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In this paper, we propose an effective microaggregation algorithm to produce
a more useful protected data for publishing. Microaggregation is mapped to a
clustering problem with known minimum and maximum group size constraints.
In this scheme, the goal is to cluster n records into groups of at least k and at
most 2k — 1 records, such that the sum of the within-group squared error (SSE)
is minimized. We propose a local search algorithm which iteratively satisfies
the constraints of the optimal solution of the problem. The algorithm solves

the problem in O(n?) time. Experimental results on real and synthetic data

sets with different distributions demonstrate the effectiveness of the method in

producing useful protected data sets.

© 2015 ISC. All rights reserved.

1 Introduction

icroaggregation is a perturbative approach used
M in publishing the records of individuals or com-
panies while preserving the privacy of data owners.
Microaggregation is also a mechanism to realize the
k-anonymity model [1] in Privacy Preserving Data
Publishing (PPDP) [2]. Microaggregation techniques
are currently being used by many statistical agencies
[3]. Microaggregation may be defined as a constraint-
clustering problem, where the number of final clusters
is not known a priori, but there are minimum and
maximum group size constraints achieving privacy
and utility in publishing. In microaggregation, each
group should contain at least k records. After parti-
tioning records in clusters, the data publisher replaces
the records by cluster centers, and these centroids are
published. This replacement implies that the quality
of published information is degraded. The effective-
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ness of a microaggregation algorithm is measured by
information loss (IL). Lower values of I L indicate less
information distortion after microaggregation, so the
protected data set is more useful. The measure will be
reduced if similar records are grouped. Additionally,
it is proved that for a given privacy requirement in
terms of k, all groups with more than 2k — 1 records
can be split into more groups in order to decrease IL,
without violating the privacy requirement [4].

The optimal microaggregation problem can be
solved for the univariate case in polynomial time [5],
while it has been proved to be NP-hard for multivari-
ate data sets [6]. Many heuristic algorithms have been
introduced in the literature, and most of them have
some restrictions on the distribution of records in
the data set. On the contrary, in this paper, we have
proposed an iterative constraint satisfaction method
for multivariate microaggregation problem, where a
local search in the neighborhood of an initial solution
is conducted to find and satisfy some necessary con-
ditions of an optimal solution. Multiple experiments
on both real-world and synthetic data sets confirm
the effectiveness of the approach to produce useful

protected data in terms of I'L.
)
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The remainder of this paper is organized as follows.
Section 2 reviews some related works to solve the prob-
lem. Section 3, formalizes the problem, while Section 4
presents the proposed method. Experimental results
are given in Section 5. Finally, Section 6 concludes
the paper.

2 Related Work

There are multiple heuristics introduced in the liter-
ature for solving the microaggregation problem for
multivariate data sets [7—11]. These methods are clas-
sified into fixed size and data oriented algorithms.
In a fixed size algorithm, the number of clusters is
fixed to |n/k] and exactly k records are aggregated
within a cluster (except possibly a few clusters when
k does not divide n). Generally, fixed size algorithms
are more efficient, but usually result in more distorted
protected data. In contrast, data oriented methods
do not specify the exact number of group members
beforehand, and produce more useful protected data
at the expense of time complexity [12].

Domingo-Ferrer and Torra [7] introduced a famous
method called Maximum Distance to Average Vector
(MDAYV). The method repeatedly forms two clusters,
each containing £ members around records far from
the centroid of the data set ! . It is classified as a fixed
size algorithm and is usually referred to for comparison
purposes in the literature. Chang et al. [9] proposed
Two Fixed Reference Points (TFRP). Let G, and
G e denote the minimum and maximum vectors over
all attributes of records in the data set, respectively.
The first step of TFRP is to calculate these extremes
as reference points, say R; and Ry. The second step
is cluster formation. A cluster consisting of k records
is formed around r, which is the most distant record
from R;. Another cluster of size k is formed with
respect to the most distant record from Rs, say s, and
its £ — 1 nearest neighbors. The last two steps are
repeated iteratively until less than k records remain,
which are added to their nearest clusters finally. A
post-processing step is conducted to refine the clusters.
Notably, fixing Ry and R as reference points makes
TFRP an efficient approach with a time complexity of
O(n?/k) that produces lower IL in comparison with
MDAV, especially for sparse data sets with a large k
[9].

There are also some extensions of optimal univariate
microaggregation which are introduced by Hansen and
Mukherjee (called MHM) [5] for multivariate cases.
Domingo-Ferrer et al. [8] proposed a method to or-
der records in multi-dimensional domain space, and
form a path based on some heuristics such as Near-

