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1 Introduction

Using generative models to produce unlimited synthetic samples is a popular
replacement for database sharing. Generative Adversarial Network (GAN) is
a popular class of generative models which generates synthetic data samples
very similar to real training datasets. However, GAN models do not necessarily
guarantee training privacy as these models may memorize details of training
data samples. When these models are built using sensitive data, the developers
should ensure that the training dataset is appropriately protected against privacy
leakage. Hence, quantifying the privacy risk of these models is essential. To this
end, this paper focuses on evaluating the privacy risk of publishing the generator
network of GAN models. Specially, we conduct a novel generator white-box
membership inference attack against GAN models that exploits accessible
information about the victim model, i.e., the generator’s weights and synthetic
samples, to conduct the attack. In the proposed attack, an auto-encoder is
trained to determine member and non-member training records. This attack is
applied to various kinds of GANs. We evaluate our attack accuracy with respect
to various model types and training configurations. The results demonstrate the
superior performance of the proposed attack on non-private GANs compared to
previous attacks in white-box generator access. The accuracy of the proposed
attack is 19% higher on average than similar work. The proposed attack, like
previous attacks, has better performance for victim models that are trained
with small training sets.

© 2023 ISC. All rights reserved.

and privacy are essential. However, machine learning
models are known to implicitly memorize inappropri-

owadays, machine learning models are used in var-
N ious applications. Availability of large datasets
is one of the critical factors in the success of these
models, while datasets are often crowded and may
contain sensitive data. Therefore, their confidentiality
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ate details of sensitive data during training. Therefore,
assessing the privacy risks of machine learning mod-
els is necessary. For this purpose, many attacks are
conducted against these models, which can infer in-
formation about training datasets. One such attack is
the membership inference attack [1]. In a membership
inference attack, given a data record and access to the
learned model, the attacker determines if the record
was in the model’s training dataset or not.

ISeﬂure@



July 2023, Volume 15, Number 2 (pp. 240-253)

GAN [2] is a class of generative models that learn
the distribution of training data and generate syn-
thetic data with a distribution very similar to that.
The GAN architecture typically comprises two neu-
ral networks, a generator, and a discriminator. The
task of the discriminator is separating generated sam-
ples from the training ones, and the generator tries
to deceive the discriminator by generating samples
that the discriminator misclassifies. Publishing the
generator to generate an unlimited number of syn-
thetic samples is a popular replacement for database
sharing. Although in GAN architecture, the generator
does not have access to the training data, the sensi-
tive information of the training data is propagated
through gradients from the discriminator to the gener-
ator. Therefore, if the generator overfits the training
data, its weights and the generated synthetic samples
leak information about the sensitive training data.

Membership inference attacks are categorized into
black-box and white-box attacks. In the black-box set-
ting, only the outputs of the model are accessible to
the attacker, while in the white-box setting, the model
internals and parameters are also available. As in com-
mon practices, only the generator is published to gen-
erate synthetic samples, [3] presented a more detailed
classification of membership inference attacks against
GANS. In their taxonomy, according to the order of ac-
cessible information about victim models, membership
inference attacks against GANs can be categorized
into (1) full black box generator, (2) partial black-box
generator, (3) white-box generator, and (4) accessible
discriminator. In the least knowledgeable setting, i.e.,
full black box generator, only the synthetic samples
are accessible to the attacker. In the partial black-box
generator, the attacker has no access to the generator
internals but can provide the generator input (latent
code) and view the corresponding synthetic sample. In
the white-box generator, the generator internal is also
accessible, and in the most knowledgeable setting (i.e.,
accessible discriminator), in addition to the generator,
the discriminator is available. Membership inference
attacks have better performance for victim models
that are trained with small training datasets [3].

To the best of our knowledge, there exist a few mem-
bership inference attacks against GANs, and GAN-
Leak [3] is the only attack conducted in a white-box
generator setting that does not have high accuracy.
Therefore, designing a high-accuracy attack against
the generator network with white-box access is a re-
quirement. To this end, in this paper, a white-box
generator attack is presented, which optimally uses
the available information about the victim model (syn-
thetic samples and generator parameters) and provides
higher accuracy than GAN-Leak. In the proposed at-
tack, an auto-encoder is trained by the generated syn-

thetic samples of the victim model, and the victim
model’s parameters are used to set the parameters of
the decoder in the auto-encoder. Therefore, all avail-
able information about the victim model’s generator
in white-box access is used to conduct the attack. Our
attack model can help developers and data holders
to better quantify the privacy risk of publishing their
generator models. Our attack model applies to vari-
ous types of GANs. We investigate our attack against
several victim models and three different datasets.

