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1 Introduction

n the algebraic cryptanalysis of symmetric ciphers,
based on the round function of the cipher, a large

Cube Attack is a successful case of Algebraic Attack. Cube Attack consists
of two phases, linear equation extraction and solving the extracted equation
system. Due to the high complexity of the equation extraction phase in finding
linear equations, we can extract nonlinear ones that could be approximated to
linear equations with high probability. The probabilistic equations could be
considered as linear ones under some noises. Existing approaches to solving
noisy equation systems work well provided that the equation system has a low
error rate; however, as the error rate increases, the success rate of finding the
exact solution diminishes, making them rather inefficient in high error rate.
In this paper, we extend Cube Attack to probabilistic equations. First, an
approximation approach based on linear combinations of nonlinear equations is
presented to find probabilistic linear equations with high probability. Then, we
present an approach to improve the efficiency of current solving approaches and
make them practical to solve a high error rate linear equation system. Finally,
utilizing proposed approaches, we find the right key under an extended noisy
equation system with lower complexity in comparison to the original Cube
Attack.

© 2020 ISC. All rights reserved.

tem, some linear equations are extracted, and the
right key value was obtained by solving the extracted
equations.

The primary challenge to the cube attack is finding

nonlinear polynomial system is generated. There are
several approaches to solve such systems [1-3], but
due to the high memory consumption and time com-
plexity, it is infeasible to apply them to practical
problems. A successful case of an algebraic attack is
the cube attack [4], which was introduced in 2009. In
this attack, instead of generating the equation sys-
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linear equations, which is conducted in some heuris-
tics and is therefore highly complex. Hence, in some
works [5], instead of finding linear equations, nonlin-
ear equations with a linear approximation and high
probability are extracted and regarded as linear ones
influenced by some noises.

Two different approaches have been presented to
solve the system of probabilistic equations known as
the noisy equation system. In the first approach, after
approximating the round function or using some anni-
hilators to reduce its degree [6], the equation system
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is generated. Then the correct solution is identified
through repetition the solving with different subsets
of key stream bits [1] or a key with the predetermined
probability of correctness is determined [7].

In another approach, which is more popular today,
the solving of a noisy equation system is modeled
as the MAX-PoSSo problem [8]. This problem is a
variant of Polynomial System Solving (PoSSo), which
involves finding a solution to a system of polynomial
equations. MAX-PoSSo, or the problem of solving
polynomial equations with noises, involves finding the
solution that satisfies the maximum number of poly-
nomials. Obviously, MAX-PoSSo is at least as hard
as PoSSo. Moreover, irrespective of the linearity of
polynomials, MAX-PoSSo is an NP-hard problem [9].

One of the primary approaches based on this con-
cept is [8], in which a method based on optimization
approaches is recruited to solve such problems. The
problem was converted to a Mixed Integer Linear
Programming (MILP) problem by defining some vari-
ables and constraints over integers and employing
some conversion methods to handle Boolean calcu-
lations [10]. Moreover, the authors convert a Partial
Weighted MAX-PoSSo problem into a Mixed Integer
Programming problem by defining some new slack
variables and an objective function corresponding to
a cost function, which should be minimized.

In the same vein, authors in [11] proclaimed that
some of the equations containing information about
the noisy sequence of cipher were not necessarily
valid while all other equations in the system were
satisfied. The problem of solving a noisy polynomial
system was then modeled as a Mixed Integer Linear
Programming problem, and they were able to recover
the secret key with a success rate of more than 90%.

In [5], cube attacks were extended to a wider scope,
and probabilistic linear equations were utilized. To
solve the probabilistic equation system, the authors
used maximum likelihood decoding (MLD) in the on-
line phase. However, despite the exponential complex-
ity, their contribution could not achieve significant
results to extract the correct key under all scenarios,
and its success rate was about 15%.

Recently [9], Incremental Solving, and Backtrack-
ing Search (ISBS) have been proposed to solve
Boolean equation systems with noises. In comparison
to other approaches that search all possible values
of variables, ISBS searches all possible values of
noises with backtracking and incrementally solving
using the MFCS method [12]. It has been shown that
it was much more efficient than the optimization
approaches [8]. Further details of this approach are
presented later in this paper.
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Unfortunately, all of these approaches work well at
a low error rate of the equation system, but as the
error rate rises, the success rate of determining the
right solution aggravate. Hence, at high error rate,
these methods are inefficient and impractical.

Our Contribution: In this work, at first, we
present an approximation approach based on linear
combinations of nonlinear equations to find probabilis-
tic linear equations with high probability. Then, the
problem of solving a high error rate and determined
noisy equation system is considered. By determined,
we mean an equation system with almost the same
number of variables and equations, contrary to the as-
sumption of existing approaches where the equation
system is overdetermined and has a low error rate.
As a result, these methods were unable to achieve sat-
isfactory results in our problem. They failed to find
the right key under most scenarios, and a low success
rate was reported. To overcome this drawback, con-
sidering the success of the ISBS method, we present
an approach to improve its efficiency at a high error
rate. This improved approach is then applied to solve
the extended cube equation system, including deter-
ministic and probabilistic equations, and we can find
the right key with lower complexity in comparison
with the application of only deterministic equations.

Organization: The remainder of this paper is or-
ganized as follows. In Section 2, we briefly review pre-
liminary concepts such as cube attack, ISBS method,
and KATAN cipher. In Section 3, we focus on our con-
tribution and describe the proposed attack scenario
in detail. Section 4 presents the results. Conclusions
and future works are drawn in Section 5. Some details
of results are provided in the Appendix.

2 Preliminaries

In this section, the basic concepts of this paper have
been outlined. A brief overview of the cube attack is
given followed by the specifications of ISBS method.
Finally, the cipher specifications are described while
presenting the results over KATAN block cipher.