1 Pseudo-code and more details of MDAV algorithm are

presented in Section 4.
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est Point Next (NPN), MDAV-MHM, and MD-MHM
with quadratic time complexity. Then, an adaptation
of MHM is used over the records on the path. Despite
the fact of significant reduction of information loss due
to these heuristics in some cases, in comparison with
recent methods such as [10] and [13], it becomes clear
that there is no unique dominating method produc-
ing the most useful protected data for different data
sets. Laszlo and Mukherjee [11] introduced microag-
gregation based on the minimum spanning tree with a
time complexity of O(n?). Initially, a complete graph
is constructed where each node is a representation of
a record in the data set. The weight of an edge is the
Euclidean distance between its two endpoints (corre-
sponding to two records in the data set). This method
iteratively removes edges in a decreasing order of their
associated weights unless this removal results in a com-
ponent with less than k nodes. Experimental results
indicate the method is sensitive to outlier records and
may result in more distorted protected data when the
minimum distance between optimal groups is low [10].
DBA is an approach based on a density heuristic [13].
The authors started aggregation from more dense re-
gions of the data set and then performed a refinement
phase to check whether to decompose a cluster or
to leave it intact. 2 The authors have also proposed
an extended version of their work named DBA-2P,
including a preprocessing step. In this algorithm, p
clusters are formed from those records with the low-
est densities and their respective k — 1 closest neigh-
bors, where p is a tuning parameter provided by the
data publisher. Another method is successive Group
Selection based on sequential Minimization of SSE
(GSMS) [10], with time complexity O(n?logn). The
GSMS iteratively discards a candidate cluster which
minimizes the current SSFE of remaining records [10],
and finally assigns remained records to their respec-
tive closest clusters. The improved version of GSMS
is followed by a post-processing procedure similar to
the second phase of TFRP and is called GSMS-T2
[10]. The GSMS-T2 produces comparable informa-
tion loss regarding other algorithms with similar time
complexity. Recently, Laszlo and Mukherjee [14] in-
troduced a local search method and employed it in an
iterated local search algorithm. They also repeated
their method with 4000 different initial solutions to
get the best among different local optimal solutions.
In another study, Mortazavi et al. proposed a Fast
Data oriented Microaggregation algorithm (FDM) [15]
that produces k-anonymous versions of a dataset for
multiple successive values of k in a single run.

Nevertheless, as the results of the methods confirm,
there is still a noticeable diversity between the best

2 The terms “merge” and “noMerge” are used in the original
paper.
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results of the algorithms for different data sets, which
makes them difficult for use in practice. The data pub-
lisher may be required to change the anonymization
method for different data sets or even for different
privacy parameters k. These changes may introduce a
number of different tuning parameters that must be
set by the data publisher in the new setting, which
makes complex the process of anonymization. It is
notable to say that microaggregation mechanism is
designed originally for numerical data sets; however,
there are extensions for other data types [7, 16]. More
thorough surveys about microaggregation methods,
are presented in [17].

3 Problem Definition

In this section, we formulate the microaggregation
problem. Suppose a numerical data set T' of n records
x;,1 € {1,...,n} in a d dimensional space is given.
The data publisher provides an input value k as the
privacy parameter. This value is usually lower than 10
in practical Statistical Disclosure Control (SDC) us-
ages. However, it may be increased up to hundreds in
some real-world applications, such as Location-Based
Services (LBS) [18]. Microaggregation algorithm par-
titions the data set into ¢ groups in such a way that
the following two constraints are satisfied.

(1) The privacy and utility constraints are satisfied,
ie, k <|Gp| <2k, pe{l,...,c}, where |G,
denotes the number of records in G,,.

(2) The whole data set is partitioned into ¢ non-
overlapping groups, i.e., Up_1G, =T, and G N
Gq = ®7Vp7q € {1,...,6},[)#(].

If a given microaggregation algorithm satisfies the
above constraints, its solution is called a valid solu-
tion. The sum of within-group squared error (SSE)
is minimized to make the records in a group more
similar. This measure is formulated in Equation 1.

c |Gpl

SSE = Z Z (Tpj — f;D)T (zp; — Tp) (1)

p=1j=1

where z,; is the j-th record of G, and Z,, denotes
the centroid of Gy, T, = 1/|G,| Zﬁ"l‘ Zp;. The value
of SSFE is usually normalized by SST, calculated as
in Equation 2, where Z is the average of the whole

data set.

c |Gl

SST = ZZ(xpj —a?)T(ij - ). (2)

p=1j=1

The normalized measure IL = SSFE/SST * 100%
is always between 0% and 100%. Lower values of IL
indicate more similar centroids to original records and

less quality degradation due to the perturbation. In
this paper, the IL measure is used to quantify and
compare the performance of the proposed method.

The result of a microaggregation algorithm may
be considered as an assignment of records to groups,
where the membership of a record z,; to a group G,
is denoted by x,; — Gp. The cost of this assignment
is a partial summand of SSE, and may be denoted by
PSSE(xp — Gp).? In other words, PSSE(z,; —
Gp) = (vpi — Zp) T (wp; — Tp), denotes the increased er-
ror related to assigning z,; to G, in comparison with
the error before the assignment. The final value of
SSFE can be calculated by summing these partial sum-

mands, i.e., SSE = Y0 Y91 PSSE(x,; — Gy).
Its notable that changing the assignment of records
among some clusters has no effect on the PSSFE of

other clusters.

4 The Proposed Algorithm

In this section, the Iterative Constraint Satisfaction
for Microaggregation (ICSM) is presented. Section 4.1
defines the exchange and migration constraints and
then introduces the ICSM algorithm. Section 4.2 in-
troduces the Tour2Assignment method to determine
the number of clusters, c. Section 4.3 analyses the
algorithm.

4.1 Algorithm Description

In this section, we introduce our method for microag-
gregation problem. Before describing the algorithm,
we define some constraints of an optimal partitioning
in the microaggregation problem. In addition to clus-
ter size constraints, other constraints are necessary
to be satisfied in an optimal solution, S,p,¢. Suppose
two records z,; € G and z4; € G4 such that p,q €
{1,...,¢},p # ¢ in an optimal solution S, are given.
The optimality of S,,+ guarantees that exchanging the
assigned clusters of these records, G, and G, without
any other change in S,p¢, will not reduce the informa-
tion loss in terms of I L. This constraint is formalized
in definition 1.

Definition 1. Exchange constraint: Let 1 = x,,
T2 = Xqj, SSEl = PSSE(Il — Gp) + PSSE(ZQ —
Gq), and SSE, = PSSE(x1 — G4) + PSSE(xzy —
Gp). In an optimal solution of a microaggregation prob-
lem, the quantity of dSSE = SSFE5 — SSE; should
be always non-negative, otherwise, we can exchange
the assignment of these records and gain more infor-

3 We assume that the subscripts denote the same entities,

independent of the new assignment. For example, G, indicates
the same cluster before and after the assignment. However, it
is obvious that any change in the assignment will also change
the exact values of corresponding centroids, and the subscripts

do not show them.
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mation utility. In this paper, this constraint is called
exchange constraint.