The remainder of the paper is organized as follows.
Section 2 reviews recent research activities on mem-
bership inference attacks. Section 3 introduces GAN
concepts used in the paper. Section 4 presents our at-
tack. In Section 5, the attack is evaluated, and finally,
in Section 6, the findings are summarized, and the
conclusion is presented.

2 Related Work

This paper is mainly related to research in two direc-
tions, one direction is about membership inference at-
tacks against machine learning (ML) models, and the
other direction is about designing privacy-preserving
mechanisms in GANs. Following, we review the top
related research in both directions.

2.1 Membership Inference Attacks Against
ML Models

A membership inference attack is an attack that can
infer information about training data from a trained
model. The first membership inference attack against
discriminative neural network models was introduced
by Shokri et al. [1]. To conduct the attack, the output
of multiple shadow models is used to train the attack
model. Shokri et al. demonstrate that overfitting is an
essential factor in the success of membership inference
attacks. Later, Salem et al. [4] conduct Shokri’s attack
with fewer assumptions. The authors show that with
these fewer assumptions, the attacker can achieve a
very similar performance as reported by[l]. Long et
al. [5] discuss that overfitting is sufficient but not nec-
essary for a membership inference attack and conduct
an attack against well-generalized models to show that
even these models contain vulnerable instances. Yeom
et al. [6] formulate quantitative advantage of adver-
saries for membership inference attack in terms of
generalization error and influence. They show that al-
though overfitting is a sufficient condition for member-
ship inference attack, it is not a necessary condition.
Kaya et al. [7] investigate the impact of various regu-
larization techniques on the success of the membership
inference attack. They show that some regularizations
may help membership inference attacks. Sablayrolles
et al. [8] exploit a probabilistic framework to derive
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an optimal strategy for membership inference attacks.
They show that the optimal attack only depends on
the loss function, and thus, black-box attacks are as
good as white-box attacks.

Li et al. [9] and Choquette-Choo et al. [10] conduct
membership inference attacks by exploiting only pre-
dicted class labels, compared to other methods that
use confidence scores of all classes. Long et al. [11] con-
duct a black-box attack in which the attacker attempts
to minimize false positives by carefully selecting vul-
nerable records. Rezaei et al. [12] investigate the false
alarm rates in the membership inference attacks. They
show that the current membership inference attacks
cannot achieve a low false alarm rate and high accu-
racy at the same time, since the features used in these
attacks are not statistically different for training and
test data records. Hu et al. [13] conduct a black-box
attack, named BLINDMI, without using shadow mod-
els. In BLINDMI, first, a non-member training set is
generated, and a differential comparison is performed
between the target set and the generated set when one
sample moves from the target set to the generated set.
Nasr et al. [14] present a comprehensive framework
for the privacy analysis of deep neural networks using
white-box membership inference attacks. They mea-
sure the privacy leakage by leveraging the final model
parameters and parameter updates during the train-
ing and fine-tuning processes. They design the attack
in stand-alone and federated settings, concerning pas-
sive and active attackers assuming different adversary
prior knowledge. They show that the gradients and
outputs of the last layers leak more membership in-
formation. ML-Privacy [15] is a tool that quantifies
the privacy risk of training data in the discriminative
models by implementing Nasr’s attack [14].

Leino et al. [16] conduct a white-box membership
inference attack with more realistic assumptions than
Nasr et al. [14]. They assume that the attacker does
not have access to the training model of the victim
model and conducts the attack by exploiting the id-
iosyncratic features of training data encoded in the
victim model during training. The first membership
inference attack against generative models was in-
troduced by [17]. There, the authors present a full
black-box generator attack and a white-box accessible
discriminator attack. In the white-box attack with an
accessible discriminator, they use the discriminator’s
output to learn statistical differences between mem-
bers of training datasets and non-members. In the
black-box generator attack, synthetic samples gener-
ated by the victim model are used to train a GAN
model, and the outputs of its discriminator are used
to conduct the attack similar to the white-box attack.
Hilprecht et al. [18] have conducted a black-box infer-
ence membership attack by using generated samples
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of the model. The intuition behind that attack is the
fact that the generator overfits the training data if it
tends to generate outputs very close to the provided
training data. Therefore the authors have inferred a
record with the largest number of the nearest gener-
ated samples as a membership record. Liu et al. [19]
propose a black-box inference attack, in which, given
a record, the attacker trains a neural network that
can reconstruct the record, and if the reconstruction
error is small, the record is considered as a member
of the training set. This attack requires retraining a
new neural network for each record.