2.1 Cube Attack

In 2009, Cube attack [4] was proposed as a type of
algebraic attack. This attack employs the Algebraic
Normal Form (ANF) representation of the ciphertext
bit as a polynomial function of plaintext and key
bits. By evaluating this function for all possible val-
ues of some plaintext bits, some linear equations of
key bits are extracted. Each ciphertext bit is consid-
ered as a polynomial function of plaintext bits, V =
{vg, v1,...}, and key bits, K = {ko, k1,...}. Assum-
ing that x = V' |J K, one can write any of ciphertext
bits as a polynomial p(z) over F5 in ANF represen-
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tation. Let I be a subset of plaintext bits and t; be
the product of all variables whose indexes are in 1.
Accordingly, it can be written as:

p(x) =tr- Ps(I) + q(x) (1)

Where t; and Ps(I) are cube and superpoly, respec-
tively. Ps(I) is a polynomial of key bits and remaining
plaintext bits. ¢(z) is the sum of all terms that lack
at least one term of I. According to [4], Ps(I) can be
calculated by applying a higher-order derivative:

Ps(I) = Z p(z)(mod2) 2)

vely

where C7 represents the set of all possible values for
variables in ¢; and other bits excluded from I are zero.
Therefore, Ps(I) is only a polynomial of key bits. If
it is a linear polynomial, while the corresponding ¢;
is called a maxterm, it can be utilized as an equation
under the attack scenario.

There are two phases in the attack scenario: an of-
fline preprocessing phase and an online phase. The
goal of the offline preprocessing phase is to find some
cubes that provide linear superpoly. The linear super-
poly can be determined by performing some linearity
tests [13]. The primary challenge of the cube attack is
to find linear equations. This phase is carried out in
some heuristics such as the random walk manner [4],
which consequently causes high complexity.

In the online phase, the right hand side of the equa-
tion is evaluated for all possible values of maxterm
variables with a fixed but unknown key, and the ob-
tained equation system is solved using Gaussian elim-
ination. If the extracted equations are less than the
key length, the remained key bits are determined by
an exhaustive search. By doing so, the values of key
bits can be finally recovered.

The complexity of the cube attack is as follows:
Assume m linear equations are extracted with a cube
size of d for a key length of n. The complexity of
offline phase is m. (n + 1).2%, which corresponds to
calculation of the coefficient of n + 1 linear terms,
including the constant term for m equations with a
cube size of d. The complexity of the online phase is
bounded by m.2¢+m? +C.2("=™) The first term cal-
culates the right hand side of m linear equations. The
second one is for solving the system using Gaussian
elimination and the last one is for determining the
remained key bits using an exhaustive search where
term C' is the cost for checking a key.

The most important extensions of the cube attack
are cube testers [14], which search for non-random
distinguishers and dynamic cube attacks [15] which
use cube tester distinguishers for the key recovery.

2.2 ISBS

ISBS is a new method of solving MAX-PoSSo
problems over Fy. The main idea of ISBS is in-
cremental solving and backtracking of all the pos-
sible noises. Consider a noisy polynomial system
{f1,f2y---, fm}. The aim of ISBS is to solve poly-
nomial systems {f1 + ey, fo +e2,..., fm + €m} with
the noise vector (eq,es,...,e,) that has the small-
est Hamming weight as the solution of the MAX-
PoSSo problem. The noise vector can be equal to
(0,0,...,0),(1,0,...,0),...,(1,1,...,1).

Since the ISBS method works incrementally, if the
partial polynomial system {f1 +eo1, fa + €02, ..., fx +
eok | is a contradiction system without any solution
for some fixed (ep1, €2, - - -, €ok), it does not need to
solve any system with the form {f; + eo1,..., fx +
€0ks f2+€0k+15 - - - » fm + €0m } for every possible value
of (éx+1,--.,€m). In this way, many search branches
can be pruned and this kind of redundant computa-
tions could be avoided. Indeed, ISBS merges the incre-
mental solving and the backtracking search methods
with the above idea.

The ISBS works as follows [9]:

(i) Equation system {f1 +e1, fo+ea,..., fi + €}
is incrementally solved for ¢ from 1 to m with each
e; = 0. If the system has no solution for some i,
e; is flipped to 1 and solving the remaining poly-
nomials is continued based on the solution set for
{fi+e1, fa+ea,..., fi+1}. Finally, a candidate solu-
tion is obtained from solving { f1+e1, fo+ea, ..., fm+
em} where (eq,es,...,6e,) is equal to some fixed
(e01, €02, -, €om). The Hamming weight of the ob-
tained noise vector is considered as the upper bound
of the noise.

(ii) To obtain a more suitable candidate, all possi-
ble values of the noise vector are searched with back-
tracking based on the value (ep1, €g2,- - -, €om). That
is, for i from k to 1 the first eg; is found such that
e; = 0 and the Hamming weight of (e1,...,e;-1,1)
is less than the specified upper bound. Then, simi-
lar to step (i), {fi+1,---, fm} is solved incrementally.
If a more suitable candidate is found, & is set to m,
(e01, €02, - - - , €0m ) and upper bound are replaced with
(601, ey €0i—1, 1, €00i+11s -+ eoom) and the hamming
weight of new noise vector, respectively. step (ii) is
repeated again.

(iii) Finally, all the possible (e1,ea,...,en) are
searched and the optimal solution is obtained.

In other words, by tracking all non-contradict
branches in ISBS, the branch with minimum noise is
found as the solution for the MAX-PoSSo problem.
The theoretical complexity of ISBS is exponential,
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Table 1. Parameters used in non-linear functions.

Cipher  |L1| |L2| @1 @2 3 24 T5s Y1 Y2 Y3 Y4 Y5 U6

katan32 13 19 12 7 8 5 3 18 7 1210 8 3
katan48 19 29 181215 7 6 281921 1315 6
katan64 25 39 24152011 9 3825332114 9

but due to the pruning of many search branches, the
practical complexity is significantly lower [9]. It is
worth noting that since the height of search tree is
dependent on the number of probabilistic equations,
considering the complexity of partial solving and
saving the inner solution sets at high error rate,
the ISBS method was not efficient at error rates
exceeding 0.08 [9].

