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A B S T R A C T

Whatever malware protection is upcoming, still the data are prone to

cyber-attacks. The most threatening Structured Query Language Injection

Attack (SQLIA) happens at the database layer of web applications leading to

unlimited and unauthorized access to confidential information through malicious

code injection. Since feature extraction accuracy significantly influences

detection results, extracting the features of a query that predominantly

contributes to SQL Injection (SQLI) is the most challenging task for the

researchers. So, the proposed work primarily focuses on that using modified

parse-tree representation. Some existing techniques used graph representation

to identify characteristics of the query based on a predefined fixed list of SQL

keywords. As the complete graph representation requires high time complexity

for traversals due to the unnecessary links, a modified parse tree of tokens is

proposed here with restricted links between operators (internal nodes) and

operands (leaf nodes) of the WHERE clause. Tree siblings from the leaf nodes

comprise the WHERE clause operands, where the attackers try to manipulate

the conditions to be true for all the cases. A novelty of this work is identifying

patterns of legitimate and injected queries from the proposed modified parse

tree and applying a pattern-based neural network (NN) model for detecting

attacks. The proposed approach is applied in various machine learning (ML)

models and a neural network model, Multi-Layer Perceptron (MLP). With the

scrupulously extracted patterns and their importance (weights) in legitimate

and injected queries, the MLP model provides better results in terms of

accuracy (97.85%), precision (93.8%), F1-Score (96%), and AUC (97.8%).

© 2024 ISC. All rights reserved.

1 Introduction

As per the IBM X-Force analysis of IBM Managed
Security Services (MSS) data, SQLIA is one of

the most powerful and prominent attacks (Michelle
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et al., 2017)[1]. Two-thirds of web application attacks
are caused by SQLI. It continues to be an effortless
way for cyber criminals to do data breaching in a
database. Although it is the oldest one, still a critical
attack vector due to its strength. Many prominent
data breaches have been the result of SQLI. In New
York, the e-commerce website has been hacked and
credit card information was breached in May 2020.
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Figure 1. SQLIA in web applications

Frederik Company’s more than 8 million users’ mail
IDs and password hashes were hacked in August 2020
(Pallavi et al., 2020)[2]. The social media platform,
GAB said that the site had been attacked by cyber
criminals and more than 70 GB of data and 40 million
posts were leaked by hacktivists in February 2021
(DouOlenick et al., 2020)[3]. All these incidents are
the result of SQLIA against their websites.

Figure 1 shows how SQLIA is performed in web
applications. The payload which is sent from the
client passes through the web server, and application
server and finally reaches the database management
system of the database server. That payload will be
substituted in the dynamic SQL statement of the
application server and executed in the database server.
During execution, the query processor parses and
executes it. This proposed classification model should
be integrated into the application server’s code before
the SQL statement is transmitted to the database
server for execution to identify and prevent injection.
This model secures the data from injection even if
the application has some vulnerabilities. In Figure 1,
line P denotes our proposed model which could be
plugged into the application server before the query
execution in the database server.

Detecting these injected queries before it is being
executed in the database layer is a challenge to the
researchers. Although many researchers have focused
on SQLI and implemented many solutions to fix it,
still it’s a significant threat to web users. Attackers
are also constantly searching for SQLI vulnerabili-
ties on the Internet. A web application is said to
be SQLI vulnerable if it could allow an attacker to
insert their SQL statement through the input field
of the user interface. The root causes of SQLI vul-
nerabilities are trusting input without validation, us-
ing the same legacy techniques, and using data and
code in the same SQL statement while executing
them. This vulnerability affects web applications that
use SQL- based databases such as MySQL, Oracle,
and SQL servers. Attackers exploit these vulnerabili-
ties to intrude without any authentication into the
database which contains confidential data and could
also obliterate the database. There are three major
categories of SQLIs, In-band SQLI (Error-based SQLI
and Union-based SQLI), Inferential or Blind SQLI
(Boolean-based and Time-based SQLI), and Out-of-

band SQLI(Tautology-based).

Commonly used mechanisms to defend against at-
tacks are validation functions, web application fire-
walls (WAFs), and prepared statements. But these
models are not sufficient to protect the data. To
overcome this problem, SQLI should be handled in
the code before it is executed in the database server.
Many ML models were already developed to detect
injected queries. But the existing approaches used a
pre-defined list of SQLIA signature keywords, opera-
tors, and symbols for identifying injected queries. If
any symbol or keyword is ignored, it will not predict
the attack perfectly. So, it has been found that the
current techniques are not completely successful to
detect SQLI. Hence, we require considering the gen-
eral signature of legitimate and injected queries. The
main target of this work is to obtain the signature
(pattern) of the query using tree representation.

In the model, SQLiGOT, (Kar et al., 2016)[4] pro-
posed the usage of a complete graph for representing
all the tokens of the WHERE clause with the assign-
ment of weight between every pair of tokens based
on the distance using a sliding window. The graph
representation had many unnecessary connectivities
between every pair of tokens, even though the rela-
tionship between the tokens exists only within its
expression. The above paper is the motivation behind
this proposed work to represent the query as a modi-
fied parse tree and train the model with scrupulously
chosen features from the tree. This paper proposes
an approach that overcomes these limitations based
on the following five contributions:

(1) Using tree representation to maintain connec-
tivity between only the relevant operators and
operands in the WHERE clause expressions of
SQL query.

(2) Implementing a single modified parse tree to
find the patterns more effectively.

(3) Normalizing the nodes of the tree using a look-
up table of keywords and symbols to maintain
generality.

(4) Analyzing the patterns in siblings by giving
weightage using conditional probability along
with label encoding.

(5) Training MLP neural network model to recog-
nize patterns and classify them effectively

The remaining work is organized as follows:

Research findings and literature-related issues are
presented in Section 2. Section 3 describes the archi-
tecture of the proposed model, whose primary compo-
nents are defined by the algorithms. Section 4 presents
the results of an experimental evaluation along with
dataset construction, hyperparameter optimization,
time complexity analysis, results, and analysis. The
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paper concludes with a note about the future research
objectives in Section 5.