Later, [3] extended Hilprecht’s attack model [18] to
the white-box setting, the partial black-box generator
setting, and the full-black-box setting. In the black-
box attack, instead of counting the number of the near-
est generated samples to the query, authors exploit
the reconstruction distance. In the partial black-box
attack, they use the latent code (z) to find a better
reconstruction of the query sample, and in the white-
box attack, by accessing the gradient information and
using first-order optimization algorithms, they solve
the reconstruction problem more accurately. To fur-
ther improve the effectiveness of their attack, they
also propose a calibration technique, which can distin-
guish between a difficult sample representation and a
non-member of the victim model’s training dataset.
Hu et al. [20] propose a white-box accessible discrimi-
nator attack. In their attack, first, the data distribu-
tion is split into different regions, and a membership
confidence score is assigned to each region. Then if a
record of the target set falls in a region with a high
member score, it is considered as a member.

Li et al. [21] formulate the membership privacy loss
as a statistical divergence between the distribution
of training set and non-training set samples, and pro-
pose a sample-based method to estimate the diver-
gence. They test their framework using various queries
against different classes of generative models. Webster
et al. [22] conduct an identity membership inference
attack against GAN models, in which instead of de-
termining a record as a member of training records
of the victim model, the attacker attempts to discern
whether a sample with the same identity is used as a
training record. Zhou et al. [23] propose a property
inference attack against GAN models, in which the
attacker attempts to infer a certain general property
about the training records of the victim model.

2.2 Privacy-Preserving Mechanisms in
GANs

Various methods have been proposed which provide
privacy guarantees for GANs. Some of these methods
provide a strong theoretical guarantee for sensitive
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data privacy, i.e., differential privacy. In contrast, some
methods only empirically protect training data against
a particular attack to generate better quality synthetic
data. Since in some data-publishing scenarios, only
the generator network is released publicly, some work
only trains generators with a privacy guarantee. In
other methods, both discriminator and generator are
trained with a privacy guarantee.

To train both the discriminator and the generator in
a differentially private manner, many approaches [24—
27] utilize DP-SGD [28]. In these methods, in each
training step, the discriminator’s gradients are clipped
based on clipping bounds, and then, to guarantee dif-
ferential privacy, random noise is added to the clipped
gradients. GAN-PATE [29] is another method, which
trains both the discriminator and the generator in a
differentially private manner. This method is based on
the Private Aggregator of Teacher Ensemble (PATE)
method [30]. In this method, the GAN discriminator
is replaced with the PATE mechanism, which means
that the K-teacher discriminator, and one student dis-
criminator are trained, and the student-discriminator
is trained on the generated synthetic samples labeled
by the teachers.

Many approaches [31-34] exploit the PATE
method to train only the generator with a differ-
ential privacy guarantee. In G-PATE [31], multiple
teacher-discriminators and one student-generator
are trained. To control the information flow from
the discriminators to the generator, G-PATE [31]
uses gradient discretization and noisy aggregation of
teacher-discriminators’ votes on the discrete gradients.
DATALENS [32] improves the utility of G-PATE [31]
with top-k gradient compression. GS-WGAN [33] also
uses multiple teacher-discriminators and one student-
generator. At each training step, a randomly selected
discriminator and the generator, update their parame-
ters. To prevent information leakage from the selected
teacher to the student-generator, Abadi’s method [28]
with improved WGAN is used, and the gradient clip-
ping bound is set to one. Han and Xue [34] propose
another method that provides a privacy guarantee for
the generator network. In this method, in each update
of the generator’s parameters, the discriminator loss
is clipped, and the appropriate noise is added to it.

The first empirical defense against membership in-
ference attack in ML models is introduced by Nasr et
al. [35]. They design a multi-objective learning algo-
rithm with the goal of minimizing the classification
loss and maximizing the gain of the membership infer-
ence attack. PrivGAN [36] is an empirical defense for
GAN models which defends against membership infer-
ence attacks. In PrivGAN architecture, the training
dataset is divided into equal-sized non-overlapping

subsets, and each partition would be used to train sep-
arate discriminator-generator pairs. The generators
are trained not only to cheat the discriminators but
also to cheat a built-in adversary whose goal is to iden-
tify which generator generated the synthetic sample.
PAR-GAN [37] is another empirical defense against
membership inference attacks for GAN models, where
one generator and multiple discriminators are trained.
Each discriminator is trained separately on a disjoint
partition of the training data, and the generator is
adversarially trained with multiple discriminators.

