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A B S T R A C T

In terms of security, MDS matrices are one of the best choices for the

diffusion layer of block ciphers. However, as these matrices grow in size, their

software implementation becomes a challenge. In this paper, to benefit from

the properties of MDS matrices and avoid the mentioned challenge, we use

4 × 4 MDS matrices to build some 16 × 16 matrices with a low number of

zero elements. We show that if these matrices are used as diffusion layers

of software-based SPN structures, the resulting block ciphers have similar

properties as AES in software implementation complexity (i.e. the number

of required CPU instructions) and resistance against linear and differential

attacks. Moreover, the best impossible differential and square distinguishers for

the proposed 16× 16 structures have a similar length as SPN structures with

16× 16 MDS matrices. Thus, the new structures outperform AES concerning

the impossible differential and square attacks. Additionally, we show that if

the proposed SPN structure uses the AES key schedule, its results for the

differential related-key attacks are better than those for AES. We also extend

the idea and use 4×4 MDS matrices to design 24×24 and 32×32 matrices with

acceptable properties for SPN structure design. Finally, we extend the idea to

propose some matrices for Feistel structures with SP-type F-functions. We show

that the resulting structures are more secure than the improved Type-II GFS.

© 2020 ISC. All rights reserved.

1 Introduction

Block cipher is a type of symmetric key encryption
algorithm whose goal is to provide data confi-

dentiality using a secret shared between communi-
cating parties. Block ciphers are designed based on
the principles of confusion and diffusion, introduced
by Shannon [1]. It means that the block cipher is di-
vided into some rounds where each round consists of
some confusion and diffusion layers (transformations).

∗ Corresponding author.

Email addresses: m.sajadieh@khuisf.ac.ir,
arash.mirzaei@monash.edu

ISSN: 2008-2045 © 2020 ISC. All rights reserved.

The confusion layer of a block cipher is usually pro-
vided by n small-sized S-boxes. The diffusion layer
is deployed using some linear transformations that
mix the outputs of the S-boxes. The diffusion layer
guarantees that after a few rounds, each output bit
is dependent on all input bits and the confusion layer
ensures that this dependency is highly non-linear.

There are two primary approaches to designing a
block cipher depending on the implementation envi-
ronment which the cipher is optimized for: (1) Con-
ventional ciphers are optimized for desktop and server
environments with no strict resource constraints, and
(2) Lightweight ciphers which perform remarkably
better in constrained environments, i.e. hardware and
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embedded software platforms [2].

The structure of a block cipher can be categorized
into two types: Substitution-Permutation Network
(SPN) and the Feistel network. Each round of an
SPN structure consists of a substitution layer (rep-
resenting the confusion transformation) followed
by a permutation layer (representing the diffusion
transformation) where the combination is called
Substitution-Permutation (SP) transformation. Ri-
jndael [3], is one of the most important SPN-based
block ciphers. A basic Feistel cipher divides input
into two sub-blocks, x and y, and in each round of
the cipher, the transformation (x, y) −→ (f(x)⊕y, x)
is performed where the function f is called the
round function. A generalized Feistel structure
(GFS) divides the input block into more than 2 sub-
blocks [4]. The most popular form of GFS is called
Type-II [5] where the output of a single round of
Type-II GFS for the input (m0,m1, . . . ,m2k−1) is
π(m0, f(m0)⊕m1, . . . , f(m2k−2)⊕m2k−1) and π is
a permutation on 2k sub-blocks. If

π(m0,m1, . . . ,m2k−1) = (m2k−1,m0,m1, . . . ,m2k−2)

holds, the Type-II GFS is called the standard Type-II
GFS. This type of GFS with SP-type round function
has the problem of difference cancellation caused by
the XOR operation. Two methods have been pro-
posed to resolve this issue: (i) Using multiple MDS
matrices as diffusion layer of the round functions
[6–8], (ii) Modifying permutations of the Type-II
GFS connections [9, 10]. CLEFIA is the most famous
example of a Type-II GFS [11] with an SP-type
round function.

One of the main goals of a block cipher designer
is to maximize the minimum number of linear and
differential active S-boxes (MNLAS 1 and MNDLS
2 , respectively [12]) for several rounds of the block
cipher. The faster the number of active S-boxes in-
creases, the fewer rounds the block cipher requires
to resist linear and differential family attacks [13].
Thus, diffusion layer plays an important role in the
design of a block cipher.

Due to having the maximum branch number, MDS
matrices are appropriate options to be used as diffu-
sion layers of block ciphers to efficiently increase the
number of active S-boxes [14]. Since the implemen-
tation of large MDS matrices (e.g. of size 16 × 16,
24× 24 and so on) is inefficient, 4× 4 MDS matrices
are often used to construct practical diffusion layers.

1 Minimum Number of Linear Active S-boxes
2 Minimum Number of Differential Active S-boxes

For instance, for Rijndael with 128-bit, 192-bit and
256-bit block lengths, four, six and eight 4× 4 MDS
matrices are used, respectively [3].

For a block cipher, MNDAS and MNLAS of con-
secutive rounds are directly related to how the cipher
is resistant to differential and linear attacks, respec-
tively. For instance, there are at least 25 active S-
boxes in 4 rounds of AES which makes it resistant
to mentioned attacks. However, resistance against
other attacks including impossible differential [15]
and square attacks [16] is also of importance. The
largest impossible differential distinguisher for AES is
3.5 rounds which results in an attack on 6.5 rounds of
this cipher [15]. The corresponding values for square
distinguisher are 4 and 6 rounds, respectively [17]. It
intuitively seems that the sparseness of a diffusion
layer matrix may result in weaknesses of the corre-
sponding cipher in resistance against such attacks
because the denser a diffusion matrix is, the faster
its byte differences diffuse and hence the shorter its
longest distinguishers are [18, 19]. Thus, this paper
targets designing some new classes of dense 4n× 4n
matrices using 4× 4 MDS matrices that achieve:

• acceptable results concerning the security
against differential, linear, impossible differen-
tial and square attacks,

• high performance in modern general-purpose
computers.