Another constraint in an optimal solution of a mi-
croaggregation problem is related to migration of a
record to another cluster, i.e., changing the assignment
of a record from a more crowded cluster to another
one. This migration should not result in more utility
for protected data. This constraint is formalized in
definition 2.

Definition 2. Migration constraint: Let 21 = z;,
Vie{l,...,|Gpl}sp,qg € {1,...,¢c}, p # ¢,|Gp| >k,
|Gy| < 2k — 1%, and dSSE = PSSE(z1 — G,) —
PSSE(x1 — Gp). In an optimal solution S, the
constraint of dSSE > 0 as a direct result of the
optimality of S,p¢, is always satisfied. This constraint
is called migration constraint in this paper.

Definition 3. n-opt heuristic: Let A be an assign-
ment of records to clusters. Additionally, assume A’
denotes another assignment of the same records to the
same number of clusters after applying a heuristic H.
If H involves exactly n > 1 change(s) in A to produce
A’, it is called an n-opt heuristic. More specifically, for
n = 1and n = 2, H is called 1-opt and 2-opt heuristic,
respectively. The ICSM iteratively improves a given
solution to produce a more useful protected data set.
In this paper, we have considered the output of MDAV
[7] for initialization.® The pseudo-code of MDAV is
presented in Algorithm 1, where its output is an assign-
ment of records to clusters. MDAV first finds the most
distant record, say 7, from the centroid of the data set
and a new search for another most distant record from
r, say s, is accomplished subsequently (lines 2 and 3).
The next step is to build two clusters, including r and
s and their k — 1 nearest records, respectively (line 4).
These two clusters are microaggregated and removed
from the data set. These steps are repeated until less
than 2k records remain (line 5). Finally, if at least k
records remain, a cluster containing all of these unas-
signed records is formed (line 6). If less than & records
remain, they will be added to their nearest clusters
(line 7). This method runs in O(n?) time.

The pseudo-code of ICSM is given in Algorithm 2.
The input of ICSM is the normalized data set T of n
records each containing d numerical attributes, and a
privacy parameter k, while the output is the assign-
ments of records to clusters, A. The ICSM starts from
the solution of MDAV (line 2) to initialize A, and
converts it to a path P to determine the number of
clusters (lines 5 and 6). The procedure continues to

4 All group sizes are considered before the migration. These
conditions are necessary to produce a valid protected data
after migration that satisfies the privacy requirement.

5 See also Section 5.3.

6 Please see Section 4.2 for more details.
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Algorithm 1 Pseudo-code of MDAV

Input: T (data set), k (privacy parameter)
Output: A (Assignment of records to clusters)
1: Function ([A]J=MDAV (T: data set, k: integer))

2: Compute the centroid Z of whole data set.

3: Find the most distant record r from z. Also find the
most distant record s from 7.

4: Form a cluster containing r and its k — 1 nearest

neighbors. From another cluster containing s and its k — 1
nearest neighbors. Set aside these clusters from the data

set.

5: If there are at least 2k records remaining (unassigned),
repeat steps 2, 3, 4.

6: If there are between k and 2k — 1 records unassigned,

form a new cluster containing all of them, and return the
assignment of records to clusters.

7 If there exist at most k — 1 unassigned records, assign
each of them to the closest cluster.
8: Return the assignment of records to clusters.

9: end Function

improve I L iteratively by satisfying the exchange and
migration constraints. If the exchange and/or migra-
tion constraints are not satisfied, there is a place to
improve I L, which is done by another function, Sim-
pleHeuristic (line 7). If no such simple improvements
are found, another function is called to apply a more
complicated heuristic (line 9). The algorithm finishes
if no such (simple and complex) improvements are
found or MAX _ITERATIONS is reached. Finally,
the results are returned in line 11.

Algorithm 2 Pseudo-code of ICSM

Input: data set T , privacy parameter k
Output: assignment of records to clusters A
1: Function ([A]=ICSM (T': data set, k: integer))
2: A = MDAV(T k) //Algorithm 1
3: repeat//loop for n-opt heuristic
4.
5

repeat//inner loop for 1-opt and 2-opt heuristics
Convert A to a tour (path) P containing all
records based on MDAV-MHM (Section 2 and [8])
A = Tour2Assignment(P, k) // Determining
number of clusters (Section 4.2, ?77?)
7 A = SimpleHeuristic(T, k, A) //1-opt and 2-opt
heuristics (Algorithm 3)
8: until no change in A OR MAX_ITERATIONS is
reached
9: A = ComplexHeuristic(T, k, A) //n-opt heuristic
(Algorithm 4)
10: until no change in A OR MAX_ITERATIONS is
reached
11: return A
12: end Function

@

In order to find simple improvements in Simple-
Heuristic (Algorithm 3), we construct a directed graph
based on the solution of a microaggregation problem
for n records and ¢ clusters (lines 2 and 3). Let H =
(V, E) be a complete weighted directed graph with
|[V| =n+cnodes and, |E| = (n+c¢)(n+c—1) edges.
Each node v € V represents a record or a cluster of
the solution. The weights of all edges connecting two
clusters 7 are infinite.