3 Background

GAN [2] is a class of unsupervised learning algorithms.
GAN [2] architecture typically comprises two neural
networks, a generator G and a discriminator D, in
which G learns to map from a latent distribution p, to
the true data distribution pgqtq, while D discriminates
between instances sampled from pgq¢, and those gen-
erated by G. G’s objective is to fool D by synthesizing
instances that appear to be from pgqt. The training
objective is formulated as

rgin max Eznpgara [ 109( Do, () )]
o' (1)
+E.np.[log(1 = Do, (Gog(2)))]

where 6 and 6p represent the parameters of the gen-
erator network and the discriminator network, respec-
tively [2]. Figure 1 shows the GAN architecture.
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Figure 1. GAN architecture

Despite its simplicity, the original GAN formulation
is unstable and inefficient to train. A number of recent
works propose new training procedures and network
architectures to improve training stability and con-
vergence rate. In particular, the Wasserstein Genera-
tive Adversarial Network (WGAN) [38] and Improved
Training of Wasserstein GANs (WGANGP) [39] at-
tempt to minimize the earth mover distance between
the synthesized distribution and the true distribution
rather than their Jensen-Shannon divergence as in
the original GAN formulation. Least Square Gener-
ative Adversarial Network (LSGAN) [40] adapts the
least square loss function for the discriminator, and
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Deep Regret Analytic Generative Adversarial Network
(DRAGAN) [41] uses gradient penalty with GAN. In
this paper, to evaluate the proposed attack against
GAN models, WGANGP [39], LSGAN [40], and DRA-
GAN [41] are used as victim models. The training
objective of WGANGP [39] is formulated as:

Helin HelaXE:prdam [Dop,(z))] — E.vp. [Dop, (Gog(2))]
G D

+A(Vz Doy, (7) [l2—1) 2
(2)
where g and 0p represent the parameters of the
generator network and the discriminator network, re-
spectively. Also, & = ez + (1 — €)Gy, (%), where € is
a random number sampled from [0, 1] according to a
uniform distribution.

Similarly, the training objective of DRAGAN [41]
is formulated as:

minmax By p,,,, [10g( Doy (2))]
8¢ Op

+E-np. [log(1 = Dy, (Gos(2))) ] (3)
+A(IVzDo,, () [2-1)

where 65 and 0p represent the parameters of the
generator network and the discriminator network, re-
spectively. Also, & = ex + (1 — €)Gy,, (2), where € is
a random number sampled from [0, 1] according to a
uniform distribution. Finally, the objective function
of LSGAN [40] is defined as:

. 1
min Visgan(0p) = §Enc~pdm[(D0D($) —b)?]
D

+%]EZsz[(D0D(GGG(Z)) —a)?

in Vesoan (96) = 3Eomp.[(Doy(Gag(2)) — )]

(4)
where O and 0p denote the parameters of the gener-
ator and the discriminator, respectively. pgqtq is the
real data distribution, and p, is the prior distribution
of the latent code. a and b are the labels for fake data
and real data, respectively, and ¢ denotes the value
that the generator wants the discriminator to believe
for fake data.

4 Proposed Attack
4.1 Threat Model

In a membership inference attack, an adversary aims
to infer whether a sample is used in the training data
or not. Formally, given a target data point Xiqrget
and a trained machine learning model, M, a member-
ship inference attack can be defined as the following
function:

A XtargetaM — {O, 1} (5)
where 0/1 output means Xy4rges i @ non-member/me-
mber of M’s training dataset. We assume that M is
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a generative adversarial network, and the generator
is accessible to the attacker in a white-box manner.
Therefore, in addition to the input and output of the
generator, the attacker has access to the internal of the
generator. Similar to other related work, we consider
an honest-but-curious adversary that aims to identify
individual records that were used to train the model.
To this end, N records from the training dataset and
N records from the test dataset, i.e., {x1,...,zon } are
given, and the attacker labels IV records as members
of the training dataset. This set is named attacker-set.
The accuracy of the attack is defined as the proportion
of actual training data in these N records.

4.2 Attack Model

Our membership inference attack exploits two obser-
vations about GANs. First, as Figure 1 shows, the sen-
sitive training data is only fed into the discriminator
and impacts the discriminator’s weights and gradients.
In the training procedure, this gradient information
propagates from the discriminator back to the genera-
tor. Therefore, if the generator overfits the training
data, its weights leak information about the sensitive
training data. Second, a generator model tends to ap-
proximate the training data distribution, and if the
generator overfits the training data, it tends to output
a dataset close to the training data. Therefore, the
attacker exploits two features of the victim model: (1)
generator’s parameters and (2) synthetic generated
samples.

To construct an attack model which exploits these
two features and can behave differently on the training
data and non-training data, we train an auto-encoder.
This auto-encoder is trained by the synthetic samples
generated by the generator. Therefore, in the first
step, by accessing the generator of the victim model,
the attacker generates a number of synthetic samples
to train the auto-encoder.