2.3 KATAN Cipher

KATAN is a family of lightweight ARX block ci-
phers [16]. It has three variants of 32, 48 or 64-bit
block size with an 80-bit main key and 254 rounds in
all versions. KATAN consists of two linear feedback
shift registers (LFSRs) called L1 and L2, which are
initialized with the plaintext. They are then trans-
formed by two non-linear Boolean functions as fol-
lows:

fa(L1) = L1[z1] @ L1[z2] @ L1[z3] - L[] ® Llfzs] - IR @ ke
fo(L2) = L2[y1] ® L2[y2] & L2[ys] - L2[ya] & L2[ys] - L2[ye] ® kyp

IR consists of the output of an LFSR, which is
considered as some constants in the cipher. In each
round, LFSRs are left-shifted, and the output of each
function is loaded on the least significant bits of
the other LFSR. This operation is invertible. The
parameters of the above function are presented in
Table 1. For the i-th round, only two key bits are
used. For KATAN48 and KATANG64, these functions
are applied two and three times, respectively, for each
round with the same pair of subkey bits. The key
schedule algorithm for all KATAN ciphers is a linear
mapping that expands an 80-bit key K into 2 x 254 =
508 subkey bits. See [16] for more details.

3 Description of The Proposed
Attack Scenario

In this section, the proposed approach for extending
the cube attack by utilizing probabilistic equations is
proposed. Similar to the cube attack, the proposed
attack scenario consists of two phases, as described
later.

3.1 Equation Extraction Phase

As described earlier, the preprocessing phase of the
cube attack to choose proper maxterms is highly
complex. To overcome this problem, we used the
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approach presented in [17, 18], which is based on the
division property. Division property was proposed
by [19] in 2015 to extract integral distinguishers with
a high success in progressing the results of this attack
type [20-22]. Given the similarity of Integral and
Cube attack, in [17, 18] division property was adapted
to extract cube distinguishers with lower complexity,
and some improvements were reported.

Using the adapted division property, we can de-
termine the upper bound of involved key bits in the
output bit of a cipher after a few rounds. Based on
this information, we can choose output bits that de-
pend on the low number of key bits as proper options
to extract linear equations. As the coefficient of not
involved key bits, i.e., neutral key bits, are zero in the
superpoly, these bits are eliminated from the process
of calculating coefficients, and hence the complexity
of equation extraction phase is diminished.

In brief, to check the existence or nonexistence of
a key bit, k;, in the superpoly, this bit is activated in
the initial vector of division property in addition to
active plaintext bits, which are activated matching
the maxterm. Then the initial value is propagated
through rounds of the cipher based on the propagation
rules. In the end, generated vectors in the propagation
procedure are analyzed, and the coefficient of this
specific key bit in the superpoly is determined. For
more details, interested readers can refer to [18].

Here, we extend the proposed approach in [18]
to extract nonlinear equations specifically quadratic
ones. Assume set [ as involved key bits in a superpoly
with n; element. To determine the quadratic terms
in the superpoly, for Vi,j € I,i < j, the existence of
the quadratic term k;k; is checked via 1) activating
these key bits in addition to corresponding bits for
active plaintext bits in the initial value of division
property, 2) propagating it along the rounds of the
cipher and finally, 3) analyzing the final values. By
doing so for all involved key bit pairs, the coefficient
matrix @ is extracted as follows:

coeff (ki1kiz) coeff (ki1kiz) ...
coeff (kizkiz) ...

coeff (kirkinr)
coeff (kioskins)

coef f (kinl— 1 km[)

for Viz € I,1 < x < ny, @igsy Present the coeffi-
cient of term k;;k;y in the superpoly.

In continue, set I, for Via € I as: I;; = {iy |
i < 1Y,Giziy 7 0} is calculated. Indeed, set I;;
represents the index of key bits which are involved in
the superpoly in quadratic form as a multiplier of k;,.
Based on the set I;;, we can determine the degree of
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the terms as follows:

(1) if |I;z|= 0, since iz € I and Yy € I | ¢;z,y = 0,
it means that the key bit k;, does not appear
in none of the quadratic terms and hence, this
key bit is a linear term in the superpoly.

(2) if |Iiz|= 1, it means that the term ki k;, is ex-
isted in the superpoly. Ensuring of the existence
or non-existence of the linear terms k;, and k
the coefficient of them are calculated too.

(3) if [I;5]> 2, it means that there are at least two
quadratic terms which include these key bits or
there is a cubic term k; ki k;.. Consequently,
the degree cannot be guessed deterministically.

1Yy

After determining the superpolies with |[;,|<
1|Viz € I, some quadratic equations are extracted,
which are presented in the Appendix. It should be
mentioned that solving the multivariate quadratic
equation system is considered as an NP-hard prob-
lem. Some linearization approaches [1, 23] were
presented to solve such systems. In these approaches,
a new variable is defined for every quadratic term.
Because of the existence of too many quadratic terms
in extracted quadratic equations, these approaches
have high complexity due to a high number of new
variables.

Here, focusing on utilizing linear equations, we use
extracted quadratic equations to find linear approxi-
mations with high probability. In [1, 5], to approxi-
mate nonlinear equations with linear ones, nonlinear
terms are eliminated, which causes low probability
most often. To tackle this problem, we utilize the
linear combinations of quadratic equations to approx-
imate nonlinear equations with higher probability as
presented in Algorithm 1.

As presented in Algorithm 1, at line 2 to 4, to
have enough number of quadratic equations, some
new quadratic equations are generated by multiplying
the linear equations with x;, where z; stands for the
corresponding variable of the key bit i. Then the
coefficient matrix of all quadratic equations in Set()
is calculated in matrix A.

At the next step, linear combinations of these
quadratic equations are calculated by performing
some row operations. At the step i of line 8, for
quadratic term ¢, we try to find a row which it has
1 at entry ¢,4. This row is swapped with row ¢ and
XORed to all rows which have 1 at this column.

Repeating this step for all quadratic terms, matrix
A is converted to an upper triangular matrix which
each quadratic term is corresponds with only one row
with entry 1 on the diagonal. In other words:

2
And Vj < i, we have a;; = 0.

In continue, at line 14, every nonlinear equation is
approximated to a linear one. To do this, at step i of
line 16, if nonlinear equation has quadratic term i, the
equation is XORed with corresponding row of matrix
A. It means that the corresponding quadratic term is
replaced with an equation instead of eliminating it.