7 We use the term cluster here to denote a node in H that
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Algorithm 3 Pseudo-code of SimpleHeuristic

Input: dataset 7T, privacy parameter k, assignments of records
to cluster A, to be improved
Output: improved assignments of records to clusters A
1: Function ([A]=SimpleHeuristic (T: data set, k: integer,
A: array of assignments))

2: n = |T'| //number of records
3: ¢ = MAX(A) //number of clusters
4: Construct/Update a complete weighted directed graph

H(V, E) with |V| = n + ¢ nodes. Calculate the weight of
all edges in E based on Equation 3, 5, and 6.
5: Pool = InitializePool(py, )

6: for each vy,v2 € V,v1 # v2 do

7: if w(vy,v2) + w(v2,v1) < 0 AND Pool. Count <
pn then

8: if v1 OR w2 represents a cluster then

9: Pool.Add(Migrate(vi,v2)) //1-opt heuristic

10: else

11: Pool. Add(Exchange(vi,v2)) //2-opt heuris-
tic

12: end if

13: end if

14: end for

15: if Pool.IsEmpty() then return A

16: end if

17: Pool.sort() // all elements are sorted such that the
best change is placed at the first location.

18: ChangedClusters= ()

19: for each Change € Pool.elements do // in order

20: ChangingClusters= involved clusters in Change

21: if ChangingClusters then N ChangedClusters= ()

22: Apply Change on A to improve IL

23: ChangedClusters = ChangedClusters U Chang-
ingClusters

24: end if

25: end for

26: return A

27: end Function

There is a directed edge e € E between any two
records® (line 7). The weight of such an edge from
1 = Tp; € Gp to 22 = x4; € Gy,q # p represents the
utility gain of replacing the assignment of o — G,
by x1 — G4 without any change to the rest of the
assignments (i.e., both z1 = G, and 1 — G, are
present in the assignment at the same time, while
x9 is not assigned, temporarily). All records in the
same cluster are connected via infinite-weight edges.
The weight is denoted by R1(zpi, Gq,q7). Regarding
formulae of SSE and PSSE, for any z,; € G,, and
zq; € G4, we can calculate R; function by Equation 3.

+o0 if p=gq
d
Ri(2pi; Gqr2qi) = 8 9 (@pill] = 245 )2(2511] — 24 [U)
=1
+(@pilll = wgi [1)(1Gq| = 1/1Gq]) if p# q

(3)
In Equation 3, z[l] denotes the [*" element (or at-
tribute) of vector . Remember that Z, is the centroid

represents a cluster in the solution.
8 We use the term record here to denote a node in H that
represents a record in the data set.

of G4 and d is the dimension of the underlying data
set.

Example 1: Assume a d = 1 dimensional data set

T = [2,3,4,5,6,7] is given for kK = 3 anonymity.

Let A =1[1,1,1,2,2,2], so G; = [2,3,4] and G2 =
[5,6,7]. Therefore, z;y = 3, Zo = 6 and SSE =

SSEg,y+SSEg, = (140+1)+ (1+0+1) = 4.

Based on Equation 3, Ry (z2, Ga,25) = R1(3,G2,6) =
(—=3)(2(0) + (—3)2/3) = 6. This means if 6 — G5 is
replaced by 3 — G5 then Gy = [5,3,7] and SSFE¢,
increases by 6. This is true, since 8 — 2 = 6.

The value of dSSE, introduced in definition 1, is
independent of the SSFE of all clusters except G, and
Gg4, and can be rewritten in terms of the R; function
by Equation 4.

dSSE = SSEy — SSEy = Ry (wpi, Gq,24;) + R1 (245, G, Tpi)

4)
This equation confirms that an exchange is in fact a
combination of two such migrations.® The graphical
representation of this exchange in graph H, forms a
cycle of length two, where each edge is weighted by
R;, as depicted in Figure 1. Finding and eliminating
such cycles of length 2 in the graph H, is an effective
way to reduce I L, and based on definition 3 is referred
to as 2-opt heuristic, since it changes two assignments
(line 11). These replacements can also be shown in
the form of changing the state of cluster assignments
from an initial state of {z1 — G,,z2 = G4} to the
state of {1 = Gy, z2 = G, }.

»
Gp > Ry (xpi, Ggr Xq )
® Rl(xqj;Gp;xpi)

Figure 1. Graphical representation of 2-opt heuristic. After the

exchange, 1 and x2 are assigned to G4 and G, respectively.

For clarity, only involved nodes and edges are drawn.

Moreover, migration of a record to a new cluster
can be shown as a cycle of length 2, in our graph
representation. Let Ra(xpi, G4) denotes the change
in SSE after assigning of z,; to G, (again, the last

assignment of z,; to G, is preserved, temporarily).

This function returns no gain, if G is overloaded after
migration, which is denoted by infinity in Equation 5
for Rs.

9 We require R; to form more complex improvements, so we

do not consider the combined form.
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+oo if p=gq or
|Ggl > 2k —1
Ro(zpi, Gq) = (before migration)

otherwise

|Gql - (Zq[l] — z,;[1)?
Z |Ggl+1

(5)
We can form a cycle in H representing the migration
of a record to a new cluster, using a new virtual edge
from the destination cluster G to the source cluster
Gp. The weight of this edge is the difference in SSE
after removing the source record of migration, z,; from
G, provided that the source cluster contains enough
records after migration. The weight may be calculated
by another function R3(Gg, ;) by Equation 6.

+o0 |Gpl < k
(before migration)
R3(Gp,xpi) = —1Gpl-(zp =y 1) )
Z B e e — otherwise
1e{1,...,d}

(6)
The illustration of the cycle for this migration in
terms of Ry and Rj is also presented in Figure 2. Based
on definition 3, we call this improvement as the 1-
opt heuristic, because involves a single change in the
assignments.

