

M
il

li
o
n

s

Besu

Besu+

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Node 1 Node 2 Node 3

D
e
p

lo
y
m

e
n

t
T

im
e
 (

n
s)

M
il

li
o
n

s

Besu

Besu+

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Node 1 Node 2 Node 3

D
e
p

lo
y
m

e
n

t
T

im
e
 (

n
s)

M
il

li
o
n

s

Besu

Besu+

Figure 5. Contract deployment processing time in normal and

upgraded environments

(a) Transaction processing time for the balance guard

(b) Transaction processing time for the variable guard

(c) Transaction processing time for the gas guard

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Node 1 Node 2 Node 3

P
ro

ce
ss

in
g
 T

im
e
 (

n
s)

M
il

li
o
n

s

Besu

Besu+

0

0.5

1

1.5

2

2.5

Node 1 Node 2 Node 3

P
ro

ce
ss

in
g
 T

im
e
 (

n
s)

M
il

li
o
n

s

Besu

Besu+

0

0.5

1

1.5

2

2.5

Node 1 Node 2 Node 3

P
ro

ce
ss

in
g
 T

im
e
 (

n
s)

M
il

li
o
n

s

Besu

Besu+

Figure 6. Method call processing time for contracts with a guard

in normal and upgraded environments

600 bytes). Thus, the percentage of the overhead is
more than the case with complex and larger con-
tracts which generally have higher processing times.
To better highlight this, we repeated our measure-
ments for the SimpleDAO contract with the gas guard
(see Contract 9). The results are depicted in Figure 7
and demonstrate that the overhead in this case was
greatly reduced to about 30%.

In order to compensate for the extra processing
overhead of our guards for the miners, we took an ap-
proach similar to Wang et al. [23] and did not modify
the existing EVM gas costs. Instead, when a guard

aborts a possible misuse or attack, the miner will con-
sume all the remaining gas even if the transaction is
half-way aborted.

7.2.2 Gas Consumption

The transaction processing fees in the Ethereum are
paid by gas, and deducted from the account of the
initiator of the transaction. In particular, contract
owners pay an extra deployment cost (gas) for incor-
porating our code in their contracts (initializing the
guards’ parameters and adding the guard administra-
tion functions).

ISeCure

January 2024, Volume 16, Number 1 (pp. 37–53) 51

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Node 1 Node 2 Node 3

P
ro

ce
ss

in
g
 T

im
e
 (

n
s)

M
il

li
o
n

s

Besu

Besu+

Figure 7. Method call processing time for the SimpleDAO contract with the gas guard (see Contract 9) in normal and upgraded
environments

In order to evaluate the amount of the added gas,
we deployed several contracts without any guards and
then, the same transactions were sent with the guard
parameters. The results showed that for sending the
parameters of the balance, variable, and gas guards,
an extra amount of gas equivalent to 71,400, 141,100,
71,400 are added to the deployment transaction, re-
spectively. However, due to the fact that the value
of the parameter entered by the owner also affects
the amount of gas required to deploy the contracts,
the above values may increase or decrease slightly
depending on the different values of the parameters.
This overhead exists in all other methods that protect
contracts during runtime.

Table 5 summarizes the results of the overheads
comparison. It should be noted that the mentioned
overhead is a fixed value for some tools, and the
average or even the worst for the others. We have
measured the overhead of our proposed method in the
worst case (the maximum overhead) and reported the
results in Table 3. Our overhead can be considered
as low, but the overheads of the other methods are
considered as medium and high.

There is another situation in which the gas costs
are different in our improved runtime. In particular,
if a transaction is half-way aborted because of a vio-
lation in any of the guards, the entire amount of gas
allocated to that transaction will be paid to the min-
ers, and nothing is refunded to the caller. Nonetheless,
both the users and the owner benefit from applying
our safety guards. In particular, the owner makes
his/her contract more secure, and the users are en-
sured that their assets are not misused.

8 Conclusions

Today, with the fast growth of Ethereum smart con-
tracts, their security has become an important issue.
In this regard, we introduced a method to protect
contracts during runtime by introducing and using
some safety guards which are implemented in the
Ethereum miners. Using our method, the contract
owner specifies a number of guards for the contract
and sets their parameters inside the contract code.

Table 5. Overheads of our proposed method and other online

methods.

Overhead

Tool

Transaction

Gas Cost

Deployment

Gas Cost
Execution Time

Proposed

Mechanism
No Overhead <10%

Worst: G1: 7.03%

G2: 29.82%

G3: 70.18%

Contract Larva

[21]

> 20.91%

< 225.39%
N/A N/A

Contract Guard

[22]

Average: 28.27%

Worst: 86.0%

Average: 36.14%

Worst: 61.23%
N/A

FSFC

[23]
Average: 1.03 % N/A

Linux: 29.81%

Windows: 32.49%

Sereum [24] N/A N/A Average: 9.6%

ÆGIS [25] N/A N/A N/A

Solythesis [26] Average: 77.8 % N/A N/A

Our method does not need deep programming knowl-
edge and has low overhead.