After determining the linear approximation of a
nonlinear superpoly, the probability of equation cor-
rectness is calculated. Assuming that the output of
the real superpoly is 0 and output of linear approx-
imated part is ol, the probability of approximation
can be estimated under N random keys as follows:

N —
p-m(o@a—m—a—l&‘) 3)

For the probability of being reliable, a sufficient num-
ber of random keys is required. This number can be
calculated based on the theorem presented at [5]. For
further details, see Appendix.

At the end of this phase, there will be mgy de-
terministic and m,, probabilistic independent linear
equations, {f1,..., fmas fma+1s- s fmatm, ;> With n
variables. Thus, the error rate, the ratio of proba-
bilistic equations to all equations, is calculated as
#pmp. Since secret key bits are confused in the en-
cryption, most of the extracted superpolies are non-
linear. Hence, given the scarcity of linear ones, the
probability of probabilistic equations occurrence as
the linear approximations of nonlinear superpolies is
high. As a result, this type of equation constitutes
a large share of the equation system, which conse-
quently raises the error rate of the equation system. It
should be noted that due to the hardness of equation
extraction, the extracted equation system is mostly
determined.

3.2 Key Recovery Phase

Given the high error rate of the equation system ex-
tracted in the previous phase, the existing approaches
that underline the finding of a solution with mini-
mum noises were not successful in key recovery. Thus,
in most scenarios, they failed to find the right key [9].
To tackle this problem, we propose an approach to
solving a linear equation system with a high error
rate, and it was utilized to solve the extracted equa-
tion system in the previous phase and recover the key
deterministically.

To solve such an equation system and find
the exact solution, we should assign proper val-
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Algorithm 1 Linear Approximation of Nonlinear Equations

Input L=set of all linear equations
Q=set of all quadratic equations

NL=set of all nonlinear equations with degree more than 2

Output App L:set of approximated linear equations

- SetQ = {Q}
: for Vi€ I do
for VL; € L do
SetQ.append (z;.L;)
end for
end for
: A= Coef ficient _matriz(SetQ)

R S ol v

nr
: fori=1to do

2
9: Find_and_Swap(A,1)
10: for j =i+ 1toA.rows do

[

11: Alj] = Alj] €D Ali
12: end for
13: end for

14: for VL, € NL do
15: entry = Q_and_L_Coef f(Ly)

nr

16: for i =1to do
2
17: if entry[i] == 1 then
18: entryli] = Ali] @ entryli]
19: end if
20: end for
21: end for

22: app_equation = linear _equation(entry)
23: App _L.append(app _equation)

> generate sparse and Overdefined Quadratic equation system

> linear combination of nonlinear equations

> row operations

> replace quadratic terms

> the coefficient of linear and quadratic terms are moved to entry

> row operations

> linear approximation

ues to the noise of the probabilistic equations.
The most obvious way is to exhaustively search
all such noise vector in the order of increasing
Hamming weight where (e, es,...,e,) is equal
(0,0,...,0),(1,0,...,0),...,(1,1,...,1) and to solve the
equation system for each noise vector. If there is a
solution for the corresponding system, this solution
is checked as a candidate for the right key. Otherwise,
the process is continued with the next value for the
noise vector until the right key is found. The main
drawback of this method is redundant computations
due to contradictions in the equation system leading
to high computational complexity.

By considering the way that ISBS detects contra-
dictions and eliminates redundant computations, we
create the search tree as ISBS method to find the
proper noise values in lower complexity; however, as
mentioned earlier, ISBS is not efficient for the equa-
tion systems with a high error rate. Thus, some im-
provements are required to enhance the efficiency and
practicality of solving approaches for such systems:

1S:Cured)

e The search tree is created by considering the
probability of equations. Indeed, the probabilis-
tic equations are appeared in the search tree
based on their probability values in descending
order. Hence, the branches are visited in the or-
der of their correctness probability, which leads
to finding the exact solution with less backtrack-
ing.

e To decrease the complexity, consistency check-
ing is used instead of partial solving in the inner
nodes of the tree. As the equations are linear,
the Rouché—Capelli theorem can be used to
check the consistency of the equation system.

Theorem 1. Rouché— Capelli Theorem [24]: A
system of linear equations with n wvariables has a
solution if and only if the rank of its coefficient matrix
A is equal to the rank of its augmented matriz [A | b].
In particular:

o If n =rank (A), the solution is unique.

o If rank (A) = rank ([A | b)), there will be infi-
nite solutions.

o Otherwise, the system is inconsistent and there
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will be no solutions

By the rank of a matrix, we mean the maximum
number of linearly independent vectors in a matrix
which here it shows the maximum number of inde-
pendent equations.

Based on the above descriptions, the steps of our
approach to solving the probabilistic equation system
are as follow:

1) All deterministic equations are included in the
set S.

2) The probabilistic equations are incrementally
added to S, until all probabilistic equations can be
included. At level i, 1 <7 < my, equation fy, ,+i+e; =
0 is added to set S with e; = 0, and the consistency
of equation set S is checked.

2-1) A consistent set of equations suggests that
there are no contradiction in the equation set and
therefore we can continue with the next probabilistic
equation at the next level.

2-2) However, in the case of inconsistency, we prune
the branch, change the value of e; to 1 and then
continue with the next equation.

3) At leaf nodes of the search tree, which are lo-
cated at the height of m,, there are all probabilistic
equations with proper noises which constitute a full
rank matrix. They can be solved by Gaussian elimi-
nation. Then the solution is checked as a candidate
for the right key:

3-1) If it offers the right key, the process is ended.

3-2) Otherwise, backtracking is needed to reach
an inner node where e; can be flipped to 1. Step
(2) is performed to search for new noise value in
this new branch. As equations are added to the tree
based on their probability values, we ensure that
the solutions are visited based on the probability of
occurrence. As such, the next branch will have the
highest probability.