2 Related Work

(Sajjadi et al., 2013; Som et al., 2016; Lawal et al.,
2016; Nagpal et al., 2017; Alwan et al., 2017; Oghe-
neovo et al., 2013) [5–10]provided a detailed survey
of types of vulnerabilities, types of SQLIA, and vari-
ous existing techniques for identifying and preventing
injections already discussed by researchers. (Jhala et
al., 2017)[11] explored advanced SQLIA named tauto-
logically injected SQL queries and how they affected
the data repositories. Existing research approaches
dealt with various approaches such as ontology-based
approach, pattern-based approach, ML, and NN mod-
els.

2.1 Ontology-Based Approaches

(SahaRoy et al., 2014)[12] discussed how to implement
POS Tagging and statistical word association scores
(WAS) in ordinary web search queries. (Fang et al.,
2018)[13] proposed a model for classifying benign and
malicious queries in which word-to-vector(W2V) and
bag-of-words(BOW) concepts were used to find the
vector of each query. Finally, they have concluded that
the W2V attained higher accuracy than the BOW
feature. (Abaimov et al., 2019)[14] created a separate
text file like a dictionary for providing encoding rules
in which the list of operators, symbols, and keywords
are numbered. Based on this file content, encoding
will be done. If any symbol is missed, it will make
the wrong prediction. (Jemal et al., 2019)[15] have
presented an Ontology-based NN model for classifying
queries, which achieved 83.33% accuracy. All these
researches were based on domain dictionaries with a
fixed list of SQL keywords. So, they won’t detect the
SQLIA with dynamic structure.

2.2 Pattern-Based Approaches

(Rawat et al., 2012)[16],(Latchoumi et al., 2020)
[17]incorporated the SVM model for SQL Injection
Attack Detection by training it with SQLI signature
keywords and applying string-matching techniques
to classify them. (Uwagbole et al., 2017)[18] used
Two-Class Linear Regression and Two-Class SVM
to create a classification system. The RegEx pat-
tern is used to generate and train member strings.
But its time complexity is high. They trained a
dataset considering patterns. (Kranthikumar et al.,
2020)[19] have proposed a REGEX classifier that
uses regular expressions as a filter to classify the
applied query SQLI or genuine query. They used
only eleven REGEX patterns of injected queries.
They compared SVM, Gradient Boosting algorithm,

and Naive Based classifier with REGEX classifier
for detecting SQLIAs. This model produces 97%
accuracy. (Hadabi et al., 2022)[20] have proposed a
model which is using a proxy in the middle between
the client and server to check any input that is for-
warded to the database server and prevent the attack
using patterns that are implemented using regular
expression. In this experiment, they use the XAMPP
as a web server and Web Scrap proxy from OWASP
with the virtualized environment as a proxy server.
REGEX defines certain kinds of patterns only. So
they are not sufficient to detect the injection.

2.3 Machine Learning Techniques

(Joshi et al., 2014)[21] used a Nave Bayes ML tech-
nique to create a traditional model by counting the
number of times each term appeared in a SQL query
as a feature. This model gave 93.3% accuracy. (Ma-
mun et al., 2016)[22] discussed the K-Nearest Neigh-
bors algorithm and a pattern recognition method
for finding malicious URLs using lexical features of
URLs with assigned weight by using the Euclidean
distance function. (Kar et al., 2016)[4] implemented
a model of creating a graph of tokens for which they
initially substituted each element in a query with a
predefined name. Tokens are considered as vertices
and their interaction is considered as edges. They as-
signed weights on edges based on the window size and
closeness between the nodes. They calculated the de-
gree of each node and used it as a feature for training
the model in SVM which obtained 96.23% accuracy
and a 4% false-positive rate. (Yu et al., 2019)[23]
have proposed an SVM model in which the query is
transformed into an Eigenvector for identifying SQLI.
(Arumugam et al., 2019)[24] have extracted the flow
variables such as the IP address of the source, date
and time of the request, payload sent from the re-
questing app, and target application from the .csv
file, and signature keywords of SQLI are extracted
from the request parameter. They applied a Logistic
Regression classifier for detection with 70% accuracy
only. (Li et al., 2019)[25] have proposed an adaptive
deep forest model for SQLI detection in which thirty
features are considered for classification. They com-
pared KNN, SVM, RF, and Naive Bayes with Adap-
tive Deep Forest models (ADF) and found out ADF is
better than all other models (Triloka et al., 2022)[26]
have proposed a comparative study of various ma-
chine learning models to detect SQLIA and suggested
na¨ıve Bayes classifier with the accuracy of 97.5%.

2.4 Neural Network Models

(Sheykhkanloo et al., 2017)[27] formed a 32-bit vec-
tor for signatures of each query and an 8-bit vector
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for SQLI types. These vectors are calculated for each
query and represented as columns of the input ma-
trix and target matrix respectively. They used the
NN model for classification. (Tang et al., 2020)[28]
proposed a unique model combining MLP and LSTM
with extracted characteristics from URLs such as
URL length, number of keywords, keyword weight,
number of special characters, and so on. Recognizing
keywords and characters other than the given list is
extremely poor in this model and it faces an over-
fitting problem. (Zhang et al., 2022)[29] proposed the
SQLNN model uses the TF-IDF of tokens of SQL
query as input features with an accuracy of 96.16%.
(Falor et al., 2022)[30] proposed a CNN model to de-
tect SQLIA which first breaks up the cluttered text
documents containing the payload queries into sep-
arate queries based on their type and classify them
using convolutional neural network accordingly.

3 Proposed Approach

SQLI is a cyber-security risk that can damage web
applications and databases. With SQLI, hackers can
access databases and networks without authentica-
tion. They inject malicious script into web form input
fields, which then alters the WHERE clause condi-
tions and results of the query.