In the future, new guards can be developed to pre-
vent more attacks, specially guards that focus on data
that is not accessible through the contract source code
to better show the point of difference of this method.
In addition, our method can be investigated to be
applied to smart contract platforms other than the
Ethereum. However, not all guards are applicable to
other smart contract platforms, mainly because of the
differences between the semantics of smart contracts
and their underlying operation. Although restricting
normal users is one of the inherent limitations of pre-
ventive methods, it should be noted that the safety
guards need to be used carefully so as not to restrict
normal users as much as possible. The guards only
work for contracts with ownership semantics, which
is true for many, but not all smart contracts. Also
in our implementation, the protection mechanisms
behind the balance and gas guards are modeled after
anomaly detection and it might be possible to avoid
them using progressively increasing attacks. However,
with the guards being activated, the attacker will be
able to perform a weaker attack.

ISeCure

52 Safety Guards for Ethereum Smart Contracts — Amirmohseni and Dorri

References

[1] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Elec-
tronic Cash System. https://bitcoin.org/

bitcoin.pdf, December 2008. [Online; accessed
07-October-2021].

[2] Nick Szabo. Smart Contracts: Build-
ing Blocks for Digital Markets. https:

//www.fon.hum.uva.nl/rob/Courses/

InformationInSpeech/CDROM/Literature/

LOTwinterschool2006/szabo.best.vwh.net/

smart_contracts_2.html, 1996. [Online;
accessed 07-October-2021].

[3] Vitalik Buterin. Ethereum: A next-generation
smart contract and decentralized application
platform. https://github.com/ethereum/

wiki/wiki/White-Paper, 2014. [Online; ac-
cessed 07-October-2021].

[4] Solidity Programming Language. https://

soliditylang.org. [Online; accessed 07-
October-2021].

[5] Ethereum Smart Contracts Anatomy.
https://ethereum.org/en/developers/

docs/smart-contracts/anatomy/. [Online;
accessed 07-October-2021].

[6] Ethereum Transactions. https://ethereum.

org/en/developers/docs/transactions. [On-
line; accessed 07-October-2021].

[7] Ethereum Nodes and Clients. https://

ethereum.org/en/developers/docs/nodes-

and-clients. [Online; accessed 07-October-
2021].

[8] Geth, Official Golang implementation of the
Ethereum protocol. https://github.com/

ethereum/go-ethereum. [Online; accessed 07-
October-2021].

[9] OpenEthereum, Fast and feature-rich multi-
network Ethereum client. https://github.

com/openethereum/openethereum. [Online; ac-
cessed 07-October-2021].

[10] Nethermind, .NET Core Ethereum client. https:
//github.com/NethermindEth/nethermind.
[Online; accessed 07-October-2021].

[11] Hyperledger Besu, An open-source Ethereum
client. https://github.com/hyperledger/

besu. [Online; accessed 07-October-2021].
[12] The Trinity Ethereum Client. https://github.

com/ethereum/trinity. [Online; accessed 07-
October-2021].

[13] The Erigon Ethereum Client. https://github.
com/ledgerwatch/erigon. [Online; accessed 07-
October-2021].

[14] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek
Saxena, and Aquinas Hobor. Making smart con-
tracts smarter. In The 2016 ACM SIGSAC Con-
ference, pages 254–269, 10 2016.

[15] Petar Tsankov, Andrei Dan, Dana Drachsler-
Cohen, Arthur Gervais, Florian Bünzli, and Mar-
tin Vechev. Securify: Practical security analysis
of smart contracts. In The 2018 ACM SIGSAC
Conference, pages 67–82, 10 2018.

[16] MythX, Smart contract security tool for
Ethereum. https://mythx.io/. [Online; ac-
cessed 07-October-2021].

[17] Sergei Tikhomirov, Ekaterina Voskresen-
skaya, Ivan Ivanitskiy, Ramil Takhaviev,
Evgeny Marchenko, and Yaroslav Alexandrov.
Smartcheck: static analysis of ethereum smart
contracts. In 2018 IEEE/ACM 1st International
Workshop on Emerging Trends in Software
Engineering for Blockchain (WETSEB), pages
9–16, 05 2018.

[18] Sukrit Kalra, Seep Goel, Mohan Dhawan, and
Subodh Sharma. Zeus: Analyzing safety of smart
contracts. In Network and Distributed System
Security Symposium, 01 2018.

[19] Mark Mossberg, Felipe Manzano, Eric Hennen-
fent, Alex Groce, Gustavo Grieco, Josselin Feist,
Trent Brunson, and Artem Dinaburg. Manti-
core: A user-friendly symbolic execution frame-
work for binaries and smart contracts. In 2019
34th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages
1186–1189, 2019.

[20] Bernhard Mueller. Smashing ethereum smart
contracts for fun and real profit. In 9th HITB
Security Conference, 2018.

[21] Gordon Pace, Joshua Ellul, and Shaun Az-
zopardi. Monitoring smart contracts: Contract-
larva and open challenges beyond. In The 18th
International Conference on Runtime Verifica-
tion, 11 2018.