Remarks:
In comparison with the original ISBS:

e ISBS continues visiting leaf nodes of the search
tree and backtracking to find lower noise value
until the minimum value in the tree is reached.
In our work, all consistent branches are searched
based on probability values in a descending
order to find the right key. However, the number
of branches visited may be higher than that of
ISBS, though it is capable of finding the right
key deterministically under all the scenarios.

e Due to incremental solving at inner nodes and
saving the partial solutions in ISBS, at high

error rates, the tree height grows and the effi-
ciency of solving such equation systems impairs.
To overcome this drawback, we only check the
consistency of equations at inner nodes with
complexity O (n3) instead of mentioned opera-
tions as ISBS.

Compared to the cube attack, by extending the equa-
tion system to more equations, we can determine more
key bits by solving these equations. Consequently,
since the number of remained key bits which should
be determined via the exhaustive search is decreased,
this attack scenario is not as complex as the original
cube attack.

4 Results

To prove the efficiency of the proposed attack scenario,
in this section, we apply the attack scenario to the
lightweight block cipher KATAN and present achieved
results. The results showed that although we cloud
not reach the highest number of rounds attacked by
non-algebraic techniques [25], considering that our
emphasis in this paper is cube equations extraction
and solving, the proposed approach outperformed
the best existing results of this type of attack on
KATANS32. It is notable that the cube attack explored
in [26] has a different approach to break the cipher.
Indeed in this work, a cube tester distinguisher was
extracted and extended over upper and lower rounds,
given that some key bits were guessed. As shown
in Table 2, the complexity of the proposed attack
scenario is considerably less than the complexity of
others. It should be mentioned that in algebraic view,
as illustrated in [18], higher round attacks with fewer
equation numbers could be targeted but they have
high complexity.

In [27], the algebraic and cube attacks were applied
to the KATAN family. More specifically, the cube
attack broke 60-round KATAN32 by extracting 41
equations. In addition, they could break 79 rounds
of KATAN32 with 45 key guesses using SAT solvers
to solve the quadratic equations. In [18] cube at-
tack using division property was applied to 72-round
KATAN32, and 44 linear equations were extracted.
Here we applied the proposed attack scenario to 80-
round KATAN32 and overtook existing algebraic at-
tacks. It is noteworthy that in comparison to [18], al-
though we use the same method to extract equations,
we could improve the results of [18] to higher round
and more equations. The results are summarized in

Table 2.

Based on the procedure described to extract equa-
tions, we could extract 58 deterministic and 19 prob-
abilistic independent linear equations. The equations
were presented in the Appendix. To prove the effi-
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Table 2. Overview of the attacks on KATAN32.

Attack type Round Time Comp. reference

Cube 60 239 [27]
Cube 72 236 [18]
Cond. Diff. 78 222 [28]
Algebraic 79 254.7 [27]
Pro. Cube 80 285.77 Here
Cube 90 277 [18]
Diff. 114 277 [29]
ASR MITM 119 2791 [30]
Matchbox MITM 153 278 [31]
Dynamic Cube 155 278:3 [26]
MD MITM 206 279 [25]

ciency of the proposed solving approach in high error
rates, we experiment different scenarios for a differ-
ent number of probabilistic equations in range 4 to
19, which correspond with error rates in range 0.05
to 0.24, respectively. Indeed, by efficiency, we mean
that the problem can be solved in a reasonable time.
Achieved results were presented in Table 3. In all
scenarios, we have a full rank coefficient matrix of
linear equations and solve it using Gaussian elimi-
nation. Since the number of independent equations,
including deterministic and probabilistic ones, should
be equal to the number of variables, we fix some key
bits. It should be mentioned that the efficiency of the
proposed attack is independent of these key bits, so
they were chosen randomly. The experiments were
repeated for 100 random key scenarios on a PC with
3.40 GHz 8 core CPU, and 31.4 GB Memory.

The columns min.time, max.time and avg.time give
the minimum, maximum, and average running time
to find the right key in all random scenarios, respec-
tively. Consumed time depended on the height of the
search tree and the number of checked branches to
find consistent noises and solve the achieved equation
system to determine the right solution. Because of
the mentioned improvements on the structure of the
search tree in comparison with [9], the time complex-
ity of constructing and backtracking search tree to
find the solution is decreased drastically. Considering
the fact that the number of probabilistic equations
corresponds with the height of the search tree, in 12
probabilistic equations corresponding with error rate
0.05 in [9], ISBS solved the problem in 382 seconds,
where we could achieve the solution in much lower
time near 23 seconds for 13 probabilistic equations.
In addition, for near 20 probabilistic equations at er-
ror rate 0.08 in [9], it was claimed that near 6 hours
was needed to solve such equation system, whereas
we spend near half hour for 19 probabilistic equations
which is much lower than ISBS.

In the original cube attack, by using 58 determin-
istic linear equations,, the equation system is solved,
and values of 58 key bits are determined. The re-
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mained key bits are determined via exhaustive search.
Considering the time spend to check a key as unit
time, the computational complexity of determining
these key bits is 222. Hereby extending the equation
system using 19 probabilistic equations, we could
determine the remained key bits with complexity
26K (1973s) ~ 23.2109% ~ 2 which is lower than
the complexity of the exhaustive search. As described
earlier, some randomly chosen key bits should be
fixed to have a full rank matrix. Here GK parameter
shows the number of these guessed key bits.

As shown in the Appendix, we extract 58 equations
of cube size 29, 30, and 31. To calculate the complexity
of the attack, it is notable that as some of the cipher-
text bits revealed more information about key bits,
we could extract different equations for various cipher-
text bits using the same maxterm, which reduces the
complexity of the attack. Thus, the time complexity
of online phase is 13.229 +12.239 +18.231 4-214 ~ 23577
to determine secret key bits. It should be mentioned
that although because of calculating the right hand
side of cube equations, the complexity of determinis-
tic and probabilistic attack scenarios are almost simi-
lar, but we cannot ignore the difference between the
complexity of determining key bits in probabilistic
scenario, 24, and deterministic scenario, 222, which
represents the improvement of attack complexity in
probabilistic cube attack. Indeed, utilizing probabilis-
tic equations and finding proper noise values based
on the proposed approach lead to decreased attack
complexity.