A vast array of ML and NN models have been
proposed for detecting SQLI, by extracting features
mostly based on characteristics of SQL queries such
as length, characters, spaces, keywords, symbols, etc.,
As the feature extraction accuracy significantly im-
pacts the detection results, these features were not
sufficient to detect all the complex SQLIAs and their
discussions did not cover generalized patterns (signa-
ture) for finding SQLIAs. So, pattern-based feature
extraction is proposed here. Initially, the query is
transformed into the tree structure, then its’ pattern
is extracted from that structure. These patterns are
trained in a NN model to detect SQLIAs.

Figure 2 shows the architecture of the proposed
model. In this figure, Q denotes the input query,
and the list of segments L0, L1, and L2 represent
the ‘SELECT’ clause, ‘FROM’ clause, and WHERE
clause segments of parsed SQL query respectively.
The set N=N1, N2, N3,. . . represents the nodes set
generated from the tokens of the WHERE clause, and
the set E= E1, E2, E3,. . . .En represents the edge set
generated from the pairs of tokens e.g. E1=(N1, N2),
E2=(N1, N3), etc., where E1 is an edge between N1

and N2, E2 is an edge between N1 and N3. T is a
Modified parse Tree constructed in a specific manner,
POL is a post-order traversal of tree T consisting of
a list of tokens, the set S=(S1, S2), (S3, S4). . . . is a
set of siblings pair obtained from POL, the set W=
W1, W2, W3,. . . . is a probabilistic weight vector for

Figure 2. Architecture of proposed model

extracted siblings, MLP is a Multilayer perceptron
model which takes the weight vector as input and
classifies the given query Q as a legitimate query or
injected query.

The proposed work specifically deals with the
WHERE clause of the SQL query which is trans-
formed into a tree of tokens, and patterns are ex-
tracted from sibling nodes of the tree by traversing
the tree in post order. Initially, the query is processed
with the built-in parser ‘Moz SQL parser’ and gen-
erates a list of sub-lists of tokens for the SELECT,
FROM, and WHERE clause segments. As the pro-
posed work focuses just on the WHERE clause, to-
kens related to it alone are taken from the parsed list.
Each token represents a node, and edges are formed
from the tokens in a specific way, as described in the
CONSTRUCT TREE () algorithm, resulting in a
modified parse tree. The WHERE clause is a collec-
tion of logical expressions and relational expressions.
Each expression in the WHERE clause is represented
as a subtree. Then, all the sub-trees are connected
to form the parse tree for the entire WHERE clause.
The leaf nodes of the tree contain the pattern of each
expression. The siblings’ pair from the leaf nodes for
each parent form the patterns of the query. They are
the primary feature of the input query. Legitimate
and injected queries differ in their siblings’ patterns
and their uniqueness helps classify the queries. The
patterns of these siblings are considered as the fea-
tures of that query and are given a weight based
on the conditional probability. The weight vector is
trained using MLP for the classification.
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Pseudocode 1 SQL Injection Classifier

1: function SQL-INJ-CLASSIFIER(query)
▷ Built-in Parser is used

2: L← Parse(query)
▷ List of tokens of WHERE clause is assigned to
WLT

3: WLT ← List of tokens of L2

▷ T is the Modified Parse Tree of WHERE clause
4: T ← Call CONSTRUCT-TREE(WLT)

▷ POS is the Post order traversal of normalized
parse tree

5: POL ← Call POST˙ ORDER˙ TRAVER-
SAL(T)
▷ SL – List of Siblings Pair

6: SL← Call GET˙SIBLINGS(POL)
▷ using formulae in Eq. 1 through 8

7: Assign-weight for all siblings
8: Train the Neural Network model to classify

the query label as ’Legitimate’ or ’Injected’
9: Display Label

10: end function

A complete main algorithm SQL INJ CLASSI-
FIER () which comprises sub-algorithms such as
CONSTRUCT TREE () and GET SIBLINGS () is
presented here which gets the query as input and per-
forms pre-processing steps such as parsing, segmenta-
tion, and tokenization. After that, the modified parse
tree is generated to extract the features, then the ex-
tracted features are assigned weights. Finally, MLP
is trained with suitably chosen features and produces
the output as a legitimate query or injected query.

3.1 Parsing, Segmentation, and Tokenization

The first step of this work is to parse the input query
using the built-in parser ’Moz sql parser’, which pro-
duces the list of sub-lists L, for SELECT clause,
FROM clause, and WHERE clause tokens. These
segments are labeled as L0, L1, and L2 respectively.
The tokens from the WHERE clause segment, L2, are
extracted and a modified parse tree is constructed
by sending these extracted tokens to the algorithm
CONSTRUCT TREE ( ). For example, consider two
sample queries Q1, Q2, and tokens associated with
the WHERE clause of them are shown below,
Legitimate query Q1: Select title, phone, hire date
from employees where first name = ‘Nancy’ and last
name = ‘Edwards’.
Injected query Q2: Select * from suppliers where
sup id =’ SUP0145’ and city=’DELHI’ or 1=1.
Tokens list of WHERE clause of Q1:(’first name’,
’=’, ’Nancy’, ’and’,’last name’, ‘=’ , ’Edwards’).
Tokens list of WHERE clause of Q2: (’supp id,
“=”, ’SUP0145’, ’and’, ’city’, “=”, ’DELHI’, ‘or’, 1,
“=”, 1)

3.2 Constructing a modified parse tree

Pseudocode 2 CONSTRUCT-TREE

1: function CONSTRUCT-TREE(WLT)
▷ Assign list of tokens, WLT to nodes list, N.

2: N ←WLT
3: By traversing through the list N, construct a

sub tree for each logical expression such that the
logical operator is the parent node and left, right-
hand side relational expressions are its children.

4: Then, expand each relational expression and
construct a sub tree for each of them such that
the relational operator is the parent node, and its
left operand and right operand are its children.

5: Link all the sub trees based on their order of
operator precedence in the WHERE clause.

6: The resultant parse tree contains either root
or internal nodes as operators and leaf nodes as
operands.

7: Normalize the labels of nodes using a prede-
fined list of tokens in SQL.

8: The final tree contains all the nodes being
normalized.