RZ (xpin Gq)

R3(Gpvxpi)

Figure 2. Cyclic representation of migration of x,; from Gy
to Gy

The SimpleHeuristic function initializes an empty
pool of a predefined size of p, (line 5). If such cy-
cles of length 2 with negative weights are found, they
are added to the pool (lines 6-14). If no such cycles
are found, the assignment A is returned without any
change (line 15). The SimpleHeuristic function applies
the best changes in the Pool in a greedy manner '°
(lines 16-24) and finally returns the improved assign-
ment (line 25).

The migration and exchange constraints may also
be generalized to cycles involving more than two clus-
ters, which are done by the ComplexHeuristic function
(line 9 of Algorithm 2). Generally, in an optimal solu-
tion, there is not any utility gain in terms of IL by a
cyclic shift of records from different clusters over their

10 Two simultaneous improvements are consistent, if they do
not involve a cluster more than once, so applying them at the
same time does not result in any conflict. The SimpleHeuristic
function applies all changes saved in Pool based on the de-
creasing order of their impact on IL (line 16), provided that
they are consistent (line 20).
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assigned clusters. In other words, there does not exist
a valid negative weight cycle in the graph H, corre-
sponding to a series of migrations and/or exchanges.
However, finding such negative cost cycles is not a triv-
ial task, because there may be an exponential number
of such cycles that must be examined. Additionally,
many negative weight cycles in H do not represent a
valid cyclic shift of records over clusters, i.e., all nega-
tive weight cycles in H, do not represent necessarily
an improvement. Figure 3 shows such an invalid cycle
in H, where all weights are assumed to be negative.

Figure 3. A negative weight cycle that does not (necessarily)
result in an improvement of I L. All edge weights are negative.
This cycle is invalid, because it involves a cluster (G4) more
than once.

In order to solve these problems, we have removed
some edges from H to get a directed acyclic graph
H'(V,E"), where E' C E. This transform is done in
a heuristic manner to decrease the computation cost
of finding one such cycle. Additionally, any negative
cost cycle extracted from H', represents a valid cyclic
shift of records over clusters, which results in less
information loss. However, these benefits are at the
expense of losing some possible improvements.

The construction of H' in Algorithm 4 is as follows.
First, for each cluster Gy, a value called Score(G)) is
calculated (line 4) as the sum of the weights of all edges
from their records minus the sum of the weights of all
edges to their records (Equation 7). Intuitively, lower
values of Score(G),) indicate more probability for G,
as a cluster participating in a gainful cyclic shift.

Score(Gp,) = Ry(2pi, Gq,5) — Ri(zgj, Gpywpi) pe{l,.ich
qe{1,....c}.q#p qe{l,...,c},q#p
e LIGy ) ie{1. |Gy}
FE{1,-,|Gal} JE{1,-|Gal}

(7)

Let’s specify the cluster with the lowest value of
Score as G (line 5). Then all cluster centroids are
ordered based on their distances to G (line 6). The
rank of Gy, in the ordered list is denoted by Rank(p).
All records zp; € G, i € {1,...,|Gp|} have the same
rank as their assigned cluster G),. All edges E' C E
in H' are drawn from the records or clusters with
lower ranks to the records or clusters with greater
ranks (line 7). All other edges are removed (denoted by
infinite edge weights). The weights of edges in E’ are
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Algorithm 4 Pseudo-code of ComplexHeuristic

Input: dataset 7T, privacy parameter k, assignments of records
to cluster A, to be improved

Output: improved assignments of records to clusters A

Function ([A]=ComplexHeuristic (T: data set, k: integer,

A: array of assignments))

—_

2: n = |T'| //number of records
3: ¢ = MAX(A) //number of clusters
4: Calculate Score(Gp), p € {1,...,c} based on Equa-

tion 7.
Gs = The group with minimum Score

6: Calculate Rank(p), p € {1,...,c} based on the G,
from Gs (closer groups have lower ranks)

7: Construct H'(V,E’) from H(V,E) and consider up-
dated weights w; ; based on Equation 8.

8: for each vs; € V such that Afvs] = Gs or vs = G5 do

o

9: for each v. € V, Rank(ve) > Rank(vs) do
10: SP = shortest path from vs to ve
11: cost(vs,ve) = Weight of SP
12: if cost(vs, ve) + Wy, 0, <0 then
13: Apply all changes mentioned in SP and
update A //n-opt heuristic
14: end if
15: end for
16: end for
17: return A

18: end Function

. . . 11 . .
summarized in Equation 8 ** for x,; € Gp, 745 € Gy,

and p,qg € {1,...,c},p #q.
Ry ( xmqu,qu) rank(p) < rank(q)
wzwvmq]
rank(p) > rank(q)
Ry(api, G rank(p) < rank(q)
Wapi,Gq
rank(p) > rank(q)
R3(Gq,zq5)  rank(p) < rank(q)
s = rank(p) > rank(q)
+

(8)

In order to find a valid negative cycle in H, first we
calculate the shortest path between all nodes in H’
without any incoming edges (i.e., record members of
G along with the node representing G itself, which
is denoted by v = G), to the last nodes without any
outgoing edges (i.e., record members of the most dis-
tant cluster from G along with a node representing
the most distant cluster itself). These computations
are done in lines 8-16. During the shortest path algo-
rithm, if the cost of a middle (or final) node as the
distance from some nodes in G4 is changed, we can
check whether a returning edge may form a negative
weight cycle (line 12). For example, if cost(vs, v.) de-
notes the weight of the shortest path from vy € G to
a node v., which represents a record and Rank(v.) >

11 Tijes are broken randomly.

Rank(vs), we can calculate the cost of the cycle by
cost(vs, Ve )+ R1(ve, G, vs). Other cycles involving the
cluster nodes may also be calculated in the same man-
ner. Note that all such cycles with negative weights
extracted in this manner are valid, since there are no
two nodes from the same cluster within the shortest
paths, otherwise the cost of such paths would be infi-
nite based on the weights calculated by Equation 8.
After finding such negative weight cycles, we can elim-
inate them, and then update the assignments (line
13). Line 17 returns the improved assignments A. The
improvements of such cycles may include multiple ex-
changes or migrations, and are called n-opt heuristics
in this paper. As a simple illustrative example, Fig-
ure 4 shows a cycle of length 3, involving two records
r1 € G1, T2 € Go, and a cluster G3. If the weight of
the cycle is negative, we can change the assignments
from an initial state of {x1 — G1,x2 — G2} to the
state of {x1 — G2, 72 — G3} to decrease IL.