5 Conclusion and Future Works

In this paper, probabilistic equation extraction and
solving a high error rate equation system were stud-
ied. In the equation extraction phase, to approximate
nonlinear equations, linear combinations of quadratic
equations were utilized, which consequently could in-
crease the probability of linear approximations. Since
existing approaches failed to find an exact solution
of the equation system with a high error rate, we im-
proved the best current approach, ISBS, to solve the
high error rate linear equation system efficiently. Uti-
lizing the improved approach, equation system was
extended to probabilistic ones, and the complexity of
the cube attack was decreased. As described earlier,
instead of incremental solving and saving the partial
solution set in ISBS, we check the consistency of the
equation system to improve the complexity of the
solving procedure. As future work, it will be interest-
ing if we can extend the consistency checking to the
quadratic equation system. Since all nonlinear poly-
nomials can be converted to quadratic ones, we can
generalize this improvement for nonlinear equation
systems, too.
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Table 3. Obtained results for different error rates

Error rate  Num. Of Prob. Equ. Num. Of Indep. Equ.

Num. Of GK Min. time in Sec.

Max. time in Sec. Avg. time in Sec.

0.05 4 62 18 0.06 0.27 0.16

0.08 7 65 15 0.12 2.65 0.66

0.16 13 71 9 0.20 143.51 22.95

0.19 15 73 7 0.24 648.47 103.08

0.21 17 75 5 0.29 2715.97 432.55

0.24 19 7 3 0.34 11952.54 1973.22
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6 Appendix: Detail of the Extracted
Equations

The detail of the extracted equations, 58 determinis-
tic and 19 Probabilistic linear equations for 80-round
KATANS32 were presented in Table 4 and Table 5, re-
spectively. In all deterministic equations, we ran 500
linearity tests, and then the equations were checked
for more than 2'° distinct random keys to ensure their
correctness. About the probabilistic equations, based
on the [12], to have a reliably estimated probability
with a confidence interval of length 0.05 and confi-
dence level 0.999, the probability of each equation,
was estimated under 1128 pairs of (plaintext, cipher-
text). To do these experiments, the cube attack was
simulated in the CUDA framework on Nvidia GPUs
(GeForce GTX 1080) with 8 GB RAM memory and
2560 CUDA cores. Some of the extracted quadratic
equations were presented in Table 6. It is notable that
we could extract more equations, but they have a
high number of quadratic terms between 22 and 203.
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Table 4: Extracted Deterministic Linear Equations for 80-round KATAN32.