9: return T
10: end function

The algorithm CONSTRUCT TREE ( ) gets input
from a list of WHERE clause tokens, denoted as
nodes list, N= N1, N2, N3,. . .Nn and generates the
modified parse tree. The modified parse tree has
some properties such that every logical expression of
the WHERE clause is represented as a sub-tree in
which the logical operator is the parent node, and
left and right-hand side relational expressions are
its children. Tree is constructed by defining edge set
E= E1,E2,E3,. . . .En. The edge Ei = (Ni, Nj) can
be formed from Nodes set N, such that the parent
node Ni should be an operator and the child node Nj

maybe of any category. It results in all the operators
being internal nodes and operands being leaves of the
tree. According to the order of operator precedence
in the WHERE clause, all the sub-trees are linked to
the root to form a single tree.

The labels of tree nodes should be normalized be-
cause generic tokens are required to find the pattern.
Each node from the tree is mapped to the list of pre-
defined SQL operators, keywords, special characters,
and built-in SQL functions. Finally, the labels of tree
nodes are normalized. Table 1 shows the sample list of
predefined tokens and their normalized label substitu-
tion. Figure 3 describes how the query is transformed
into a normalized parse tree.
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Table 1. Sample list of predefined tokens and their normalized

label substitution

Sl.No. Tokens Normalized
Label Sub-

stitution

1. Len, Current User, Sin, Datefromparts,

Pi, Sqrt, Power, Current Timestamp

Dateadd, Translate, Getdate, Getutc-
date, Sysdatetime, Difference, Ses-

sion User, Convert, Datediff, Square,

Day, Soundex, Ltrim, Replace,
Datepart, Nullif, Coalesce, Trim, Nchar,

Sessionproperty, Atan, Quotename,

System User, Upper, Ascii, Charindex,
Format, Floor, Concat Ws, Concat,

Tan, Round, Cast, Lower, Reverse,
Str, Rand, Isnull, Atn2, Datalength,

Radians, Sign, Space, Acos, Isdate,

Isnumeric, Year, Stuff, Datename, Exp,
User Name, Replicate, Substring, Max,

Abs, Unicode, Iif, Avg Ceiling, Month,

Count Cos, Sum, Log, Asin, Log10,
Min, Degrees, Left, Cot, Right, Char

SQL Func-

tions

2. Left Join, Not Between,
Left Outer Join , Not Like, Order By

, As, Between , Join , Union, Limit,
End , Inner Join , Else , Union All,
Full Outer Join, Not In , Cross Join

, Using , Is Not, In, Then, With,
, ight Outer Join, Desc , Full Join
, Reserved, Collate, Is, From , Off-

set, Right Join, Asc, Where, Like
,Group By, Nocase, Having , Case,
When

Keywords

3. ∼,-, not Operators

+,-,*,/,mod,=,<>,not between, or , and

4. *, !, @, #, $, %, ∧, &, *, , -, *,!,@,#,$,
%,∧,&, *, , -

Special

Characters

5. Select Sub query

3.3 Post-Order Traversal

The tree nodes are visited in post-order to get the
node’s list in a specific order to discover the siblings
from the leaf nodes. The operators should be excluded
from the traversal list because the proposed work is
based on the siblings (operands) to construct patterns
since most of the hackers inject malicious data here.
In the post-order traversal, the sequence of operands
is given first, followed by their appropriate operators.
Finally, it is easy to read backward from the end of
the post-order list and exclude the element at last.
So, post-order traversal is a better option for locating
siblings than pre-order and in-order traversals. Fig-
ure 4 shows the post-order traversal of query Q2.
Post-order Traversal for Q1: [ ’Column’, ’String’,

Figure 3. Construction of parse tree

Figure 4. Post order for Q2

’eq operator’, ’Column’, ’String’, ’eq operator’, ’and
operator’]
Post-order Traversal for Q2: [ ’Column’, ’String’,
’eq operator’, ’Column’, ’String’, ’eq operator’, ’and
operator’, ’Numeric’, ’Numeric’, ’eq operator’, ’or op-
erator’]

3.4 Finding Siblings

In a modified parse tree, the parent nodes are always
operators, branches are operands, and the leaf nodes
are operands of the entire WHERE clause. Since the
proposed work is concerned with the patterns of the
operands of WHERE clause expressions, only the leaf
nodes are considered and passed to the algorithm
GET SIBLINGS (). While considering the degree of
each node, leaf nodes have a degree of zero as they

ISeCure
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Figure 5. Siblings for query Q2

have no descendants. So, nodes with zero degrees are
considered as leaves, and others are discarded from
the list. Then the leaves that have the same parent
are thus referred to be siblings. Figure 5 shows the
siblings of the sample query Q2.
Siblings for Q1: [[ ’Column’, ’String’], [ ’Column’,
’String’]]
Siblings for Q2: [[ ’Column’, ’String’], [ ’Column’,
’String’], [ ’Numeric’, ’Numeric’]]

Pseudocode 3 Algorithm GET-SIBLINGS(POL)

1: function GET-SIBLINGS(POL)
2: Find out the leaf nodes by finding the nodes

with degree 0.
3: Leaf nodes ← ∀Ni ∈ N from POL where

deg(Ni) = 0
4: Find out the list of siblings’ pair, SL, by com-

bining the nodes with the same parent.
5: SL ← (Ni, Nj) : Ni and Nj ∈ Leaf nodes and

Parent(Ni) = Parent(Nj)
6: return list of siblings’ pair, SL
7: end function

3.5 Assigning Weight

Each expression in the WHERE clause is represented
as a siblings’ pair now. Each pair is a pattern. The
list of extracted siblings’ pairs for each query defines
the pattern of the query. Uniqueness in this patterns
list helps us classify the query. This pattern will
become the main feature for training the model. Each
query pattern will be assigned a weight based on its
probabilistic score using conditional probability and
Bayes theorem.