Gy G,

OO
OO

Figure 4. A negative weight cycle that represents n-opt
heuristic to improve I L. The improvement consists of replacing
zg by x1 in Gg, and migration of z3 to G3.

It is notable that applying 1-opt and 2-opt heuristics
is more efficient since they involve only two edges.
Therefore, these simple heuristics are prioritized as
the inner loop (line 4 of Algorithm 2).

4.2 Determination of the Number of Clusters

In data oriented microaggregation algorithms, opti-
mal number of clusters is unknown. We have used a
procedure like MDAV-MHM [8], to map the solution
to a univariate microaggregation problem, and then
use the optimal univariate solution [5] to determine
the number of clusters. Fortunately, this procedure
may be seen as an improving method, because it is
guaranteed to produce a clustering as good as its input
[19].12 Mapping the assignment to a path is done in
line 5 of Algorithm 4. To this end, a cluster containing
the most distant record from the centroid of the whole
data set is selected. Then, all records in the group are
stitched together on a path. Next groups are selected
based on the nearest point next (NPN) heuristic such
that similar records are closer on the path. This proce-
dure continues until all records are ordered in the path

2 In fact, based on our experiments, in most cases it improves
the IL of microaggregation slightly, especially in the initial

steps of algorithm execution.
@
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[8]. We have introduced a variant of MHM [5] called
Tour2Assignment, to determine the optimal cluster-
ing regarding the order of records in the path (line 6
of Algorithm 2). In the original MHM algorithm [5],
the shortest path starting from a dummy node to the
last node is considered, so the first k records in the
path are always assigned to the same cluster. How-
ever, despite the ImprovedMHM introduced in [19],
Tour2Assignment interprets the input path as a tour
of nodes by considering the first node in the path af-
ter the last one. This provides the chance for the last
nodes in the path to be assigned to the same cluster
of the first nodes in the path, potentially leading to
lower information loss of the protected data set. 13

The pseudo-code of Tour2Assignment is presented
in ?7?. This function groups all records in the same clus-
ter for trivial cases (lines 2-5). 1% A directed acyclic
graph M (V, E) with |V| = |P| + 2k — 1 nodes is ini-
tialized (line 6). Each node v; corresponds to a record
in the path (line 7). The Tour2Assignment inserts an
edge starting from v; to vj4; where k < j < 2k. The
edge e = (v;,v;4,) represents a cluster containing all
records v, ¢ < m < j 4+ ¢ in the path. The weight
of an edge is equal to the SSFE of respective cluster
(lines 10 and 11). However, despite the original MHM
algorithm [5], we have implemented an incremental
computation of centroids and weights (lines 13-26)
similar to [19], which makes it possible to calculate
all centroids and weights based on the previous calcu-
lated centroids and SSE values (except the first cen-
troid and SSE in lines 10 and 11). This will improve
the performance of graph construction significantly.
The Tour2Assignment places the first 2k — 1 starting
records in the original path at the end of the path,
one after another, and runs the MHM. However, to
increase the performance, instead of copying the first
records one by one and running the MHM, all common
parts of these rotated paths are constructed once, and
only the shortest path algorithm for directed acyclic
graphs is executed 2k — 1 times (line 28). Since the
optimal shortest path goes through at least one of the
consecutive 2k — 1 nodes in a tour !° | the algorithm
finds the optimal clustering after 2k — 1 iterations.
In each iteration, the shortest path from one of the
first 2k — 1 nodes, vg, in the graph to its copy, ve,
is calculated and the minimum weight path among
these shortest paths is selected (lines 29 and 30). Fi-
nally, all records covered by an edge are assigned to
a new cluster (lines 31-37). The assignment is done

13 This does not contradict the optimality of MHM, because
it is optimal regarding the order of records in the path, while
we rotate the records in the path to get more utility.

14 Tt is assumed that n = |T| = |P| > k.

15 Please remember that the maximum size of a group is
limited to 2k — 1, i.e., |Gp| < 2k.

18:0ured)

in a way that minimizes the changes of cluster num-
bers, i.e., if the output assignments of the function,
say Ap, are converted to a tour again, and the tour
is passed to the function to produce another output,
say As, two outputs will be the same: A; = As. This
simplifies stopping condition checking for the inner
loop of ICSM (line 8 in Algorithm 2).