Maxterm Cube Size Equation Out. Bit
FFFFBFFA 29 k0+k19+k30+k61+k67+k76 16
FFFFEFF5 29 k47 +k68+k69+k724+k7741 17
FFFFEFFA 29 k1-+k20+k31+k68+k72 15
FFFFFEFA 29 k14+k6+k10+k19+k20+k25+k29+k31+k36-+k38+k40+k49+k63+k68+k69-+kT74+kT75+k77+k78 11
FFFFFF75 29 k1-+k3+k16+k20+k22+k31+k33+k35+k46+k68-+k70 13
FFFFFFBA 29 k6+4+k25+k36+k73+1 31
FFFFFFD5 29 k1+k3+k9+k20+k22+k28+k31+k33+k39+k68+k73+k76-+1 11
FFFFFFES 29 kO-+k1+k6+k19+k20+k25+k30+k31+k36+k57+k63+k64+k67-+k68+k72+k73+k76+k78+k79+1 13
FFFFFFEA 29 KO-+k3+k114+k19+k22+k33+k41+k67-+k70-+k72+k75+k78+1 10
FFFFFFEC 29 k1-+k4+k7+k8+k17+k20+k23+k26+k27+k31+k34+k36-+k37+k38-+k47+k51+k57+k67+k68-+k71+k73 12
+kT4+k75+k76+k77+1
FFFFFFF1 29 k2+k21+k32+k59+k67+k69-+k70-+k71+k72+k75+1 12
FFFFFFF2 29 k1+k2+k20+k21+k31+k32+k66+k68+k69+k71+k74-+k75-+k77+1 12
S 2 k2-+k21+k32+k69-+k70+k72+k75+k79 12
k2+k21+k32+k59+k69-+k70+k71+k72+k74+k76+k79 31
FFFFEFFE 30 kO-+k4+k10+k19+k23+k29+k30+k34+k40+k57+k61+k64+k67+k68+k69+k70+k72-+k74+k77+k78+k79 11
FFFFFEFE 30 k2+4k15+4+k21+k32+k34+k45+k69+k75+41 8
N 50 kO-+k5+k13+k19+k24-+k30+k32-+k35+k43+k53+k57+k63+k67+k72+k73+k74+k79-+1 11
k2+k21+k32+k57+k69+k75-+k78+k79 12
FFFFFFCF 30 k2+k3+k4+k11+k21+k22+k23+k30+k32+k33+k34+k41+k69-+k70-+k71+k78+1 30
FFFFFFDE 50 k3-+k5+k22+k24+k33-+k35+k70-+k72+k73+1 29
k3+k7+k134+k224k26+k32+k33+k37+k43+k70+k72+k74+k77 9
kO-+k1+k3+k6+k10+k11+k14+k20+k22+k25+k29+k31+k36+k38-+k40+k4a1+k44+k49+k67-+k68+k70 6
FFFFFFEE 30 4 KT34KTTkT8+1
k8-+k27+k38+k75-+k77 7
FFFFFFF3 30 k2+k6+Kk7-+k8+k15+k21+k25+k26-+k27+k32+k34+k36+k37+k38+k45+k69+k73+k74+k75+1 28
FFFFFFF5 30 k3-+k16+k22+k33+k35+k46-+k70+1 26
S 30 k6-+k7+k25+k26+k36-+k37+k65+k73+k74+1 8
kO-+k1+k4+k8+k114+k13+k17+k19+k20+k21+k23+k27-+k31+k32-+k34+k36+k38+k40+k41+k43+k47 7
+k51+k61+k65+k67+k68+k69-+k75+k76+k78-+1
FFFFFFFS 20 k4+k8+k9-+k17+k23+k27+k28+k34+k36-+k38+k39-+k47+k71+k75+k76 27
k1+k3+k10+k20+k22+k29+k31+k33+k40-+k68+k70+k77 8
FFFFFFFA 30 k5-+k18+k24+k35+k37+k48+k72+1 25
FFFFFFFC 30 k6+k10+k11+k12+k19+k25+k29+k30+k31+k36-+k38+k40+k41+k42+kd9+k73+k77+k78+kT79 26
FBFFFFFF 31 kO-+k2+k6+k19+k21+k25+k30+k32-+k36+k60+k67+k69+k73-+k74 29
FDFFFFFF 31 k2+4+k4+k6+k8+k21+k23+k25+k27+k324+k34+k36-+k38+k62+k69+k71+k73+k754+k76-+1 28
FEFFFFFF 31 kd+k6+Kk10+k23+k25+k29+k34+k36-+k40-+k64+k71+k73+k77+k78 27
FF7FFFFF 31 KO-+k6+k8+k12+k19+k25+k27+k30-+k31+k36+k38+k42+k66-+k67+k73+k75+k79+1 26
FFBFFFFF 31 k1+k2+k8+k10+k14+k20+k21+k27+k29+k31+k32+k33+k38-+k40-+k44+k69-+k75+k77 25
FFDFFFFF 31 k3-+k4+k10+k12+k16-+k22+k23+k29+k31+k33+k34+k35-+k40+k42+k46+k71+k77+k79+1 24
k1+k3+k7+k8+k11+kl4+k16+k22+k24+k26+k27+k30+k31+k35+k37+k38+k39+k41+k43+k44+k46 22
FFF7FFFF 31 +k50+k54+k68-+k70+k75+k78
k104+k29+k40+k77+1 23
S 5 k2-+k21+k32+k37+k41+k49+k53+k56+k57+k58+k61-+k62+k63-+k65+k67+k68+k69+k78 15
k3+k10+k22+k29-+k33-+k40-+k70+k75+k77 16
FFFDFFFF . k4-+k23+k34+k71+k74 14
k5-+k12+k24+k31+k35+k42+k72+k77+k79+1 15
S 5 k1-+k14+k20+k31+k33+k44+k68+k79 14
k1+4+k6+k20+k25+k31+k36+k68+k73 13
FFFFDFFF 31 k8+k27+k38+k75-+1 30
k1-+k2+k3+k6+k11+k12+k16-+k20+k21+k22+k25+k30-+k32+k33-+k35+k36+k41+k42+k46-+k51+k55 8
FFFFFTFF 31 +k63+k67+k68+k69+k71+k72-+k73+k76-+k77+k78+1
k12+k31+k42+k79 28
S 5 k1-+k14+k20+k31+k33+k44+k68+1 27
kO+k2+k6+k11+k13+kl15+k21+k25+k26+k34+k36+k38+k41+ka3+k49+k56+k67+k69+k73+k78+1 8
FFFFFFBF 31 k9+k22+k28+k39-+k41+k52+k76+1 23
k3-+k8+k10+k16+k21+k22+k23+k27+k33+k35+k36+k38+k42+k46+k48+k51+k53-+k55+k59-+k66 3
FFFFFFDF 31 4 kT04+k751kTT
k11+4k244+k30+k41+k43+k54+k78+1 22
S 5 kO-+k13+k19+k26+k30+k32-+k43+k45+k56+k67+1 21
k4+k7+k17+k20+k23+k26+k30-+k34+k36+k37+k39-+k47+k49+k50+k60-+k71+k74 1
S . k2+k15+k21+k28+k32+k34+kd5+k47+k58+k69 20
k1-+k12+k14+k20+k25+k27+k33+k40+k42+k46+k55+k57+k59+k68+k70+k79+1 1
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FFFFFFFB 31 k4+Kk17+k23+k30+k34+k36+k47+ k49 k60-+k71+1 19
Table 5. Extracted Probabilistic Linear Equations for 80-round KATAN32.
Maxterm  Cube Equation Out. Prob.
Size Bit
FFFFFFES 29 k5+k24+4k35+4+k53+4+k59+4+k61+4+k65+4+k724+k754+k76 13 0.758
k4+k5+k9+k11+4+k18+4+k23+k24+k28+k30+k34+k35+k37+k39+k41+k43+k48+k49+k53+k57+k61+k63+k65 12 0.771