In the second step, the auto-encoder is trained us-
ing the synthetic samples. Auto-encoder consists of
two parts, an encoder, and a decoder. The decoder
architecture is the same as the generator, and its pa-
rameters are set to the generator’s parameters. In the
training procedure, these parameters are fixed (non-
trainable). Therefore, the encoder aims to map the in-
puts to the features in the latent space (z) that if it is
fed to the generator (the decoder), the input is recon-
structed. The encoder trains on the samples generated
by the generator. Formally, the training objective is
formulated as

ming,, (@, Gos (ency,,.(2))) (6)

where encg,,,, and 0., encoder and encoder’s param-
eters. Gy, denotes the generator, and z is the gener-
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ated sample produced by the generator. | denotes a
loss function penalizing for Gy, (ency,,.(x)) being
dissimilar from z. In the attack model’s loss function,
we use mean square error.

In the third step, the reconstruction error of the
attack set is obtained using the trained auto-encoder.
In other words, the attacker injects his/her attacker-
set, {z1,...,22n} into the auto-encoder, and obtains
{li,...,lan}, where l; is [( z;, Gg (encq,, . (x;))).

Finally, in the fourth step, the attacker separates
the member/non-member records of the attack set.
To do this, the attacker labels the N records with the
lowest cost values as members of the training dataset.
In other words, as the decoder is the generator of the
victim model, the output of the auto-encoder can be
considered as the nearest synthetic sample to the input.
Therefore, the records with a minimum distance to
their nearest synthetic samples are selected as training
datasets. Figure 2 shows the high-level overview of
the proposed white-box attack model.

5 Experimental Results

In this section, the proposed attack is compared to LO-
GAN accessible discriminator, LOGAN full black-box
attack ! [17], and GAN-leak white-box generator ? [3].
In LOGAN accessible discriminator, the discriminator
is accessible, and as described, this setting is the most
knowledgeable attack. In the other attacks, only the
generator is accessible. In the GAN leak white-box
generator and the proposed attack, the generator is
accessed in a white box manner, while in the LOGAN
full black-box attack, only the synthetic samples are
available.

To conduct the experiments, three benchmark
datasets are used:

e MNIST, which consists of 70000 labeled hand-
written digit images split into 60000 training
and 10000 test samples. Each image is a 28x28
grayscale image.

e Fashion-MNIST, which comprises 70000 labeled
images of 10 fashion categories separated into
60000 training and 10000 test samples. Each
image is a 28x28 grayscale image.

e CelebA, which consists of 200000 celebrity face
images. We have selected 60000 random images
which are center-cropped and resized to 48 x48.

As stated before, we select WGANGP [39], DRA-
GAN [41], and LSGAN [40] as victim models. In the
victim models, the network architecture is similar to
[42] and training data size is variable (from 64 to 4096
records). The learning rates of the discriminator and

L https://github.com/jhayes14/gen mem’inf
2 https://github.com/DingfanChen/GAN-Leaks

Table 1. FID measure for different GAN models

WGANGP LSGAN DRAGAN

MNIST
FASHION MNIST

95.59
123.61

65.62
115.06

78.85
126.83

the generator are set to 5 * 107°. In WGANGP and
LSGAN, the number of iterations on the discrimina-
tor and the generators are 4 and 1 * 10°, respectively.
In DRAGAN, the number of iterations on the discrim-
inator and the generators are 1 and 1 * 10°, respec-
tively. In WGANGP and DRAGAN, the coefficient
of gradient penalty has a value of 10. The batch size
is set to 64 in training all victim models. All models
are implemented in Tensorflow. Figure 3 shows the
sample synthesized results generated by the victim
models when the training data size is 512.

To quantitatively assess the synthetic generated
images of victim models, we use Frechet Inception
Distance (FID) [43] and Jensen-Shannon scores on
labeled (i.e., MNIST and Fashion MNIST) and unla-
beled (i.e., CelebA) datasets, respectively.

FID score captures the similarity of the generated
images to real ones. Formally FID is defined as follows:

FID =|| pe—ps |* +tr(D° 4+ =2 > )*)
(7)

where z; ~ N (s, ,) and xs ~ N(ps, ) ) are ele-
ment vectors of a specific layer of an Inception Net-
work (e.g., 2048 element-wise activations of Inception
v3 pool3 layer) for real and generated images, respec-
tively and ¢r denotes trace of a matrix. Lower FID
values indicate more similarity between the real and
generated images, corresponding to better-generated
image quality. Table 1 shows the FID for different vic-
tim GAN models on labeled datasets when the train-
ing data size is 512. As this table shows, the highest
and lowest values of FID are related to the WGANGP
and LSGAN, respectively. So, the images generated
by LSGAN have the highest quality, and the images
generated by WGANGP have the lowest quality com-
pared to the others.