[22] Xinming Wang, Jiahao He, Zhijian Xie, Gansen
Zhao, and Shing-Chi Cheung. Contractguard:
Defend ethereum smart contracts with embed-
ded intrusion detection. IEEE Transactions on
Services Computing, PP:1–1, 10 2019.

[23] Zeli Wang, Weiqi Dai, Kim-Kwang Raymond
Choo, Hai Jin, and Deqing Zou. Fsfc: An input
filter-based secure framework for smart contract.
Journal of Network and Computer Applications,
154:102530, 2020.

[24] Michael Rodler, Wenting Li, Ghassan Karame,
and Lucas Davi. Sereum: Protecting existing
smart contracts against re-entrancy attacks. In
Proceedings 2019 Network and Distributed Sys-
tem Security Symposium, 01 2019.

[25] Christof Torres, Mathis Baden, Robert Norvill,
and Hugo Jonker. ÆGIS: Smart shielding of
smart contracts. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Commu-
nications Security, pages 2589–2591, 11 2019.

ISeCure

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://soliditylang.org
https://soliditylang.org
https://ethereum.org/en/developers/docs/smart-contracts/anatomy/
https://ethereum.org/en/developers/docs/smart-contracts/anatomy/
https://ethereum.org/en/developers/docs/transactions
https://ethereum.org/en/developers/docs/transactions
https://ethereum.org/en/developers/docs/nodes-and-clients
https://ethereum.org/en/developers/docs/nodes-and-clients
https://ethereum.org/en/developers/docs/nodes-and-clients
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum
https://github.com/openethereum/openethereum
https://github.com/openethereum/openethereum
https://github.com/NethermindEth/nethermind
https://github.com/NethermindEth/nethermind
https://github.com/hyperledger/besu
https://github.com/hyperledger/besu
https://github.com/ethereum/trinity
https://github.com/ethereum/trinity
https://github.com/ledgerwatch/erigon
https://github.com/ledgerwatch/erigon
https://mythx.io/

January 2024, Volume 16, Number 1 (pp. 37–53) 53

[26] Ao Li, Jemin Choi, and Fan Long. Securing
smart contract with runtime validation. In Pro-
ceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Imple-
mentation, pages 438–453, 06 2020.

[27] SWC Registry, Smart Contract Weakness Classi-
fication and Test Cases. https://swcregistry.
io/. [Online; accessed 07-October-2021].

[28] The Collapse of FairWin’s $125m Ponzi
Scheme. https://medium.com/@PhABC/the-

collapse-of-fairwins-125m-ponzi-scheme-

61a66b273420. [Online; accessed 07-October-
2021].

[29] Nicola Atzei, Massimo Bartoletti, and Tiziana
Cimoli. A survey of attacks on Ethereum smart
contracts. In International Conference on Prin-
ciples of Security and Trust, pages 164–186, 03
2017.

Morteza Amirmohseni is a mem-
ber of the Blockchain Laboratory at
Electrical and Computer Engineer-
ing Faculty of Tarbiat Modares Uni-
versity. He holds an M.S. degree in
Computer Engineering from Tarbiat
Modares University, and a bachelor

degree in Computer Engineering from Tehran Uni-

versity. His research interests include Blockchain and
Smart Contracts Security, Web and Mobile Applica-
tions Security, and API Security in general.

Sadegh Dorri Nogoorani is an as-
sistant professor and the head of the
Blockchain Laboratory at Electrical
and Computer Engineering Faculty
of Tarbiat Modares University. He
holds an M.S. in Computer Networks,
and a Ph.D. in Computer Engineer-

ing from Sharif University of Technology. His research
interests are Blockchain and Distributed Ledger tech-
nology, Security, Privacy, Trust, and Distributed Sys-
tems Design in general.

ISeCure

https://swcregistry.io/
https://swcregistry.io/
https://medium.com/@PhABC/the-collapse-of-fairwins-125m-ponzi-scheme-61a66b273420
https://medium.com/@PhABC/the-collapse-of-fairwins-125m-ponzi-scheme-61a66b273420
https://medium.com/@PhABC/the-collapse-of-fairwins-125m-ponzi-scheme-61a66b273420

	1 Introduction
	2 Background
	2.1 Blockchain and Smart Contracts
	2.2 Ethereum Clients

	3 Related Works
	3.1 Offline Methods
	3.2 Online Methods

	4 The Proposed Method
	4.1 The User Interface
	4.2 The Enhanced Runtime
	4.3 Administration of the Guards
	4.4 The Safety Guards
	4.5 The Guards' Parameters
	4.6 Possible Side Effects

	5 Implementation
	5.1 Reserved Slots
	5.2 Implementation of the Balance Guard
	5.3 Implementation of the Variable Guard
	5.4 Implementation of the Gas Guard

	6 Case Study
	6.1 Contract Balance Guard Case Study
	6.2 Contract Variable Guard Case Study
	6.3 Gas Guard Case Study
	6.4 The SimpleDAO Case

	7 Evaluation
	7.1 Comparison with the Related Works
	7.2 Performance Evaluation

	8 Conclusions