1.1 Our Contribution

The contributions of this paper are as follows:

• We introduce some new classes of 16× 16 ma-
trices with a low number of zero elements for
software-based block ciphers. The SPN struc-
ture that uses one of these matrices as its dif-
fusion layer, can be efficiently implemented in
software using lookup tables with 4-byte en-
tries and achieves similar performance as AES.
Furthermore, it has appropriate properties in
terms of resistance against linear, differential,
impossible differential and square attacks. In
other words, if the AES diffusion layer is re-
placed with one of the matrices proposed in this
paper, the number of active S-boxes for several
rounds of the resulting SPN structure would be
slightly less than the corresponding values for
AES. Nevertheless, there is no impossible differ-
ential distinguisher and square distinguisher for
more than 2.5 rounds and 3 rounds of the new
SPN structure, respectively. The corresponding
values for AES are 3.5 rounds and 4.5 rounds,
respectively. Moreover, it is shown that if AES
key schedule is used in the proposed SPN struc-
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ture, the minimum number of active S-boxes
in differential-related key attacks on different
rounds of this structure is higher than the cor-
responding values for AES.

• We extend the idea and introduce 24× 24 and
32×32 matrices for 192-bit and 256-bit diffusion
layers, respectively.

• We extend the idea and design some new ma-
trices for Feistel structures with SP-type F-
function. We compare the security of the pro-
posed Feistel structure with that of the existing
Feistel structures and show that new structures
with 2 sub-blocks have better cryptographic
properties than the improved Type-II GFS.

1.2 Related Work

Block cipher design started in the 1970s but has en-
tered a new stage since the AES competition. In this
competition, some ciphers (e.g. Rijndael [3]) used
MDS matrices as part of their diffusion layers. The
paper [20] uses multiple MDS matrices in the Feistel
structure and the block cipher CLEFIA [11] is de-
signed based on this idea. Permutations of Type-II
GFS with multiple MDS matrices are studied in [21].
The paper [13] suggests the design of perfect diffusion
layers based on linear operations. Also, based on this
idea, [22] presented the idea of Toeplitz Matrices and
[23] presented the idea of lightweight linear diffusion
layers from Near-MDS matrices. The necessary and
sufficient conditions to construct recursive MDS ma-
trices from non-singular diagonable companion are
provided in [24] and an efficient class of lightweight
4 × 4 MDS matrices is presented in [25]. Recently,
[26] investigated the construction of MDS matrices
with generalized Feistel structures.

1.3 Preliminaries and Notations

In this paper, SPN structures comprise of 4n m-bit
S-boxes and hence the state vector x is represented
by a 4n-tuple vector [x0, . . . , x4n−1]

t of m-bit values.
The state vector, x is also represented by a vector,
[x̂0, . . . , x̂n−1]

t where each x̂j is a 4× 1 vector of m-
bit elements (x̂j = [x4j , x4j+1, x4j+2, x4j+3]

t). Each
4×1 vector also represents a word with 4m-bit length.
Then, the left shift and the circular left shift of the
vector x̂ by i elements (denoted by x̂ ≪ i and x̂ n i,
respectively) is equivalent to left shift and circular
left shift of the corresponding word by i × m bits,
respectively. Similar notations can be used for the
right shift and circular right shift.

In each round of the SPN structure, regardless of
the key addition layer, two different transformations
are applied to the state. In the first transformation
which is the S-box layer, an m-bit substitution is

independently applied to each element of the state.
Applying the S-box layer on the state vector x (or
similarly on x̂j and xj , respectively) is denoted by
S(x) (or similarly S(x̂j) and S(xj), respectively).
In the second transformation which is the diffusion
layer, the state vector is multiplied on the left by the
4n× 4n matrix A over a finite field GF (2m). Thus,
in this paper, the terms diffusion transformation and
diffusion matrix are used interchangeably.

The diffusion layer A is a 4n×4nmatrix that is also
represented by an n× n matrix of 4× 4 sub-matrices
where each sub-matrix is either an all zeros matrix,
denoted by Z, or an MDS matrix (see Property 1). In
other words, if the diffusion matrix A is applied on x,
then the output y (y = [ŷ0, . . . , ŷn−1]

t) is computed
as follows:

ŷ0

ŷ1

...

ŷn−1

 =


A0,0 A0,1 . . . A0,n−1

A1,0 A1,1 . . . A1,n−1

...
...

An−1,0 An−1,1 . . . An−1,n−1

 ·


x̂0

x̂1

...

x̂n−1


⇒ ŷi =

∑n−1
j=0 Ai,j · x̂j

(1)
where multiplications are performed over a finite field.

Definition 1. For a 4×1 vector x̂, the VWT (Vector-
Wise Truncated) value xC is a value from 0 to 4
representing the number of non-zero elements of x̂.

Definition 2. For a 4n×1 vector x ofm-bit elements,
the VWT vector xC is a vector of length n, where
the jth element of xC (i.e. xC

j ) takes a value from
0 to 4 representing the VWT value of the vector x̂j

= [x4j , x4j+1, x4j+2, x4j+3]
t.

To distinguish the VWT vector of different states
of a cipher from each other, the round number is used
as the subscript, e.g. the VWT vector for round R is
denoted by xC

R. Table 1 summarizes the mentioned
notations.

Property 1. For two 4× 1 vectors x̂ and ŷ, if ŷ =
Ai,j · x̂ and Ai,j is a 4× 4 MDS matrix, the following
relation holds between xC and yC (VWT value of x̂
and ŷ, respectively):

yC =

 0 for xC = 0

q, 5− xC ≤ q ≤ 4 for xC > 0
(2)

The differentially or linearly active S-box as well
as the branch number will be defined, hereinafter.