Algorithm 5 Pseudo-code of Tour2Assignment func-
tion

1: Function ([A]=Tour2Assignment (P: tour, k: integer))
2: if |P| < 2k then // trivial case
3: assign all records to the same cluster (G1)
4: return A
5: end if
6: Initialize the directed acyclic graph M (V, E),|V| =
|P|+2k—1
7. Vi€ {l,...|P|+2k—1},v; = P[((i—1) MOD |P|)+1]
8: for i =1 TO P do
9: if ¢ =1 then
10: CurrentCentriod = MEAN(z, to acvk_H)
11: CurrentSSE = calculate SSE based on Equa-
tion 1
12: else
13: Delta = Tugy; - Tu;
14: CurrentCentriod = BaseCentroid + Delta/k
15: CurrentSSE = BaseSSE +
27:1 Deltall]. ((1*k)Delta[l]+2k(zvk+i [l]*CurrentCentriod[l]))
16: end if *
17: BaseCentroid = CurrentCentriod
18: BaseSSE = CurrentSSE
19: Draw a directed edge e = (v, vk4+;) and set the
weight w(v;, vg44) = CurrentSSE
20: ki =k
21: for j=i+k+1TOi+2k—1do
22: CurrentSSE = CurrentSSE + ki/(k1 +
1). 27:1 (CurrentCentriod[l] — z;[1])?
23: Draw a direct edge e = (v;,v;) and set the
weight w(v;,v;) = CurrentSSE
24: CurrentCentriod = CurrentCentriod + (x;—
CurrentCentriod)/(k1+1) k1 = k1 + 1
25: end for
26: end for
27: Compute SP(s) = shortest path from vs to ve,s €

{1,...2k—1},e=s+|P|
28: S = argming(weight(SP(s))), s€ {1...,2k — 1}
29: SelectedShortestPath = SP(S)

30: ClusterCounter = 1

31: for each edge e = (v;,v;) € SelectedShortestPath do

32: for each v;,,i < m < j do

33: A[P[((mfl)MOD|P|)+1]] = ClusterCounter
//assignment

34: end for

35: ClusterCounter = ClusterCounter + 1

36: end for
37: end Function

4.3 Analysis of the ICSM

Generation of initial solution using MDAV requires
O(n?/k) time [7]. The conversion of the assignment to
a path involves O(n?/k) operations [2]. Moreover, de-
termining the number of clusters in Tour2Assignment
requires one graph construction and 2k — 1 compu-
tations of the shortest path, which are executed in
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O(nk +nk?). Finding an improvement based on 1-opt
or 2-opt heuristics requires considering all edges in
H in the worst case and consumes O(n?) time. The
next step is to sort the improvements found and ap-
plying some of them in a greedy manner. The com-
plexity of this part can be calculated based on the
predefined pool size p,,, which may be set in a way
that the complexity of the sort algorithm O(p,, log p,,)
is dominated by the complexity of other parts of the
algorithm. Next part of the algorithm is about to cal-
culate Score, and Rank for constructing H'. 16 Cal-
culating the Score and Rank of the groups requires
O(n?) and O(c + clog ), respectively. However, run-
ning the shortest path problem in H’ and finding a neg-
ative cycle requires O(n + ¢ + n?) operations. Finally,
applying the improvements (if any), needs at most
O(c) changes in the assignment, which is dominated
by O(n?) complexity of the previous lines. Therefore,
the time complexity of our algorithm is bounded by
O(n?). However, as our experiments confirm, the time
complexity is not an issue in practice. 7

5 Experimental Results

In this section, we present the evaluation results of
our algorithm.

5.1 Configuration Settings

Three standard benchmark data sets in the SDC are
Tarragona, Census, and EIA [20], which are intro-
duced in Table 1. These data sets are used in multiple
papers such as [9, 10, 13]. We have also introduced
a Synthetic data set of 10000 records with 10 at-
tributes. The data set contains 10 clusters of normally
distributed data point around random cluster centers.
Table 2 shows the results of ICSM on these data sets.
In this table, Iteration denotes the number of rounds
with improvements in the assignment. Moreover, the
MAX _ITERATIONS for Synthetic data set is set
to 20 and 400, but is infinity for other data sets.

Additionally, the average results on 25 synthetic
uniform distributed data sets are reported in Table 2.
Fach data set consists of n = 100 data records with
d = 10 numerical attributes drawn from [—1000, 1000]
interval by simple random sampling. Another simu-
lated test set contains 25 synthetic data sets, somehow
similar to [10]*® and [19]. Each data set has ¢ = 5

16 However, there is no need to construct it in practice, since
the shortest path algorithm over H’ may be conducted using a
simple index redirection, i.e., we resort the indexes of elements
in the adjacency matrix of H, so that to include only finite
edges of H'.

17 The ICSM is an anytime algorithm that can be stopped
before its completion.

18 In the original paper, the number of clusters (c¢) and data
records in a cluster (G;) was chosen randomly.

Table 1. Benchmark data sets for microaggregation comparison
20]

number of data  number of numeric

data set records (n) attributes (d)
Tarragona 834 13
Census 1080 13
EIA 4092 11
Synthetic 10000 10
Table 2. Evaluation results of the proposed
algorithm, ICSM in comparison with MDAV.

Gain =1— (IL;csym)/(ILypav)(%) is used.

Data set kILypav ILicsas Iterations Gain Timepnpay (s) Timercsar (s)

3 16.93  14.81 174 125 <1 1
Tarragona ® 2246 20.69 238 7.9 <1 1
10 33.19 30.7 127 75 <1 1