+k67+k69+k70+k71+k72+k73+k77+1
FFFFFFF4 29 k3+k5-+k9+k22+k24+k28+k33+k35+k39+k53+k65-+k68-+k69+k70+k71+k72+k73+k74-+k79+1 11 0.755
FFFEFFFE 30 k12+4k31+4+k42+k534+k63+k70-+k71+k76+k79 15 0.737
FFFFTFFE 30 k0+k19+4+k30+4+k47+k53+k61+k62+k63+k64+k67+k72+k73+k74+k75+k76 16 0.767
FFFFEFFE 30 kO0+k5+k10+k15+k16+k19+k24+k29+k30+k34+k40+k45+k46+k49+k61+k67+k68+k70+k71+k72+k74 31 0.748
+k754+k76+k77+k79
FFFFFTFE 30 kO+k1+4k3+k5+k6+k16+k19+k20+k22+k24+k25+k30+k31+k33+k36+k46+k53+k63+k67+k68+k70+k72 13 0.758
+k73+k74+k75-+k76-+1
FFFFFBFE 30 kO-+k3+k4+k5+4+k144+k18+k19+k21+4+k22+4+k23+k24+k30+k34+k35+k37+k40+k44+k48+k514+k67+k69+k70 30 0.745
+k71+k72+k73+k74+k77+1
FFFFFEFE 30 kO+k3+k7+k8+k19+k22+k26+k27+k30+k33+k37+k38+k70+k73+k74+k75-+k77 27 0.758
FFFFFFE9 29 kO+k1+k3+k4+k6+k7+k11+k13+k22+k23+k25+k26+k31+k32+k33+k34+k36+k37+k38+k39+k41+k43+k45s 11 0.747
+k50+k63+k67+k68+k69+k70+k73+k74+k75+k78
FFFFFF6F 30 k1+k2+k5+k6+4+k16+4+k19+4+k20+4+k21+4k244k25+k31+4+k32+4k36+4k38+k45+k46+4k49+4+k57+k61+4+k634+k654+k67 31 0.756
+k68+k69-+k70+k73+k74+k75
FFFFFFBE 30 k1+4+k2+4k3+k7+k12+k21+k22+k26+k32+k33+k37+k39+k42+k50+k65+k67+k68+k69+k70+k73+k74+k79+1 26 0.742
FFFFFFF6 30 k1+k9+k10+k13+k20+k24+k27+k28+k29+k31+k32+k39+k40+k46-+k53+k54+k57+k65-+k68+k69+k73 27 0.764
+k75+k76-+k77T+k78+k79+1
TFFFFFFF 31 k56+k66+k70+k74 14 0.741
BFFFFFFF 31 k3+k16+k22+k33+k35+k46+k48+k66+k70+1 13 0.751
DFFFFFFF 31 k7+k26-+k37-+k42-+k46-+k48-+k50-+k58-+k60-+k64-+k68+k78 12 0.87
FEFFFFFF 31 k6+k8+k10+k13+k25+4k27+k29+k32+k33+4k34+k36+k38+k40+k43+k62+k64+k66+k70+k73+k744+k754+k77 6 0.66
kO+k19+k30+k67+k70+k72+k74+k76+1 7 0.877
FFFFBFFF 31 k5+4+k7+k8+k9+k24+k26+k27+k28+k31+k35+k37+k38+k39+k40+k57+k71+k72+k76+k77+k79 10 0.747
Table 6. Extracted Quadratic Equations for 80-round KATAN32.
Maxterm Equation Out.
Bit
F7FFFFFF kO+k2+4k4+k19+4+k21+k23+4+k30+4k32+4+k34+k544+k584+k62+4+k67+k69+k71+4+k76+4+k54.k76+k58. k70-+k58.k76 30
+k64.k76
FFFFFF5F kO+k1+k4+4k5+k6+k7+k9+k10+k13+k19+k23+k24+k25+k26+k28+k29+k30+k31+k32+k34+k35+k36+k37 29
+k40+k43+k50+k59+k67+k68+k71+k72+k4.k79+k10.k74+k23.k79+k29.k74+k34.k79+k40.k74-+k51.k79
+k71.k79+k74.k77+k76.k79+1
BFFFFFFF k3+k16+k22+k33+k35+k46+k48+k66-+k70+k2.k54+k2.k58+k3.k54+k3.k58+k16.k54+k16.k58+k21.k54 13
+k21.k58+k22.k54+k22.k58+k32.k54+k32.k58+k33.k54+k33.k58+k35.k54+k35.k58+k46.k54+k46.k58+k54.k69
+k54.k70+k58.k69+k58.k70+1
FFFFFFE6 k5+4+k24+k35+k53+k59+k61-+k65-+k72-+k75+k76-+k0.k65+k19.k65+k30.k65+k65.k67 13
FFFFFFE6 k4+k54+k9+k11+4+k18+k23+4k24+4k28+k30+k34+4k35+4k37+k39+k41+k43+4k48+k49+k53+k574+k61+4+k63+k65 12
+k67+k69+k70+k71+k72+k73+k77+k2.k744k7.k74+k21.k74-+k26.k74+k32.k74+k37.k744+k57.k74+k69.k74
+k74.k754+k74.k76+41
FFFFFF6F k1+k2+k5+4+k6+k164+k19+k20+k21+k24+k25+k31+k32+k36+k38+k45+k46+k49+k57+k61+k63+k65+k67 31
+k68+k69+k70+k73+k74+k75+k68.k75+k75.k76
FFFFFFF4 k3+k5+k9+4+k22+4k24+k28+k33+k35+k39+k53+k65+k68+k69+k70+k71+k72+k73+k74+k79+k4.k9+k4.k28 11
+k4.k39+4+k4.k76+k9.k234+k9.k34+k9.k71+k9.k74+k23.k28-+k23.k39+4+k23.k76-+k28.k34+k28.k71+k28.k74
+k34.k39+k34.k76+k39.k71+k39.k744+k71.k76+k74.k76-+1
EFFFFFFF kO+k2+4+k6+4k19+4k21+k25+4+k30+k32+4+k36+k60+k67+k69+k73+k78+4k52.k74+k56.k68+k56.k74+k62.k74 31
FFEFFFFF k1+k3+k4+k5+k124+kl14+k16+k18+k20+k22+k23+k24+k34+k37+k42+k44+k46+k48+k68+k70+k71+k79 23
+k4.k72+k10.k68+k10.k78+k23.k72+k29.k68+k29.k78-+k34.k72+k40.k68+k40.k78+k68.k77+k71.k72+k77.k78
TFFFFFFF k56+k66+k70+k74+k0.k524k0.k564+k1.k52+4+k1.k56-+k14.k52-+k14.k56-+k19.k52-+k19.k56-+k20.k52-+k20.k56 14
+k30.k52+k30.k56+k31.k52+k31.k56+k33.k52+k33.k56+k44.k52+k44.k56+k52.k67+k52.k68+k56.k67+k56.k68
FFFFFFE9 k2+4+k11+k21+k30+k32+k41+k63+k66+k69+k724+k75+k78+k79+k7.k72+k7.k74+k26.k72+k26.k74-+k37.k72 12
+k37.k74+k72.k74+4+1
FFFFFFF6 k1+4+k9+k10+k13+4+k20+k24+k27+k28+4+k29+k31+k32+4+k39+k40+k46+k53+k544+k57+k65+k684+k69+k73+k75 27

+k76+k77+k78+k79+k3.k4+k3.k23+k3.k34+k3.k71+k3.k76+k4.k224+k4.k33+k4.k70+k22.k23+k22.k34
+k22.k714+k22.k76+4+k23.k33+k23.k70+k33.k34+k33.k71+k33.k76+k34.k70+k70.k71+k70.k76+1
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