Definition 3. An S-box is differentially or linearly
active if its input difference or output mask value is
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Table 1. Notations

Notation Description

x̂ A 4× 1 vector of m-bit elements

x̂ ≪ i The left shift of the vector x̂ by i elements

x̂ n i The circular left shift of the vector x̂ by i elements

xC The VWT value of x̂

x The state vector [x0, . . . , x4n−1]t of m-bit elements

x̂j The 4× 1 vector [x4j , x4j+1, x4j+2, x4j+3]
t

xC
j The VWT value of x̂j

xC The VWT vector [xC
0 , xC

1 , . . . , xC
n−1]

t

A A 4n× 4n matrix, representing the diffusion matrix

Z An all zeros 4× 4 matrix

A A 4× 4 MDS matrix

non-zero.

For a linear diffusion layer, denoted by the matrix
multiplication y = A ·x, it can be shown that output
difference (△y) is obtained from input difference
(△x) by △y = A · △x:

y1 = A · x1, y2 = A · x2 ⇒ △y = A · △x (3)

Also, input linear mask (Γx) is obtained from out-
put linear mask (Γy) by Γx = At · Γy where At de-
notes transpose of matrix A [27]:

y = A · x ⇒ Γt
y · y = Γt

y · A · x = (At · Γy)
t · x

⇒ Γx = At · Γy

(4)

Definition 4. The branch number of a linear map-
ping D is given by:

βd(D) = min
x ̸=0

{w(x) + w(D(x))} (5)

where w(x) is the number of non-zero elements in the
vector x [28].

1.4 Outline of Paper

The rest of this paper is organized as follows. Sec-
tion 2 introduces a new family of 16 × 16 matrices
based on multiple 4× 4 matrices where the proposed
matrices are modified in Section 2.1. Section 2.2 dis-
cusses properties of new matrices regarding the re-
lated key attacks. In Section 2.3, some new conditions
are imposed on the introduced 4× 4 matrices to en-
hance the software implementation properties of the
new matrices. In Section 2.4, the idea is extended
to design 24× 24 and 32× 32 matrices. Section 2.5
discusses implementation properties of the inverse of
the new matrices. In Section 3, the introduced idea is
used to design some new diffusion matrices for Feis-

tel structures with SP-type F-function. Finally, the
conclusion is represented in Section 4.

2 New 16× 16 Matrices Based on
4× 4 MDS Matrices

A 16× 16 MDS diffusion layer outperforms the AES
diffusion layer with respect to resistance against
linear, differential, impossible differential, and square
attacks. If S-boxes are designed to be injective
and near-ideal (for example by setting S(x) =
(Ax+B)−1 mod p(x) where p(x) is a primitive poly-
nomial in GF (2n)) and the length of entries in the
MDS matrix equals the S-box length, the largest
impossible differential and square distinguisher for
an SPN structure with a 16 × 16 MDS diffusion
matrix would be 2.5 and 3.5 rounds, respectively.
This structure would also have at least 17 active
S-boxes in every 2 consecutive rounds. However,
usage of 16× 16 MDS matrices is impractical as the
implementation of such matrices is inefficient.

Therefore, our goal in this section is to design some
16× 16 diffusion matrices which satisfy the following
three conditions:

(1) The SPN structure with new matrices must be
as resistant against impossible differential and
square attacks as MDS matrices.

(2) The SPN structure with the proposed matrices
should not be less secure than AES from the
aspect of resistance against differential or linear
attacks.

(3) Unlike an SPN structure with a 16×16 MDS ma-
trix, software implementation of the proposed
structure should be practical.

To find the matrices with the best results regarding
impossible differential and square distinguishers, we
searched all 16×16 matrices comprising sub-matrices
Z (i.e. an all zeros 4× 4 matrix) and A (i.e. a 4× 4
MDS matrix). To find the longest distinguishers, we
used the method introduced in [29]. Regardless of the
shifted versions, the matrices with the best results
are as follows:

P1 =


Z A A A

A Z A A

A A Z A

A A A Z

 ,P2 =


Z A A A

A Z A A

A A Z A

A A A A

 (6)

Since MNLAS and MNDAS for P1 are greater than
those for P2, we analyze P1, hereinafter.

Figure 1 shows the longest impossible and square
distinguishers for the SPN structure that uses P1 as
its diffusion layer. In Figure 1, A is an active byte, C
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is a constant byte, B is a summation zero byte and U
is a non-predicable byte in a square attack. As Fig-
ure 1 shows, the length of these distinguishers is the
same as those for an SPN structure with a 16 × 16
MDS matrix. Thus, P1 meets the first condition of
the previously stated conditions. Now we discuss the
resistance of the mentioned structure against linear
and differential cryptanalysis (corresponding with
the second stated condition).

The branch number of P1 is 7 and the following
differential characteristic for this SPN structure shows
that the minimum number of differential active S-
boxes for every 2r round cannot exceed 7r.

xC
R = (0, 1, 1, 1) 7−→ xC

R+1 = (4, 0, 0, 0)

7−→ xC
R+2 = (0, 1, 1, 1)

(7)

where R in xC
R shows the round number.

Therefore, P1 does not provide satisfactory results
regarding MNDAS and MNLAS values. Thus, our
aim in Section 2.1 will be to design a new class of ma-
trices for which 1) impossible differential and square
distinguishers are similar to those for P1, and 2) the
results for MNDAS and MNLAS are better than those
for P1.