3.5.1 Set Creation

The extracted sibling’s pairs for the entire dataset
are segregated into two sets based on its label, one
contains legitimate pairs and another one contains
injected pairs. The intersection of these two sets
contains the pairs common in both sets.
Sample sets:
Legitimate Pairs set L = Column- String, Column-
Numeric, Column- SQL functions, Column- Sub-
query, etc.,
Injected Pairs set I = String- String, Numeric-
Numeric, Column- String, Column-Numeric, Column-
SQL functions, SQL functions-SQL functions, Special
chars- Special chars, Empty string- Empty string,
Empty string- Numeric, Special chars-Empty string,
etc.,
Intersection SetL∩I= Column- String, Column-
Numeric, Column- SQL functions, etc.,

3.5.2 Encoding with a Weight Assignment

Label encoding and conditional probability are com-
bined and applied to the pairs to give weightage to
them. The dataset contains queries of two class labels
legitimate and injected. Initially, the label encoding
technique is applied for all the sibling pairs extracted
from the dataset. Each pair has assigned one unique
encoded value. But this is not adequate for the weight
assignment since a siblings’ pair may occur in both
sets (Legitimate and Injected). Its score should re-
flect its contribution in its category (Legitimate or
Injected). So, conditional probability is combined to
differentiate them based on their contribution.

It requires the probability of the legitimate sibling’s
pairs and malicious sibling’s pairs. It is appropriate
to apply the Bayes theorem in this case. Because it
describes the probability of occurrence of an event re-
lated to any prior condition. In this case, the probabil-
ity of occurrence of a sibling’s pair depending on the
condition of whether it belongs to a legitimate query
or injected query must be calculated. It is known as
conditional probability. As a result, Bayes’s theorem
is applied here to calculate the weight.

According to the Bayesian theorem, the probability
of an event can be determined by prior knowledge
of the potential conditions that could influence it.
By knowing the conditional probability (shown in
Eq.(1)), we can use the Bayes rule to determine the
reverse probability.

P (A | B) =
P(B|A).P(A)

P(B)
(1)

Where

(1) The probabilities of events A and B are denoted
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8 MPT Based Pattern Extraction Approach for Detecting SQLIA Using NN Model — Begum A and Arock

by P(A) and P(B), respectively.
(2) The probability of A given B is P(A|B).
(3) The probability of B given A is P(B|A).

The contribution of the siblings’ pattern in a particu-
lar label can be calculated as shown in Eq.(2)

P (SiblingsPattern | Label)

=
P (Label | SiblingsPattern) ∗ P (SiblingsPattern)

P (Label)
(2)

The probability of a specific Siblings’ pattern is
P(Siblings’ pattern).

(1) P(Label) is the probability of the Label (Legiti-
mate or Injected).

(2) P(Siblings
′
pattern|Label) is the probability of

the particular siblings’ pattern given the Label
(Legitimate or Injected).

(3) P(Label|Siblings
′
pattern) is the probability of

the Label either Legitimate or Injected having
the Siblings’ pattern.

P (
(
′
Column

′
,
′
Str

′
)
∣∣ Legitimate

)
=

P(Legitimate | (Column, Str)) .P( (Column, Str) )

P (Legitimate)

(3)

P (
(
′
Column

′
,
′
Str

′
)
∣∣ Injected)

=
P(Injected | (Column, Str)) .P( (Column, Str) )

P (Injected)

(4)

Based on the generated probabilistic scores, the
corresponding encoded value is changed. Thus, the la-
bel sequence for the entire query is generated. The se-
quence is fed into the MLP for training. The sequence
having at least one injected label will be treated as
injected, otherwise legitimate. The occurrences of cer-
tain siblings in certain sequences could improve the
classification. This model can categorize any query
input based on its label pattern.
The following three equations are used to give weights,

(1) Keep the encoded value as 0 if the sibling’s pair
SP is in the injected set alone.

Weight W [SP ] = 0, where SP ∈ I (5)

(2) The encoded value should remain unchanged if
the sibling’s pair SP is in a legitimate set alone.

Weight W [SP ] = LE[SP ], (6)

where SP ∈ L and LE is label encoded value.
(3) When a sibling’s pair is in the intersection set

(in both sets), multiply the probabilistic score
by its encoded value.The probabilistic score
P(SP) can be calculated as Eq.(7) for Scaling
up or down of corresponding SP contribution
and substituting in Eq. (8) to get the weight
value of SP.

P (SP ) = P (SP |Legitimate) ∗ P (SP |Injected) (7)

Weight W [SP ] = P (SP ) · LE[SP ], (8)

where SP ∈ L ∩ I.

There are 22 unique sibling pairs extracted from
the dataset. Their importance in the specific label is
mentioned as the percentage with bold letters and
their dominance in the label is shown in Table 2.
Table 3 lists the sample queries along with their labels,
siblings’ pairs, and the set they belong to. Whenever
the siblings are part of a Legitimate pair, the initial
weight will be based on the encoded value of the pair.
Injected siblings’ pairs are assigned a weight of zero.
When it belongs to both sets, its initial weight will
be calculated by conditional probability as shown in
Table 4.

To avoid a discontinuity in the range of values,
the exponential average of W[SP] is calculated here.
Table 5 demonstrates how the exponential average
of W[SP] is used to get the final weight of the SP.
It offers 1 for injected pair, maximizes the value for
L∩I pair, and minimizes the value for the legitimate
pair. Hence, there is no discontinuity in the range of
values as shown in Figure 6. The suggested model
would use weights with threshold values to categorize
the labels.

When a sibling’s pair is in the intersection set (in
both sets), multiply the probabilistic score by its
encoded value. The probabilistic score P(SP) can be
calculated as Eq.(3) and substituted in Eq. (4) to get
the weight value of SP.

P (SQL functions, numeric | Legitimate) =
1
3 ·

3
6

2
6

=
1

2
= 0.5 (From Equation 3)

P (SQL functions, numeric) |Injected) =
2
3 ·

3
6

4
6

=
2

4
= 0.5 (From Equation 4)

P (SQL functions, numeric) = 0.5 ∗ 0.5 = 0.25

(From Equation 7)

W (SQL functions, numeric) = 0.25 ∗ 1 = 0.25

(From Equation 8)

When the query has more than one siblings pairs,
then their average will be taken for calculating the
exponential average.