To evaluate Jensen-Shannon scores on the unlabeled
dataset, another discriminator, D’ is trained to classify
real and synthetic samples. Using the output of the dis-
criminator, Jenson-Shannon divergence between the
conditional probability of the discriminator’s output
and a Bernoulli distribution with parameter p = 0.5 is
measured. Formally, the Jenson-Shannon divergence
of these distributions is defined as [2]:

S(G) = SKL(p(w | ) || By) +53KL(B, || p(w] w)
0

where B, is Bernoulli distribution with parameter
p = 0.5 and p(w | w)is the conditional distribution
of discriminator’s output to predict u’s label as w
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Figure 2. High-level overview of the proposed white-box box model

WEANGP

Figure 3. Sample images generated by different victim models
after training

(real/synthetic sample label). The more the synthetic
samples are similar to the real samples, the shorter
the distance between the conditional distribution and
the Bernoulli distribution. Therefore, the lower value
of S(G) indicates a better generator. Table 2 shows
the Jenson-Shannon divergence for different victim
GAN models on the CelebA dataset when the training
data size is 512. As this table shows, LSGAN has the
lowest value of the Jensen-Shannon score, so synthetic
images of this model are more similar to real samples
than the other ones.

18:0ured)

Table 2. Jenson-Shannon divergence for different GAN models

WGANGP LSGAN DRAGAN

CelebA 0.1925+0.005 0.179340.0004 0.228540.001

5.1 Attack Model

The network structure of the attack model for MNITS
and Fashion MNIST datasets are depicted in Figure 4.
Also, Figure 5 shows the network structure of the at-
tack model for CelebA datasets. As described, the de-
coder in the attack model is the same as the generator
structure in the victim models. The learning rate and
the number of training iterations are 0.001 and 4 x 10°,
respectively. The batch size is set to 64, and 12800
synthetic samples are used to train the attack models.

5.2 Evaluation of the Proposed Attack
Against Non-Private GANs

Figure 6, Figure 7, and Figure 8 show the attack accu-
racy of compared methods for different sizes of train-
ing data on MNIST, Fashion-MNIST, and CelebA
datasets. In this experiment, the WGANGP victim
model is used. As these figures show, the size of the
training data is an important factor in overfitting the
GAN models and so the accuracy of the membership
inference attacks. The overfitting and the accuracy of
the membership inference attacks decrease as the size
of the training data increases. These figures also show
that the LOGAN-accessible discriminator attack out-
performs other attacks. It highlights the fact that in
the GAN architecture, the training dataset directly im-
pacts the discriminator. Therefore, when the attacker
accesses the discriminator, she can conduct a more
accurate attack. However, when only the generator is
available, our attack outperforms the other attacks.
According to Figure 6, Figure 7, and Figure 8, the pro-
posed method, on average performs 20.05%, 11.09%,
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Layer Output Size Details Layer Output Size Details
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Batch Normalization [None, 4*4*4%54) Kernel size: 5*%5
RelU (None,4*4%4%64) Stride:2
Reshape (None,4,4,4%64) Conv2D (None,7,7,128) Kernels:128
Conv2D Transpose (Mone,B,8,2%64) Kernels: 2*64 Kernel size: 5%5
Kernel size: 5*5 Stride:2
Stride: 2 Padding (Mone,8,8,128)
Slicing (None,7,7.2%64) Conv2D (Mone,4,4,256) Kernels:256
Conv2D Transpose (None,14,14,64) Kernels: 64 Kernel size: 5*5
Kernel size: 5%3 Stride:2
Stride: 2 Reshape (None,4*4*4%64)
ConvZD Transpase (None,28,28,1) Kernels: 1 Batch Normalization (None,4*4%4%64)
Kernel size: 5*5 Fully Connected (None,128) 4*4%4*64 — 128
Stride: 2 {b) Encoder
Tanh (None,28,28,1)
(a) Decoder

Figure 4. The structure of the attack model for MNIST and FASHION MNIST datasets
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Kernel Size:3*3
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Figure 5. The structure of the attack model for CelebA dataset

and 26.51% better than the GAN-Leak [3] white-box
generator attack for MNIST, Fashion-MNIST, and
CelebA datasets, respectively. So, it can be concluded
that on average, the accuracy of the proposed attack
is approximately 19% higher than similar work in our

experiments. Figure 9 compares the execution time
of the proposed attack with the GAN-Leak white box
generator attack when the MNIST dataset is used.
Since most of the execution time in the attack is re-
lated to encoder training, increasing the size of the



attack set has little effect on the execution time. In
contrast, the size of the attack set has a direct impact
on the execution time of the related task, and the ex-
ecution time increases as the attack set increases. So
when the attack set size is larger than 512 (a common
setting in attacks), the proposed attack not only pro-
vides higher accuracy but also runs in less time. It
should be noted that the proposed attack and GAN-
Leak white box generator attack are run in Tensorflow
on a windows server with Intel Core i9, one GTX 2080
GPU, and memory with a size of 50 GB.
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—&— The Proposed Attack
0.2 4 —m— LOGAN-Accessible Discriminator
—e— LOGAN-Full Black Box Attack
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64 128 256 512 1024 2048 4096