2.1 Modification of the Proposed Matrix

Difference cancellation caused by the XOR opera-
tion is the reason for the low number of active S-
boxes of P1. As mentioned in [6], difference cancel-
lations also occur in Feistel structures. The paper
[6] uses multiple MDS matrices to increase the num-
ber of active S-boxes in Feistel structures. In this
section, we extend this idea to resolve the issue of
difference cancellations in SPN structures. It means
that instead of using one matrix A, 4 distinct MDS
matrices A0 to A3 are used where the branch num-
ber of the 4 × 16 matrices [A0 A1 A2 A3] and
[(At

0)
−1 (At

1)
−1 (At

2)
−1 (At

3)
−1] is 5. To meet the

third condition of the condition set, stated in the pre-
vious section, each column of the new matrix must
not have more than one unique non-zero 4×4 matrix.
Thus, for a 16× 16 matrix, four distinct 4× 4 matri-
ces suffice. The modified version of P1 is denoted by
Q1 which is as follows:

Q1 =


Z A1 A2 A3

A0 Z A2 A3

A0 A1 Z A3

A0 A1 A2 Z

 (8)

It is to be noted that the impossible differential
distinguisher and square distinguisher of P1 and
Q1 are the same. Since the utilized non-zero 4 × 4
matrices are MDS, the methods presented in [12, 30]
can be utilized to count the number of active S-boxes.
In the following, some properties of the matrix Q1
and matrices Ai are stated. These properties are
used in the counting method.

Property 2. If two vectors x and y are XORed, and
the resulting vector is shown by t, we have:

x⊕ y = t =⇒ |xC − yC | ≤ tC ≤ xC + yC (9)

Property 3. If multiple vectors with VWT values
of xC

i (0 ≤ i ≤ n − 1) are XORed, i.e. t = ⊕n−1
i=0 xi,

then we have:

xC
l −

n−1∑
j=0,j ̸=l

xC
j ≤ tC ≤

n−1∑
j=0

xC
j (10)

where xC
l is the maximum value among xC

i .

Another important property, resulting from the
fact that the branch number of [A0 A1 A2 A3] is 5,
is as follows:

Property 4. Based on relation (1), assume that
ŷi = ⊕n−1

j=0Aj · x̂j and the branch number of(
A0 A1 · · · An−1

)
is 5, then we have the following

inequality:

ŷi =
(
A0 A1 · · · An−1

)
·


x̂0

x̂1

...

x̂n−1


=⇒ yCi +

∑n−1
j=0 xC

j ≥ 5 if
∑n−1

j=0 xC
j ≥ 1

(11)

Example 2.1. Assume that ŷ0 = A1 · x̂1 ⊕ A2 ·
x̂2 ⊕ A3 · x̂3 where xC

1 = 1, xC
2 = 1 and xC

3 =
2. Due to properties of MDS matrices, (A1 · x̂1)

C

and (A2 · x̂2)
C equal 4 and (A3 · x̂3)

C equals 3 or 4.
Although Property 3 implies that we have yC0 ≤ 4
and yC0 ≥ 0, based on Property 4 yC0 + 1 + 1 + 2 ≥ 5
holds. Thus, the lower bound of yC0 is 1.

A combination of outputs can also impose some
new conditions, one of which is shown in 2.2.

Example 2.2. Assume that

ŷ2 = A0 · x̂0 ⊕A1 · x̂1 ⊕A3 · x̂3

ŷ3 = A0 · x̂0 ⊕A1 · x̂1 ⊕A2 · x̂2
(12)
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Figure 1. Impossible differential (a) and square distinguisher (b) of SPN structure with P1

Table 2. MNDAS of r rounds of the SPN structure with Q1

r 1 2 3 5 8 10 12 14 20 24

MNDAS 1 7 13 24 40 51 62 73 106 128

It holds ŷ2 ⊕ ŷ3 = A2 · · · x̂2 ⊕ A3 · x̂3 and using
property 4, we have yC2 + yC3 + xC

2 + xC
3 ≥ 5 if xC

2 + xC
3 ≥ 1

yC2 = yC3 if xC
2 = xC

3 = 0
(13)

and hence, if yC2 = xC
2 = xC

3 = 1, then yC3 ≥ 2.

To count the number of active S-boxes, the method
mentioned in [12] was used. This method is briefly
explained in Appendix A. Table 2 displays the number
of active S-boxes for consecutive rounds of an SPN
structure with Q1 as its diffusion layer.

Although the branch number of the matrix Q1 is 7,
the number of differential active S-boxes of 2r rounds,
is more than 7r for r > 1 and this number closes to
the corresponding values for AES as the number of
rounds increases. To compute the number of linear
active S-boxes, the counting method must be applied
on (Q1t)−1 which has the below form:

(Q1t)−1 =


Z (At

1)
−1 (At

2)
−1 (At

3)
−1

(At
0)

−1 Z (At
2)

−1 (At
3)

−1

(At
0)

−1 (At
1)

−1 Z (At
3)

−1

(At
0)

−1 (At
1)

−1 (At
2)

−1 Z


(14)

According to the similarity of the structure of the
matrix (Q1t)−1 with that of matrix Q1, if the branch
number of [(At

0)
−1(At

1)
−1(At

2)
−1(At

3)
−1] is 5, then

the minimum number of linear active S-boxes for
consecutive rounds is also as Table 2 shows.

Table 3. Comparison between AES structure and SPN struc-
ture with P1 and Q1

Structure Lin. & Diff. Imp. Diff. square

Dist. (Attack) Dist. (Attack) Dist. (Attack)

AES 3 (4) [3] 3.5 (6.5) [15] 4.5 (6) [3, 16]

SPN with P1 5 (6) 2.5 (4.5) 3.5 (5)

SPN with Q1 4 (5) 2.5 (4.5) 3.5 (5)

An interesting point, observed during the compu-
tation of the minimum number of active S-boxes for
the matrix Q1, is that if the branch number of all
4 × 8 matrices [Ai Aj] (0 ≤ i, j ≤ 4 and i ̸= j) is 5,
the values in Table 2 do not change.