4 Experiments, Results, and Analysis

4.1 Dataset Construction

The dataset utilized in the proposed model is a col-
lection of instances from Github (Yu et al., 2018)[31]
with legitimate and injected queries (records). Each
query is assigned one of two labels: legitimate or in-
jected. There are 3000 queries for each class label.
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Table 2. List of siblings’ patterns and their contribution to

the query

Sl.No. Siblings’ Pattern

% of

import-

ance in

Legitimate

query

% of

import-

ance in

injected

query

The domi-

nance of

Pattern in

Label

1. (Column, String) 36.6 3.8 Legitimate

2. (Column, Numeric) 32.2 3.2 Legitimate

3.
(Column, Empty

string)
0 15.2 Injected

4.
(Column, Special

chars)
0 2.6 Injected

5.
(Column, SQL

functions)
4.8 1 Legitimate

6.
(Column, Sub-

query)
12 4.6 Legitimate

7.
(Column, Minus

Operator)
0 3.6 Injected

8. (String, String) 0 9 Injected

9. (Numeric, Numeric) 0 8.8 Injected

10.
(SQL functions,

SQL functions)
0 6.6 Injected

11.
(Special chars,

Special chars)
0 0.8 Injected

12
(Empty string,

Empty string)
0 1.6 Injected

13.
(Empty string,

Numeric)
0 0.8 Injected

14.
(Special chars,

Empty string)
0 1.6 Injected

15.
(SQL functions,

Numeric)
9 10.8 Injected

16.
(Numeric, SQL

functions)
3.6 0 Legitimate

17.
(Minus Operator,

Empty String)
0 6.8 Injected

18. (String) 0 4.2 Injected

19. (Numeric) 0 4.8 Injected

20. (Empty string) 0 2.6 Injected

21. (Special chars) 0 5.,8 Injected

22. (SQL functions) 0 6.8 Injected

4.2 Experimental Setup

The dataset is trained using a variety of ML models,
including SVM, Random Forest, KNN, Decision Tree,

Table 3. Sample queries

Sl.

No
Input Query Siblings Label

Siblings

Set

1

Select * from

suppliers where

Salary >50000

and Dept=’Sales’

[(Column,

numeric),

(Column,

String)]

Legitimate [L, L]

2

Select * from

suppliers where

Salary >50000

and Round

(Salary)

=65000

[Column,

Numeric),

(SQL function,

Numeric)

Legitimate
[L,

L∩I]

3

Select * from

suppliers where

1=1

[(Numeric,

Numeric)]
Injected [I]

4

Select * from

suppliers where

Ucase(Dept)=

’SALES’

and Round

(Salary)

=65000

[(SQL function,

SQL function),

(SQL function,

numeric)]

Injected
[L∩I,

L∩I]

5

Select * from

suppliers where

”AAA” =”AAA”

and Ascii(‘A’)

=65

[(String. String),

SQL functions,

numeric)]

Injected
[I,

L∩I]

6

Select * from

suppliers where

“AAA” =”AAA”

and 1=1

[(String. String),

(Numeric,

Numeric)]

Injected [I, I]

Figure 6. Siblings’ pairs and their final weight

Naive Bayes, and a NN model, MLP. MLP outper-
forms other models in evaluation measures. Table 6
shows various models and their evaluation metrics:
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Table 4. Initial weight calculation

Set
Siblings’

Pair

Label

encoded

value

LE(SP)

Normalised

LE(SP)

Initial

weight

W(SP)

SP ∈I (String, String) 1 1/5=0.2 0

SP ∈I
(Numeric,

Numeric)
2 2/5=0.4 0

SP ∈L
(Column,

String)
3 3/5=0.6 0.6

SP ∈L
(Column,

umeric)
4 4/5=0.8 0.8

SP ∈ L∩I
(SQL functions,

numeric)
5 5/5=1 0.25

Table 5. Final weight calculation for possible siblings pair

Case Siblings pair W[SP] Average

Final Weight

(Exponential

average)

1.
[ Legitimate Pair,

Legitimate Pair]
[0.6,0.8] [0.7] e-0.7=0.496

2.
[Legitimate Pair,

Intersection Pair]
[0.6,0.25] [0.42] e-0.42=0.6570

3.
[Intersection Pair,

Intersection Pair]
[0.25,0.25] [0.25] e-0.25=0. 7788

4.
[Injected Pair,

Intersection Pair]
[0,0.25] [0.125] e-0.125=0.8824

5.
[Injected Pair,

Injected Pair]
[0,0] [0] e-0=1

accuracy, precision, recall, F1 score, and ROC (%).

4.3 Hyperparameters for MLP

The proposed NN model(MLP) is trained and tested
using various hyperparameters for improved perfor-
mance as shown in Table 7. The batch size determines
how many samples will be processed before the in-
ternal model parameters are updated. At the end of
the batch, the predicted output variables are checked
with the actual values, and the difference is calculated.
The update algorithm is used to improve the model
based on this difference. Depending on the number
of epochs, the learning algorithm will traverse the en-
tire training set multiple times. After each epoch, the
parameters of the internal model have been updated
for all samples in the training dataset. There are one
or more batches in an epoch.

Table 6. Models and their evaluation metrics

Model
Accuracy

Score
Precision Recall

F1

Score

ROC

AUC:

SVM 0.926 0.926 0.926 0.926 0.926

Random

Forest
0.956 0.932 1.0 0.965 0.946

KNN 0.964 0.962 0.961 0.982 0.975

Decision

Tree
0.957 0.941 0.99 0.96 0.975

Na¨ıve

Bayes
0.946 0.932 1.0 0.956 0.946

MLP

(Proposed)
0.978 0.9383 0.992 0.964 0.978

Table 7. Hyperparameters for the proposed model

Sl.No. Parameters Value

1. Batch size 32

2. Epochs 10

3. Optimizer Adam

4. Loss Function Binary Cross-Entropy

5. Learning Rate α 0.001

6. Activation function
Output layer- Sigmoid

Other layers-ReLu

The model is trained using a variety of optimizer
and loss function combinations, including ‘Adam and
BCE’, ‘Adam and Hinge’, ‘RMSprop and BCE’, and
‘RMSprop and Hinge’. Owing to the binary nature
of this problem, both the Adam optimizer and the
Binary Cross-Entropy loss function deliver excellent
performance at epoch 10 and provide high accuracy
and precision.