Size of training data

Figure 6. Comparison of different attacks’ accuracy versus
different sizes of training data using MNIST dataset
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Figure 7. Comparison of different attacks’ accuracy versus
different sizes of training data using Fashion-MNIST dataset

As Figure 6, Figure 7, and Figure 8 show, the size
of the training dataset in victim models is one of
the important factors in the success of the attack.
To examine the size of the dataset above which the
proposed attack does not perform better than random
guessing, the accuracy of the attack against the victim
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Figure 8. Comparison of different attacks’ accuracy versus
different sizes of training data using CelebA dataset
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Figure 9. Comparison of different attacks’ execution time
versus different sizes of training data using MNIST dataset

models with larger training data size is evaluated.
Table 3 shows the accuracy of the proposed attack for
different sizes of training data on the MNIST dataset
for the WGAN-GP victim model. As this table shows,
for the WGAN-GP victim model on MNIST dataset,
when the data size is approximately larger than 15000,
the attack cannot be better than random guessing
(i.e., accuracy=0.5).

Figure 10, Figure 11, and Figure 12 show the accu-
racy of membership inference attacks against different
victim GAN models. These figures confirm the fact
that, assuming the accessibility of the discriminator
results in the most effective attack. Therefore, the
LOGAN discriminator accessible attack outperforms
the others. However, between the generator white-
box attacks, our proposed attack outperforms GAN-
leak[3] attack. These figures also show that LSGAN
and WGANGP are the most and the least resistant
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Table 3. Jenson-Shannon divergence for different GAN models

5000 6000 7000 8000 9000 10000 15000 20000

Accuracy 0.5752 0.5628 0.5592 0.5471 0.5335 0.5273 0.5111 0.49731

GAN models against the membership inference at-
tacks, respectively.
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Figure 10. Comparison of the accuracy of different attacks

on different victim models using MNIST dataset
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Figure 11. Comparison of the accuracy of different attacks
on different victim models using Fashion-MNIST dataset

It is also appropriate to investigate the effect of
hyper-parameters of the attack model on the accu-
racy of the attack. To do this, the experiments are
conducted with different values of the total number of
iterations (7'), learning rate, and the total number of
training samples (m) for the attack model, when the
MNIST dataset is used. The attacks are conducted
against the WGANGP victim model. Figure 13 shows
the accuracy of the proposed attack for different values
of the total number of training samples of the attacker

I LOGAN-Accessible Discriminator,
GAN-Leak White Box Generator
|

The Proposed Attack

1.0

Accuracy

LSGAN DRAGAN  WGANGP

Figure 12. Comparison of the accuracy of different attacks
on different victim models using CelebA dataset

model (m). In this experiment, the learning rate, the
total number of iterations, and the batch size are set
t0 0.001, 4 * 10°, and 64, respectively. The attack is
conducted against victim models with a different total
number of training samples (N). As this figure shows,
changing the number of synthetic samples used in the
attack model’s training (m) does not have a signifi-
cant effect on the attack performance. Figure 14 shows
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®
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g
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0.2 1 —e— N=512
—a— N=1024
—v— N=2048
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3200 6400 9600 12800 16000 19200 22400

m

Figure 13. Proposed attacks’ accuracy versus different sizes
of attacker model’s training data (m) for various training sizes
of victim model (N) using MNIST dataset

the accuracy of the proposed attack versus different
values of the total number of iterations (T") for train-
ing the attack model. In this experiment, the learning
rate, the total number of attack model’s training data,
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and the batch size are set to 0.001, 12800, and 64,
respectively. The attack is conducted against victim
models with different sizes of training samples (N). As
this figure shows, changing the number of iterations
used in the attack model’s training does not have a
significant effect on the attack performance.
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=
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—=— N=256
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Iteration

Figure 14. Proposed attack’s accuracy versus the different
number of training iterations of attacker model for various
training sizes of victim model (N) using MNIST dataset

Figure 15 shows the accuracy of the proposed attack
versus different values of the learning rate. In this
experiment, the total number of iterations (T) in the
training attack model, the total number of attack
model’s training data (m), and the batch size are set
to 4 x 10°, 12800, and 64, respectively. The attack
is conducted against victim models with different
sizes of training samples (V). As this figure shows,
an excessive increase in the learning rate drastically
reduces the accuracy of the attack.