Table 3 compares the SPN structure that uses Q1
(P1) as its diffusion layer with AES. The values in
parentheses show the largest number of rounds for
which the complexity of a given attack is less than
the exhaustive search. Table 3 shows that 7 rounds
of AES and 6 rounds of the proposed structure are
resistant to mentioned attacks, respectively.

Also, using the relation between plaintext and sub-
keys of the first round, the length of the impossible
differential distinguisher for AES can be increased by
1 round [31]. The SPN structures with P1 or Q1 have
a more complicated form than AES because each byte
in P1 or Q1 affects 12 bytes in the next round but
each byte in AES affects 4 bytes. Thus, it seems that
the proposed structure is more secure than AES re-
garding this attack. We can state the same argument
for the integral attack where the length of the square
distinguisher for AES can increase by one round.

Implementation of 10 rounds of the SPN structure
with Q1 and full-round AES (10-round AES) on a
Pentium II PC with 3.4 GHz CPU shows that the
former is 8% slower.
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Table 4. MNDAS for related key attack on r rounds of AES

and SPN structure with Q1

r 4 5 6 7 8 9 10

AES 9 11 13 15 21 23 25

SPN structure with Q1 10 12 16 18 22 24 27

2.2 Related Key Analysis

Resistance of a block cipher against related-key at-
tacks cannot be analyzed without considering its
key-schedule details. However, the focus of this paper
is on the diffusion layer design and hence no new
key-scheduling is proposed. Nevertheless, according
to the importance of related-key attacks, it must be
shown that the proposed matrices do not have any
particular weaknesses that make them vulnerable
to related-key cryptanalysis. To show this, we use
a key-schedule algorithm with the new diffusion
layer to build a complete structure and then analyze
it from the aspect of related-key attacks. Since all
the cryptographic properties of new matrices were
compared with those for Rijndael, Rijndael’s key
schedule is selected to be used with new diffusion
layers. The Figure 2 and Figure 3 illustrate the best
truncated differential characteristics for the resulting
SPN structure for r=5 and r=8 rounds, respectively.
Table 4 shows the minimum number of active S-boxes
in the best truncated differential characteristics for
the resulting SPN structure for a different number of
rounds. The corresponding values for AES are also
shown in this table [32].

As Table 4 shows, the results for the new structure
are slightly better than those for AES and it provides
evidence that the new proposed non-sparse diffusion
layer does not cause any particular weaknesses regard-
ing related-key attacks. According to this evidence
and since the subject of this paper is not designing
key-schedule algorithms, we will not investigate the
related-key attack against other diffusion layers that
will be proposed in the next sections.

2.3 Criteria for Selection of Matrices Ais

IfQ1 is used as the diffusion layer of an SPN structure,
then the lookup table implementation of each round of
the structure requires only 6 XORs and 6 temporary
variables for more than one AES round. Each round
is represented as follows:


ŷ0

ŷ1

ŷ2

ŷ3

 = Q1 ·


S(x̂0)

S(x̂1)

S(x̂2)

S(x̂3)

 (15)

Implementation of Q1 (and P1) with lookup table
have two phases. In the first phase, 6 temporary
variables are computed:

ûi = Ai · S(x̂i), i = {0, . . . ,3},

v̂4 = û0 ⊕ û1,

v̂5 = û2 ⊕ û3

(16)

Then, ŷis are computed as below:

ŷ0 = v̂5 ⊕ û1

ŷ1 = v̂5 ⊕ û0

ŷ2 = v̂4 ⊕ û3

ŷ3 = v̂4 ⊕ û2

(17)

There are many methods that can be adopted in
order to design the matrices A0 to A3, one of which
is selecting four 4× 4 matrices from a 16× 16 MDS
matrix. Generally, software implementation of the
proposed diffusion layer with 4 distinct Ai and 16
lookup tables (corresponding to A0 to A3) requires
16 table lookups and 20 XOR operations. To decrease
the number of tables, a 4 × 4 matrix is selected as
A0. Then, A1, A2 and A3 are obtained by shifting
the rows of A0. So, instead of 16 lookup tables for
A0, A1, A2 and A3, only 4 lookup tables will be
required. One of the sets (with low weight) with
the mentioned property in GF (28) with primitive
polynomial x8 + x4 + x3 + x2 + 1 is:

A0 =


8 3 8 14

9 13 1 4

3 12 11 3

10 7 14 2

A1 =


9 13 1 4

3 12 11 3

10 7 14 2

8 3 8 14



A2 =


3 12 11 3

10 7 14 2

8 3 8 14

9 13 1 4

 ,A3 =


10 7 14 2

8 3 8 14

9 13 1 4

3 12 11 3



(18)

One can verify that if ŷ0 = A0 · x̂, we have ŷ1 = A1 ·
x̂ = ŷ0 n 1, ŷ2 = A2 · x̂ = ŷ0 n 2 and ŷ3 = A3 · x̂ =
ŷ0 n 3. It is noteworthy that there are some issues
regarding implementing the inverse of the matrix Q1
using the mentioned Ai matrices. Thus, if the inverse
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Figure 2. The best truncated differential characteristics for 5 rounds of resulting SPN structure with Q1
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Figure 3. The best truncated differential characteristics for 8 rounds of resulting SPN structure with Q1

of the matrix is required to be implemented (e.g.
when the used mode of operation is ECB 3 or CBC 4 )
the matrices Ais must be selected using a different
method. More details will be stated in Section 2.5.