Adaptive moment estimation or Adam is a com-
bination of the ‘gradient descent with momentum’
algorithm and the ‘RMSP’ algorithm. It acts upon,

(1) The gradient component by using V, the ex-
ponential moving average of gradients (as in
momentum), and

(2) The learning rate component is by dividing the
learning rate α by the square root of S, the ex-
ponential moving average of squared gradients
(as in RMSP).

wt+1 = wt −
α√
Ŝt + ϵ

.V̂ t

Where,

V̂ t =
Vt

1− βt
1
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Ŝt =
St

1− βt
2

are the bias corrections, and

Vt = β1Vt−1 + (1− β1)
∂L

∂wt

St = β2St−1 + (1− β2) [
∂L

∂wt
] 2

with V and S initialized Proposed default values:

(1) α= 0.001 (learning rate or step size. The pro-
portion that weights are updated).

(2) β1 = 0.9 (The exponential decay rate for the
first moment estimates).

(3) β2 = 0.999 (The exponential decay rate for the
second-moment estimates).

(4) ϵ= 10−9 (a small positive constant to avoid the
‘division by 0’ error when Vt = 0).

Loss Function: Binary Cross-Entropy/Log Loss

Hp (q) = −
1

N

n∑
i=1

yi.log (p (yi)) + (1− yi) .log(1− p (yi))

Where,

(1) yi represents the actual class of the ith sample.
(2) p(yi) is the predicted probability that the ith

sample belongs to class 1.
(3) 1-p(yi) is the corrected probability that the ith

sample belongs to the actual class.

The negative average of corrected projected proba-
bilities is known as Binary Cross Entropy. It compares
each projected probability to the actual class out-
come, which can be 0 or 1. The score is subsequently
calculated, which penalizes the probabilities based on
their deviation from the expected value. This relates
to how similar or dissimilar the value is to the real
one. At Epoch 10 and Batch Size 32, the model ob-
tained better accuracy of 97.8%, precision of 93.83
%, recall of 99.27 %, F1 score of 96.47 %, and area
under the ROC curve of 97.8 %.

The final layer employs the sigmoid activation func-
tion, which compresses all values between 0 and 1
into a sigmoid curve. The activation function for the
remaining layers is ReLU (Rectified Linear Units).
ReLU is a half-rectified function, which means that
the value is 0 for all inputs less than 0, but the value
is kept as it is for anything positive. There is just one
output unit because a probability will be predicted
for each record value in the input query pattern. The
query is injected if it is above 0.9. It’s not an injected
query if it’s smaller than 0.2.

4.4 Results and Analysis

The proposed model has experimented in the system
with an Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz

Figure 7. Comparison of metrics

Figure 8. Accuracy and loss analysis

Figure 9. Roc curve

3.40 GHz CPU, 8 GB of RAM, 64-bit operating sys-
tem, Win 10, and x64-based processor. Figure 7 shows
a graphical representation of the metrics compari-
son between different combinations of optimizers and
loss functions at epochs 1,5,10, and 15. The ROC
curve depicts the ratio between the false positive rate
and the true positive rate as 97.8%. According to
the training and validation graph, the gap between
training loss and validation loss is minimum in this
suggested model (see Figure 8 and Figure 9.)
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4.5 Scope of the Proposed Model

This proposed model has classified the query with
multiple conditions, simple sub-query, and natural
join accurately. Also, it can classify the views as its
WHERE clause structure is the same as the table.
But queries with the nested query and union are not
classified exactly as shown in the 5th and 6th entries
of Table 10.

The subqueries require special attention to com-
putationally parse them. In normal queries, only the
WHERE clause is prone to injection and its tree rep-
resentation is mostly balanced but in subqueries as
well as nested queries, the trees are skewed, and they
must be analyzed with separate pattern extraction
methodology instead of sibling’s pair to find the in-
jection within that. So, it will be extended in future
work.

When the parser encounters the keyword “Select”
in the WHERE clause, it is mapped as “Subquery”.
It is further manually parsed as shown in item 5,6
in Table 10, as recursive computational processing
will generate skewed trees with multiple SELECT,
FROM, and WHERE clauses. Also, compared to
the proposed work, this scenario has a significantly
different set of requirements for parsing, pruning, and
mining. So, the dynamic structure of the nested query
and union should be patterned properly and that will
be considered as future work of this model. Table 10
shows some sample legitimate and injected queries
and their classification results. This model is also
capable of finding the injected query with a single
malicious pair as well as a high number of benign pairs.
Because the malicious pair has the highest weight for
the injected query and it is taken for its classification.

4.6 Time Complexity

The modified parse tree construction has time com-
plexity O(n log n) since the number of tokens in the
WHERE clause is n. The post-order traversal of the
tree has O(n) and the time complexity of finding its
siblings’ pattern is also O(n). So, the total time com-
plexity is the sum of O(n log n), O(n), and O(n) which
is equivalent to O(n log n). Table 11 shows the time
complexity of the proposed work. When graphs are
used as samples in ML projects, shortest paths or ran-
dom walks are commonly employed and they have an
O(n3)time complexity and an efficient approach for
computing betweenness and closeness centrality have
a time complexity of O(nm + n2logn) and O(n+m)
respectively where n is the number of nodes and m is
the number of edges as stated by (Kar et al., 2016)[4]
But, here the tree construction and post-order traver-
sal have the maximum time complexity of O(n log n).

Table 8. Comparative analysis between existing and proposed

models

Sl.

No

Existing

Model

Feature

Considered

Techniques

applied &

Accuracy

obtained

1.

Prediction of

SQL Injection

Attacks in

Web Applications

Arumugam,

C., Dwarakanathan,

V. B., (2019).

Source IP, Time,

Target application

Logistic

Regression

72%

2.