0.8 i : |
0.6 — — &

0.4+

Accuracy

0.2+

0.0 — —
10° 10" 107
Learning rate

Figure 15. Proposed attack’s accuracy versus different values
of the learning rate for various training sizes of victim model
(N) using MNIST dataset
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5.3 Evaluation of the Proposed Attack
Against Privacy-Preserving GANs

To evaluate the accuracy of the proposed attack
against privacy-preserving mechanisms, three differ-
ential private mechanisms, i.e., GANobfuscator [26],
GS-WGAN]33], and the method proposed by Han
and Xue [34] are investigated. GANobfuscator [26] is
a privacy-preserving mechanism that provides a dif-
ferential privacy guarantee for both the discriminator
and the generator networks. However, GS-WGAN [33]
and the method proposed by Han and Xue[34] only
provide differential privacy for the generator network.
In this experiment, WGANGP [39] with network ar-
chitecture similar to [42], is used as victim model. The
victim model is trained on the MNIST dataset. The
learning rates of the discriminator and the generator
are set to 5 * 107°. The number of iterations on the
discriminator and the generator are 4, and 1 * 10°,
respectively. The coefficient of gradient penalty ()
has the value of 10 and the batch size (m) is set to 64.
The hyperparameters of Adam optimizer, i.e. 8 and
Ba, are set to 0.5 and 0.9. For GANobfuscator[26], the
training dataset is split into publicly available data
and private data, by a ratio of 2 to 98, respectively.
The public data is used for adaptive clipping. In
GS-WGAN [33], centralized training with one discrim-
inator is used. In Han’s method [34], their proposed
adaptive algorithm is used to calculate the clipping
bound of discriminator loss. The size of the training
dataset is set to 512. The parameters of differential
privacy, i.e. confidence parameter § and privacy bud-
get (e ), are set to 10~° and 50, respectively. Figure 16
shows the random synthetic images corresponding to
different mechanisms, and Table 4 shows the FID for
different victim GAN models. As Figure 16 shows,
the synthetic images generated by these mechanisms
are of low quality. Also, as Table 4 shows, among the
privacy-preserving mechanisms, GS-WGANI33] gener-
ates higher quality images, and the values of FID are
very high compared to their non-private counterparts
(FID = 95.59 in Table 1). This is because the vari-
ance of noise in differential private mechanisms is a
decreasing function of the number of training samples.
Therefore, privacy-preserving techniques for GANs
are not yet practically efficient. Moreover, when the
number of training samples is small (which is the
case where most attacks are effective), the variance of
noise will be significant to provide differential privacy
and will cause poor quality samples which makes the
model useless. It should be noted that a reasonable
amount for a privacy budget is less than 11, but since
a smaller amount of privacy budget (more privacy)
leads to lower quality images, the results for e = 50
are presented. Table 5 shows the accuracy of the pro-
posed membership inference attack against different
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GS_WGAN[33]

Han's method [34]

GANobfuscator [26]

Figure 16. Synthetic generated images of different privacy-preserving mechanisms with € = 50 and § = 10~° on MNIST dataset

assuming that the size of training dataset is 512

Table 4. FID measure for different privacy-preserving mecha-
nisms

GS-WGAN|[33] Han’s method [34] GANobfuscator [26]
FID 278.41

304.28 354.36

Table 5. Proposed attack’s accuracy for different privacy-pre-
serving mechanisms on MNIST dastset

GS-WGAN|[33] Han’s method [34] GANobfuscator [26]

Accuracy 0.4921 0.4550 0.4238

privacy-preserving mechanisms. As this table shows,
the proposed membership inference attack cannot
do better than random guessing. The reason is the
low-quality synthetic images as discussed above.

6 Conclusion

Publishing generators in GAN models to generate
synthetic samples is common in practice. But, these
models may leak information about their training data.
Therefore, a privacy risk assessment of these models
has been attended recently. In this paper, a white-box
generator attack against the privacy of GAN models
has been proposed. In this attack, an auto-encoder is
trained, where the decoder architecture is the same
as the generator, and its parameters are set to the
generator’s parameters. The cost values of the trained
auto-encoder are used to separate training members
from non-members.

The proposed attack has been evaluated concern-
ing various GAN models and training configurations.
The results demonstrate that the proposed attack out-
performs GAN-leak [3], the only related white-box
generator attack. But LOGAN discriminator acces-
sible attack outperforms the proposed attack, which
highlights the fact that in the GAN architecture, the
training dataset directly impacts the discriminator.
Therefore, the attacker can conduct attacks more ac-
curate attacks by accessing the discriminator. The pro-

posed attack has also been evaluated against privacy-
preserving GANs that are using differential private
mechanisms. The results show that due to the low qual-
ity of the generated images in small training datasets,
the attack against them is ineffective. A comprehen-
sive evaluation of the proposed attack on diverse gen-
erative models, and datasets, especially non-image
datasets, can be regarded in future research. Also, an
evaluation of the proposed attack against empirical
privacy-preserving GANSs is suggested as future work.
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