2.4 24× 24 and 32× 32 Matrices Based on
Multiple 4× 4 MDS Matrices

In this section, some 24 × 24 and 32 × 32 matrices
are proposed to be used as diffusion layers of SPN
structures with block lengths of 192 bits and 256
bits, respectively. We searched among all the possible
24 × 24 matrices comprising sub-matrices Z and A
to find the ones with the best results concerning the
impossible differential and square attacks. To find
the longest distinguishers, the method introduced in
[29] was used. One of the best found matrices is as
follows (A in the ith column of the found matrix has
been replaced by Ai):

Q2 =



Z A1 A2 Z A4 A5

A0 A1 A2 A3 Z A5

Z A1 Z A3 A4 A5

A0 A1 A2 A3 A4 Z

A0 A1 Z A3 Z A5

A1 Z A2 A3 A4 A5


(19)

3 Electronic Codebook
4 Cipher Block Chaining

The Mixed-integer Linear Programming (MILP)
method, mentioned in [33], is used to count MNDAS
for the SPN structure with Q2. However, since the
number of inequalities is very large, the number of
active S-boxes can be computed for a limited number
of rounds (i.e. at most 12 rounds).

MNDAS for 12 rounds of Q2 is 74 and the best
impossible differential (square) distinguisher for an
SPN structure using Q2 is 2.5 (3.5) rounds which
are one round shorter than the best distinguisher of
Rijndale-192.

An exhaustive search for 32 × 32 matrices is in-
feasible. Thus, some of such matrices were searched
among which the following matrix has the best re-
sults with respect to impossible differential, square,
differential and linear distinguishers.

Q3 =



Z A1 A2 A3 A4 Z Z A7

A0 Z A2 A3 A4 A5 Z Z

A0 A1 Z A3 Z A5 A6 Z

A0 A1 A2 Z Z Z A6 A7

Z A1 A2 A3 A4 A5 A6 Z

A0 Z A2 A3 Z A5 A6 A7

A0 A1 Z A3 A4 Z A6 A7

A0 A1 A2 Z A4 A5 Z A7


(20)

To count MNDAS for 32 × 32 matrices, MILP
method was used [33]. However, since the number
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Table 5. MNDAS of r rounds of the SPN structure with Q2

and Q3 and Rijndael family

r 1 2 3 5 8 10 12 14 20 24

SPN structure with Q2 1 8 13 29 50 64 78 ? ? ?

Rijndael-192 [12] 1 5 9 34 50 72 87 103 150 180

SPN structure with Q3 1 9 18 36 60 ? ? ? ? ?

Rijndael-256 [12] 1 5 9 41 65 85 105 120 175 210

Table 6. Comparison between Rijndael structure and SPN

structure with Q2 and Q3

Structure Lin. & Diff. Imp. Diff. Square

Dist. (Attack) Dist. (Attack) Dist. (attack)

Rijndael-192 5 (6) 4.5 (7.5) 5 (7)

SPN with Q2 6 (7) 2.5 (4.5) 3 (5)

Rijndael-256 6 (7) 4.5 (7.5) 5 (7)

SPN with Q3 6 (7) 2.5 (4.5) 3 (5)

of inequalities is very large, the number of active S-
boxes can be computed at most for 8 rounds.

MNDAS for 8 rounds of Q3 is 60 and the best
impossible differential (square) distinguisher for an
SPN structure using Q3 is 2.5 (3.5) rounds which
is two rounds shorter than the best distinguisher of
Rijndale-256.

The best impossible differential distinguishers for
SPN structure with matrices Q2 and Q3 are as Fig-
ure 4 and Figure 5 show, respectively. To find the
best distinguishers, we used the method mentioned
in [19].

Table 5 compares the MNDAS values for SPN
structures that useQ2 andQ3 with the corresponding
values for Rijndael-192 and Rijndael-256. Table 6
compares the SPN structure that uses Q2 (Q3) as
its diffusion layer with Rijndael-192 (Rijndael-256).
The values in parentheses show the largest number
of rounds for which the complexity of a given attack
is less than an exhaustive search.

2.5 Implementation of the Inverse Matrix

Implementation of the matrix P1−1 is similar to that
of P1 (only (A)−1 is replaced by (A)). However, the
inverse of the matrix Q1 is as follows:

Q1−1 =


Z (A0)

−1 (A0)
−1 (A0)

−1

(A1)
−1 Z (A1)

−1 (A1)
−1

(A2)
−1 (A2)

−1 Z (A2)
−1

(A3)
−1 (A3)

−1 (A3)
−1 Z

 (21)

Since, elements of each column of Q1−1, are different
from each other, software implementation of Q1−1

using the lookup table method is inefficient. However,
if A0

−1, A1
−1, A2

−1 and A3
−1 are related to each

other, then a better implementation for Q1−1 is prob-
ably obtained. Suppose that A0, A1, A2 and A3 are
selected such that their inverses are as follows. One
can verify that A0, . . . ,A3 have the desired proper-
ties, stated in Section 2.1.

A−1
0 =


3 14 21 15

20 7 9 25

8 19 4 27

2 13 7 14

A−1
1 =


3 9 28 22

20 20 13 2

8 30 3 21

2 3 18 1



A−1
2 =


3 13 7 1

20 14 21 22

8 7 9 2

2 19 4 21

 ,A−1
3 =


3 14 9 25

20 7 17 20

8 19 14 23

2 13 4 27


(22)

To implement Q1−1 ·S−1(x), firstly, the below tables
are built:

T00(x) =

[3 · S−1(x) 20 · S−1(x) 8 · S−1(x) 2 · S−1(x)]t

T01(x) =

[14 · S−1(x) 7 · S−1(x) 19 · S−1(x) 13 · S−1(x)]t

T02(x) =

[21 · S−1(x) 9 · S−1(x) 4 · S−1(x) 7 · S−1(x)]t

T03(x) =

[15 · S−1(x) 25 · S−1(x) 27 · S−1(x) 14 · S−1(x)]t

(23)

