Hajar Dastanpour; Ali Fanian
Abstract
Today, intrusion detection systems are used in the networks as one of the essential methods to detect new attacks. Usually, these systems deal with a broad set of data and many features. Therefore, selecting proper features and benefitting from previously learned knowledge is suitable for efficiently ...
Read More
Today, intrusion detection systems are used in the networks as one of the essential methods to detect new attacks. Usually, these systems deal with a broad set of data and many features. Therefore, selecting proper features and benefitting from previously learned knowledge is suitable for efficiently detecting new attacks. A new graph-based method for online feature selection is proposed in this article to increase the accuracy in detecting attacks. In the proposed method, irrelevant features are first removed by inputting a limited number of instances. Then, features are clustered based on graph theory to reduce the search space. After the arrival of new instances at each stage, new clusters of features are created that may differ from the clusters created in the previous step. Therefore, to find the appropriate clusters, these two clusters are combined to select some relevant features with minimum redundancy. The evaluation results show that the proposed method has better performance, for instance classification with a lesser run time than similar online feature selection methods. The proposed method is also faster with a suitable accuracy in instances classification compared to some offline methods.
Z. Zali; M. R. Hashemi; H. Saidi
Abstract
Alert correlation systems attempt to discover the relations among alerts produced by one or more intrusion detection systems to determine the attack scenarios and their main motivations. In this paper a new IDS alert correlation method is proposed that can be used to detect attack scenarios in real-time. ...
Read More
Alert correlation systems attempt to discover the relations among alerts produced by one or more intrusion detection systems to determine the attack scenarios and their main motivations. In this paper a new IDS alert correlation method is proposed that can be used to detect attack scenarios in real-time. The proposed method is based on a causal approach due to the strength of causal methods in practice. To provide a picture of the current intrusive activity on the network, we need a real-time alert correlation. Most causal methods can be deployed offline but not in real-time due to time and memory limitations. In the proposed method, the knowledge base of the attack patterns is represented in a graph model called the Causal Relations Graph. In the offline mode, we construct Queue trees related to alerts' probable correlations. In the real-time mode, for each received alert, we can find its correlations with previously received alerts by performing a search only in the corresponding tree. Therefore, the processing time of each alert decreases significantly. In addition, the proposed method is immune to deliberately slowed attacks. To verify the proposed method, it was implemented and tested using DARPA2000 dataset. Experimental results show the correctness of the proposed alert correlation and its efficiency with respect to the running time.
M. Saniee Abadeh; J. Habibi
Abstract
A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network ...
Read More
A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate that in comparison to several traditional and new techniques, the proposed hybrid approach achieves better classification accuracies. The compared classification approaches are C4.5, Naïve Bayes, k-NN, SVM, Ripper, PNrule and MOGF-IDS. Moreover the improvement on classification accuracy has been obtained for most of the classes of the intrusion detection classification problem. In addition, the results indicate that the proposed hybrid system's total classification accuracy is 94.33% and its classification cost is 0.1675. Therefore, the resultant fuzzy classification rules can be used to produce a reliable intrusion detection system.