3 5.69 4.85 203 14.8 <1 2

Census 7 9.09 7.78 205 14.4 <1 2
10 14.16  11.93 210 15.7 <1 3

3 0.48 0.36 29 25 <1 6

EIA 5 1.67 0.78 39 53.3 <1 8

10 3.84 2.24 142 41.7 <1 26

6.55 20 2.8 15

3 6 6.17 400 8.5 ! 338

10.14 20 1.6 13

5 03— —

Synthetic 9.02 400 12.4 332
14.78 20 1.1 12

10 14.94 12.72 400 14.9 ! 300

3 3268 27.95 - 145 <1 <1

Sim-1 5 4865  42.87 - 119 <1 <1

10 67.52  63.92 - 53 <1 <1

3 14.32  12.44 - 131 <1 <1

Sim-2 5 2356 2013 - 146 <1 <1

10 3718 3191 - 142 <1 <1

3 1551 12.65 - 185 <1 <1

Sim-3 5 2396  20.31 - 153 <1 <1

10 3773 3261 - 136 <1 <1

clusters, each of them contains n = 20 multivariate
Gaussian distributed data records around. All data
records of a cluster center have mean value equal to
the cluster center and the covariance matrix ), =
0214, where o; is randomly selected from [0.1,0.3]. I,
denotes the d x d identity matrix. Centers are uni-
formly distributed over the d-dimensional hypercube
of [0,1]%, where d is a random number between 4 and
8. These two test sets are named Sim-1 and Sim-2,
respectively. The Sim-3 test set is generated in the
same manner of Sim-2, except that centers are se-
lected from [0,2]?, which makes the data sets more
clustered.

The information loss of ICSM for these data sets is
reported in Table 2. The average values of information
utility improvements over MDAV method in terms
of IL are also denoted as Gain. Moreover, the run
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time of the algorithm (best time out of 10 executions,
excluding the time required for reading the input file),
is also presented. In all tests, a regular PC with a Core
i7, 2.5 GHz CPU and Windows 7 64-bits is used. The
pool size p,, is set to 100.

The results confirm that ICSM always improves
information loss in comparison with MDAYV. This
improvement reaches up to 53% for a clustered data set
such as EIA . These improvements are at the expense
of running time of the ICSM. However, this is not a
major drawback in practice, since the whole process
of anonymization is an off-line task.

5.2 Comparison of the ICSM with other
Microaggregation Algorithms

To our knowledge, most results reported here are
among the best results in the literature in terms of
IL. This is due to the effectiveness of the introduced
constraints toward optimizing IL of a solution. To
show the superiority of ICSM, we have also compared
the results of ICSM with nine other microaggregation
methods on Tarragona and Census benchmark data
sets. 19

Table 3 shows the complexities of these methods.
The evaluation results are also presented in Fig-
ure 5.2° In all experiments, ICSM achieves the best
results in terms of I L. These superiority is the results
of considering the two main constraints of an optimal
solution of a microaggregation algorithm, i.e., the
exchange and migration constraints.

Table 3. Some characteristics of microaggregation methods
used in comparison

Method Classification Complexity  Reference
MDAV Fixed size O(n?/k) (7]
GSMS-T2 Data Oriented ~ O(n?logn) (10]
p-Approx Data Oriented O(n?) [3]
M-d Data Oriented O(n?) 8]
NPN-MHM Data Oriented O(n?) 8]
MDAV-MHM  Data Oriented O(n?/k) 8]
MD-MHM Data Oriented O(n3/k) 8]
TFRP Data Oriented O(n?/k) [9]
FDM Data Oriented ~ O(n?logn) [15]

19 The results on EIA and Synthetic data sets show similar
improvements and are omitted for brevity.
20 All information loss values in Figure 5 are based on the
referenced papers in Table 3.

1SeCure
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Figure 5. Comparison of ICSM with eight other microaggre-
gation methods on Tarragona (top) and Census (bottom)
data sets.

5.3 Random Initialization of the ICSM

In this section, we repeat the experiments of the pre-
vious section, but a random assignment of records
to clusters is utilized for initialization. These experi-
ments are repeated for 1600 different perturbation of
MDAV assignments for each data set and k, where the
assignments of at most 20 randomly selected records
are changed. We compared the I L results of the ICSM
with LS [14]. The results are shown in Table 4. This
table confirms the superiority of the ICSM, since it
usually reaches a more useful protected data set for
the specified value of k, while at the same time re-
quired less random restarts than LS.

6 Conclusion

In this paper, we presented a novel approach to re-
duce the information loss of microaggregation. The
method involves 1-opt, 2-opt, and n-opt heuristics to
satisfy migration and exchange constraints. Based on
the proposed notation, these heuristics may be repre-
sented as negative cycles in a graph. Applying these
improvements in an iterative manner may reduce the
IL, especially in the first iterations of the algorithm.
Regarding the evaluation results on multiple standard
and synthetic data sets with different distributions, it
has been shown that the method is superior to other
heuristics proposed in the literature. This is due to the
generality and effectiveness of the heuristics to satisfy
some necessary conditions of an optimal solution. It is




January 2015, Volume 7, Number 1 (pp. 15-26)

Table 4. Comparison of the best IL of ICSM and LS [14]
methods.

Data set k ILicsm ILpg
3 14.54 14.68

4 17.18 17.23

Tarragona 20.25 203
10 30.34 30.23

3 4.75 4.85

4 6.21 6.66

Census 5 7.5 7.86
10 11.74 11.94

3 0.35 0.45

4 0.49 0.58

EIA 5 0.74 1.2

10 1.95 2.45

interesting to consider other heuristics to improve in-
formation utility after microaggregation, particularly
for n-opt heuristic. This is considered as our future
work to achieve more useful protected data.
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7 Appendix

Symbols used in this paper are as follow:

Table 5. Description of symbols used in the paper

Symbol Description
T the original numerical data set (in standard
normal form for d > 1)
k the minimum number of records in each group
after microaggregation
SSE sum of within-group Squared Error
n number of records in T’
IL information Loss
total sum of Squared Error (for the whole
SST
data set)
d number of attributes of T’
T; the ¢-th numerical record in T
Gp the p-th group of records
c number of groups
Tpj the j-th record of G
Tp the centroid of Gy
PSSE partial summand of SSE
(zpi — Gp)
g the optimal assignment of records to clusters
opt in a microaggregation problem
SP shortest path
Pn pool size to store potential improvements
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