Then, for computation of A−1
0 · x̂, A−1

1 · x̂, A−1
2 · x̂

and A−1
3 · x̂, we have (x̂ = [x0,x1,x2,x3]):

û0 = T00(x0)

û1 = T01(x1)
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Enc
Contrdition

DEC DEC

 

Figure 4. Impossible differential distinguisher of SPN structure with Q2

Enc

Contrdition
DECDEC

 

Figure 5. Impossible differential distinguisher of SPN structure with Q3

û2 = T02(x2)

û3 = T03(x3)

t̂1 = û2 + û3

t̂2 = û1 + t̂1

ŵ0 = A−1
0 · x̂ = û0 + t̂2

ŵ1 = A−1
1 · x̂ = (t2 n 1) + ŵ0

ŵ2 = A−1
2 · x̂ = û0 + (̂t2 n 3) + û3

ŵ3 = A−1
3 · x̂ = û0 + û1 + (̂t1 ≫ 1) + (̂t1 ≪ 1)

(24)
The most important property of the mentioned ma-
trices is that the branch number for the matrices
[AiAj] and [(At

i )
−1(At

j )
−1] for i ̸= j is 5. For an

SPN structure with 8-bit S-boxes and a diffusion ma-
trix of Q1, the encryption speed is about 35% more
than the decryption speed in software implementa-
tion. Inverse of Q2 and Q3 can also be implemented
similar to the inverse of Q1.

It is worth mentioning that if the mentioned struc-
tures are used in stream modes of operation such as
CTR 5 or OFB 6 or if they are used to design hash
functions or MAC 7 functions, implementation of in-
verse matrices is not required. In the next section, the
proposed idea is utilized to design the diffusion layer
of a Feistel structure with an SP-type F-function.

3 The Proposed Matrices in a Feistel
Structure

As stated before, the proposed SP transformations
have acceptable software implementation and appro-
priate security properties. However, due to their in-
verse properties, their usage in SPN structures may

5 Counter
6 Output Feedback
7 Message Authentication Code

be inefficient in some applications. Therefore, since
Feistel structures have the benefit that their encryp-
tion and decryption operations are very similar, even
the same in some cases, the introduced diffusion layer
can be utilized in Feistel structures. To have a 64-bit
SP transformation as a round function F with 8-bit
S-boxes, 8× 8 matrices must be utilized. The 8× 8
matrices should be invertible. Due to implementation-
based reasons, the following form is proposed to be
used in the round function.

Q1F =

 Z A1

A0 A1

 (25)

Based on the MILP method [33], the minimum
number of active S-boxes in 24 rounds of the corre-
sponding Feistel structure is computed as 46. Also,
using the method introduced in [29], one can verify
that the introduced class of matrices results in long
impossible differential distinguishers whose reason is
a large number of zeros in the diffusion matrix. To
solve the problem, the following matrix is proposed
where Ã0 and Ã1 can be computed from A0 and
A1 using lightweight operations (e.g. shift and XOR),
respectively.

Q̃1F =

A0 A1

Ã0 Ã1

 (26)

The number of active S-boxes for 24 rounds of this
Feistel structure increases to 54 given that the branch
number of the matrices [A0 A1], [Ã0 Ã1] and Q̃1F

is 5, 5 and 6, respectively. Table 7 compares the
results for the proposed Feistel structure with similar
structures introduced in [7, 34] and the block cipher
CLEFIA [11]. It is worth mentioning that implement-
ing an 8× 8 MDS matrix (for structure with β = 9)
using 32-bit registers is about two times more com-
plex than that of the proposed matrix. As Table 7
shows, the MNDAS values for CLEFIA are slightly
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better than the results for the proposed structure.
Nevertheless, the length of the best known impossible
differential distinguisher for CLEFIA is 9 [35] which
is 2 rounds more than that of the proposed structure.

One example for Q̃1F is as follows:

Q̃1F =

A0 A1

Ã0 Ã1

 (27)

where

A0 =


12 13 15 11

3 9 13 2

1 1 11 9

12 5 3 7

 Ã0 =


15 4 2 9

2 8 6 11

13 4 8 14

12 5 3 7



A1 =


1 1 11 9

12 5 3 7

12 13 15 11

2 8 6 11

 Ã1 =


1 1 11 9

12 5 3 7

12 13 15 11

3 9 13 2



(28)

To implement

ŷ0

ŷ1

 = Q̃1F ·

x̂0

x̂1

, if û0 = A0 · x̂0,

û1 = Ã1 · x̂1 and t̂ is a temporary variable, then:

t̂ = û0 ⊕ û1

ŷ0 = t̂⊕ û1 ≫ 3

ŷ1 = t̂⊕ û0 ≪ 1

(29)

For 192-bit Feistel structures, the following 12× 12
matrix has been found using an exhaustive search:

Q2F =


Z A1 A2

A0 Z A2

A0 A1 A2

 (30)

To have maximum MNDAS and MNLAS, the
branch number of the matrix [A0 A1 A2] and
[((A0)

t)−1 ((A1)
t)−1 ((A1)

t)−1] must be 5. MN-
DAS and MNLAS for the mentioned structure are
shown in Table 8 (they are computed using the
method introduced in [12]). Also, Table 8 compares
the results for the proposed Feistel structure with
similar structures of Feistle Type-II in [10].

It must be pointed out that 18 rounds of a standard
Type-II GFS and an improved Type-II GFS with
4× 4 MDS matrices have 47 and 50 active S-boxes,
respectively [10]. Thus, the introduced structure is as

secure as the structures mentioned in [10] from the
aspect of resistance against linear and differential
attacks and more secure than those structures in
terms of resistance against impossible differential
attacks because the longest impossible differential
distinguisher of the Feistel structure with Q2F as
diffusion layer of SP function is 8 rounds which are 3
and 5 rounds shorter than that of improved Type-II
GFS and standard Type-II GFS, respectively.