A Learning-based

Neural Network

Model for the

Detection and

Classification of

SQL Injection

Attacks

Sheykhkanloo,

N. M. (2017).

Pre-defined list of SQLi

attack signatures

NN

90%

3.

SQL Injection

Detection using

Machine Learning

Joshi, A., &

Geetha,V.

(2014, July).

Count of each token

Na¨ıve-

Bayes

93.3%

4.

Detection of SQL

Injection Attacks:

A Machine Learning

Approach Li, Q., Li ,

W., Wang, J., &

Cheng, M. (2019).

Checking for the

presence of special

symbols, comment

characters,semicolons,

always true conditions,

and the number

of commands per

statement

Ensemble

Boosted

and Bagged

Trees

classifiers

93.8%

5.

A Deep Learning

Approach for

Detection of

SQL Injection Attacks

Using Convolutional

Neural Networks

Falor, A., Hirani, M.,

Vedant, H.,

Mehta, P., &

Krishnan, D. (2022).

Assigns weights and

biases to differentiate

various aspects/objects

from one another

CNN

94.84%
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Table 9. Continuation of Table 8

6.

Detection of SQL

Injection based on

artificial neural

network Tang, P.,

Qiu, W., Huang, Z.,

Lian, H., & Liu, G.

(2020).

Length of payload,

number of Keywords,

Sum of Keywords

Weight,Number of

spaces, Ratio of spaces,

Number of special

characters

LSTM

95%

7.

CODDLE:

Code-Injection

Detection With

Deep Learning

Abaimov, S., &

Bianchi, G. (2019).

Each token is

encoded as

pair of numerical

values

<code, type>

(C,T)

CNN

95.7%

8.

Deep Neural

Network-Based

SQLInjection

Detection Method

Zhang, W.,

Li, Y., Li, X.,

Shao, M., Mi,

Y., Zhang, H.,

& Zhi, G. (2022).

TF-IDF of tokens
SQLNN

96.16%

9

SQL injection attack

Detection using

SVM Rawat, R., &

Shrivastav, S. K.

(2012).

Vector of strings

formed from

tokens of SQL query

SVM

96.47%

10

Detection of SQL

InjectionAttack

Using Machine

Learning Basedon

Natural Language

Processing

Triloka, J.,

Hartono, H., &

Sutedi, S. (2022).

Frequency of the

tokens using

conditional

probability

Na¨ıve

Bayes

97.5%

11

Proposed Model

Modified Parse

-Tree Based pattern

extraction Approach

for detecting SQLIA

using Neural

Network Model

Weighted Siblings

pair extracted from

the modified parse

tree represents a

pattern of WHERE

clause

MLP

97.8%

Table 10. Scope of the proposed work

Sl.

No
Input Query Siblings

Act-

ual

Label

Predi-

cted

Label

1

Select title,

phone, hire date

from employees

where first name

= ‘Nancy’ and

last name =

‘Edwards’.

(Column-String),

(Column-String)
Legit Legit

2

Select * from

suppliers where

supp id =

’SUP0145’

and city=’DELHI’

or 1=1.

(Column-String),

(Column- String),

(Numeric-Numeric)

Inj Inj

3

Select * from users

where id = 1

or ” ( )” or

1 = 1 – 1

(Column-Numeric),

(String),

(Numeric- Numeric)

Inj Inj

4

Select count(*) from

courses as c join

attendance as a on

c.course id =

a.course id where

c.course name

= ”English”

(Column-String),

(Column-String)
Legit Legit

5

Select length from

river where length

= (select max

(length ) from river);

(Column-Subquery) Legit Legit

6

Select name from

student where

marks>= (select

max(marks) from

results where dept

= (select dept from

institute where dept

= (select dept from

student where marks

>= (Select max

(marks) from results

where dept=’CA’))))

(Column-Subquery),

(Column- Subquery),

(Column- Subquery),

(Column-Subquery),

(Column String)

Legit Legit
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Table 11. Time complexity of the proposed work

Sl.no Algorithm Time complexity

1 CONSTRUCT TREE() O(n log n)

2 POST ORDER TRAVERSAL() O(n)

3 SIBLINGS() O(n)

Total time complexity O(n log n)+O(n)+ O(n)= O(n log n)

Figure 10. Time complexity

The proposed scheme’s time complexity is esti-
mated theoretically as O(n log n), where n is the
number of tokens in the query’s WHERE clause. Ex-
periments have shown that increasing the number of
tokens (n) increases the time complexity linearly. As
a result, O(n log n) is proven and shown in Figure 10.

4.7 Comparative Analysis

Table 8 & Table 9 show the Comparative analysis
between the existing models and the proposed MLP
model. The existing models using techniques such
as SVM, Logistic regression, Naive Bayes, Ensem-
ble model, LSTM, and CNN mostly considered the
SQL keywords and symbols as their features. But the
proposed modified parse tree-based approach which
considers the weighted siblings pair outperforms well
than the existing models.

5 Conclusion

This paper has proposed a modified parse tree-based
pattern extraction for SQLI detection implemented us-
ing the neural network. This model is plugged into an
application server before the client request is submit-
ted to the database server. Once it classifies the query
as injected, the request should be aborted otherwise
sent to the database server for response. Rather than
using the pre-defined list of keywords and characters
for attack detection, here, the query is transformed
into a normalized modified parse tree, and patterns of
the tree siblings are used for training the model with
probability-based weights. Legitimate and injected
queries differ significantly in patterns, and that helps
classify them effectively. Based on this dataset, this
proposed model identifies 22 pairs of unique siblings.
They are trained with various ML models and a NN
model MLP. The result of the evaluation phase shows
that the proposed approach performs well with the
NN model in all the metrics. Furthermore, this model
can detect injected queries from its generalized form
of patterns rather than by using a predefined list of
keywords. Therefore, this model can be implemented
with any SQL dataset to classify the query as legiti-
mate or injected. In the future, it can be improved
to detect attacks in different types of queries such as
nested queries, queries with the union, and various
types of SQLIAs.
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