Regarding 256-bit Feistel structures, the following
16× 16 matrix has the best results from the aspect
of MNDAS.

Q3F =


Z A1 A2 A3

A0 Z A2 A3

A0 A1 Z A3

A0 A1 A2 A3

 (31)

However, as Table 9 shows, MNLAS values for Q3F

are less than the mentioned MNDAS values. For the
matrix, Q4F MNDAS and MNLAS values are the
same and can be seen in Table 9.

Q4F =


Z A1 A2 A3

A0 Z A2 A3

A0 A1 Z A3

A0 A1 A2 Z

 (32)

Eighteen rounds of a standard Type-II GFS and
an improved Type-II GFS with 4 MDS matrices have
48 and 56 active S-boxes, respectively [9, 10]. Also,
the longest impossible differential distinguisher of the
Feistel structure with Q3F (and Q4F) as diffusion
layer of SP function is 3 and 5 rounds shorter than
that of improved Type-II GFS and standard Type-II
GFS, respectively.

4 Conclusion

In this paper, we firstly used one 4×4 MDS matrix to
design non-sparse 16× 16 diffusion layers. Although
new matrices had appropriate properties regarding
resistance against impossible differential and square
attacks, their results for the number of differentials
and linear active S-boxes were unacceptable. To in-
crease the number of active S-boxes, the idea of using
multiple MDS matrices was proposed. The results
for the proposed matrices were appropriate from the
aspects of resistance against square, impossible dif-
ferential, related key, linear and differential attacks.
Also, the used idea was extended to design matrices
of 24× 24 and 32× 32 sizes.
Then, the proposed SP structure was used as the
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Table 7. Comparison of MNDAS values for r rounds of several Feistel structures

r 1 2 4 6 8 12 14 20 24 30

MNDAS for two sub-block Feistel with β = 6 [34] 0 1 6 8 12 20 24 32 41 50

MNDAS for two sub-block Feistel with β = 9 [34] 0 1 10 12 21 32 34 49 59 71

MNDAS for two sub-block Feistel with switching and β = 6 [7] 0 1 6 12 14 24 26 38 48 60

MNDAS for two sub-block Feistel with Q̃1F 0 1 7 12 17 26 31 45 54 68

MNDAS for CLEFIA [11] 0 1 6 12 18 28 34 50 59 76

Table 8. MNDAS and MNLAS of r rounds of two sub-block Feistel with Q2F and Type-II 6-GFS

r 1 2 4 6 8 12 18 24 28 36

MNDAS and MNLAS for Feistel structure using Q2F 0 1 10 15 20 31 50 70 80 105

MNDAS and MNLAS of standard Type-II 6-GFS [10] 0 1 6 12 18 30 47 ? ? ?

MNDAS and MNLAS of improved Type-II 6-GFS [10] 0 1 6 12 22 32 50 ? ? ?

Table 9. MNDAS and MNLAS of r rounds of two sub-block Feistel with Q3F and Q4F and Type-II 8-GFS

r 1 2 4 6 8 12 18 24 28 32

MNDAS for Q3F 0 1 11 18 25 40 63 85 100 114

MNLAS for Q3F 0 1 10 18 24 36 57 77 90 104

MNDAS and MNLAS for Q4F 0 1 11 15 24 34 54 76 89 102

MNDAS and MNLAS of standard Type-II 8-GFS [10] 0 1 6 12 18 36 48 ? ? ?

MNDAS and MNLAS of improved Type-II 8-GFS [10] 0 1 6 12 23 39 56 ? ? ?

round function of Feistel structures. The new struc-
tures are more secure than the Type-II GFS from the
aspect of resistance against linear, differential and
impossible differential attacks and have desirable im-
plementation properties, making them appropriate
options to design future symmetric key ciphers.
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A Counting Method for MNADS of
Q1

This section describes the counting method of [12].
The first step of the counting method is to build
a state transformation array with (5)4 rows named
ST . The jth row of the array corresponds to the

round input with VWT value of j (for


x̂0

x̂1

x̂2

x̂3

 , j =

xC
0 × 125+xC

1 × 25+xC
2 × 5+xC

3 ). This row includes
the possible VWT values for the round output. To

find the possible VWT round output values for jth

row, S and Q1 are applied to the input with VWT
value of j. Applying S on the input does not change
its VWT value. Thus, only Q1 is applied on input
with VWT value of j and possibly results in several
VWT values. All of these outputs build jth row of
the array.

In addition to the state transformation array, a
vector of size 54 is built. This vector is notated with
Wh. Indexing of the elements of Wh starts from 0.
The jth element of Wh is the number of active S-
boxes of a round for round input with VWT value of

j (for


x̂0

x̂1

x̂2

x̂3

 , Wh(j) = xC
0 + xC

1 + xC
2 + xC

3 ).

Now the method of computing a lower bound for
the number of active S-boxes for R rounds of the
mentioned SPN structure is described. Consider an
array T of size R× 54. The element T [r][i] shows the
lower bound for a number of active S-boxes of the
r-round characteristics finishing with i at the end of
the rth round. The most important property of this
storage method is that its computational complexity
linearly increases with each round (having the rth row,
the run time of computing the r+1th row is equal to
the run time of computing the r + 2th row using the
r+1th row). Given the rth row of the array, T [r+1][j]
is computed by exhaustive search over T [r][i], i =
0, · · · , 54 − 1 and all of the possible transitions from
i in round r to j in round r + 1. Thus, we have:

T [r + 1][j] =

mini{T [r][i] +Wh(i)|i → j is possible in ST table}
(A.1)

To compute the first row of the array T using Equa-
tion A.1, it is assumed that T [0][i] is 0 for all values
of i. The minimum non-zero element of the rth row
is the lower bound of the number of active S-boxes
for r rounds of the structure.
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