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A B S T R A C T

An AES-like lightweight block cipher, namely Zorro, was proposed in CHES

2013. While it has a 16-byte state, it uses only 4 S-Boxes per round. This weak

nonlinearity was widely criticized, insofar as it has been directly exploited in all

the attacks on Zorro reported by now, including the weak key, reduced round,

and even full round attacks. In this paper, using some properties discovered

by Wang et al. we present new differential and linear attacks on Zorro, both

of which recover the full secret key with practical complexities. These attacks

are based on very efficient distinguishers that have only two active S-Boxes

per four rounds. The time complexity of our differential and linear attacks are

255.40 and 245.44 and the data complexity are 255.15 chosen plaintexts and 245.44

known plaintexts, respectively. The results clearly show that the block cipher

Zorro does not have enough security against differential and linear attacks.

© 2014 ISC. All rights reserved.

1 Introduction

B lock ciphers are the most widely-studied prim-
itives in the area of symmetric cryptography.

Among different types of attacks, differential crypt-
analysis [1] and linear cryptanalysis [2] can be regarded
as two of the oldest and most important statistical
methods to analyze the security of the block ciphers.

Zorro is a newly proposed lightweight block ci-
pher whose design is based on AES [4]. It is basically
designed with the aim of increasing the resistance
against side-channel attacks, while still remaining a
lightweight block cipher. In spite of its 16-byte state,
the SubByte layer of Zorro uses only 4 similar S-Boxes
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in the first row, which are different from AES S-Boxes.
Similar to LED-64 [5], key addition layer in Zorro is
applied only after each four rounds. Instead, an Add
Constant layer is used in every round with round-
dependent constants. Besides, Shift Row and Mix Col-
umn layers are exactly the same as AES ones.

For both differential and linear cryptanalysis, de-
signers of Zorro have evaluated the security of the
cipher and found a balance between the number of in-
active S-Boxes and the number of freedom degrees for
differential or linear paths. The designers concluded
that 14 and 16 rounds are upper bounds for any non-
trivial differential or linear characteristics, respectively.
Furthermore, they show that in the single key model
of Zorro, a 12 round meet-in-the-middle attack is the
most powerful attack. Therefore, to meet the security
requirements, they choose 24 rounds for Zorro [4].

The main idea in designing Zorro was using the
partial nonlinear layers: only 4 S-Boxes for a 16-byte
state. That’s why Zorro has attracted the attentions
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of many cryptanalysts during the past year which
resulted in some attacks even on the full version of
the cipher. The first one, proposed by Guo et al. is
a key recovery attack on the full-round version of
the algorithm, but it works only for 264 weak keys
of the whole key space 2128 [6]. This attack exploits
this unique property of Zorro twice in a two-stage
attack: finding an equivalent description that does not
have constants in the rounds, and then, launching an
internal differential attack.

In the next attack, Wang et al. presented a differ-
ential key recovery attack and a linear distinguisher
for full-round Zorro [7]. They observed an interesting
property for the Zorro’s MixColumn: the forth power
of the mixcolumn matrix is equal to the identity ma-
trix. Using this property of Zorro along with its weak
nonlinearity, they found differential and linear dis-
tinguishers for Zorro in which only four S-Boxes are
activated per four rounds. The resulted differential
cryptanalysis can recover the randomly chosen key
with a time complexity of 2108 and data complexity of
2112.4 chosen plaintexts, and linear distinguisher use
2105.3 known plaintexts to successfully distinguish it
from the random permutation.

Also, Soleimany proposed a probabilistic variation
of slide attack and applied it to 16 rounds of Zorro
(out of 24 rounds) [8]. This attack challenges the key
schedule approach in Zorro (and also LED [5]) in
which all subkeys are equal to the master key of the
algorithm, and this similarity is compensated by use of
round-dependent constants. Probabilistic slide attack
shows that this strategy does not necessarily make
the cipher secure against the self-similarity attacks.
Their attack requires 2123.62 known plaintexts with the
time complexity of 2123.8 encryption or 2121.59 known
plaintexts with time complexity of 2124.23 encryption.

Finally, Bar-On et al. briefly reported their new
results on Zorro in FSE 2014 rump session which
are an improvement of Wang’s differential and linear
attacks [9]. As they stated, the gain of their attack
is not in the probability of distinguishers, since the
new distinguishers still have two active S-Boxes per
two rounds (i.e. one S-Box per round in average which
is similar to that of Wang’s attack). Instead, they
achieved some improvements in the key recovery phase.
Consequently, a differential attack with time and data
complexity of 298 and 295, and a linear attack with
time and data complexity of 288 and 283.3 can be
obtained. As we explain more in the next subsection,
they could improve their work further and achieved
more efficient distinguishers.

1.1 Our Contributions

In this paper, we break the full-round version of Zorro
by using differential and linear cryptanalysis. Along-
side the weak nonlinearity of Zorro (i.e. the limited
number of S-Boxes in each round), we use the fact dis-
covered in [7] that the forth power of MDS matrix is
equal to the identity matrix. We propose very efficient
iterated differential characteristics and linear trails
that have only two active S-Boxes per four rounds. Us-
ing the 23, 22 and 21-round differential characteristics
and linear trails, we can propose key recovery attacks
for any randomly chosen secret key of full-round Zorro.
Differential cryptanalysis has a time complexity of
255.40 full round encryption and data complexity of
255.15 chosen plaintexts. Also linear cryptanalysis has
a time complexity of 245.44 full round encryption and
data complexity of 245.44 known plaintexts. The mem-
ory complexity of both differential cryptanalysis and
linear cryptanalysis is 217. Table 1 summarizes the
complexities of existing attacks and ours. Our results
show that the theoretical security of the full-round
Zorro evaluated by designers does not hold up in prac-
tice.

We have also simulated our attacks on round-
reduced variants of Zorro (up to 16 rounds for differ-
ential attack and 20 rounds for linear attack). The
simulations results show that the attack complexities
and success rate completely coincides the theoretically
expected values.

Very recently, some days after that we archived our
results on IACR ePrint Archive, Bar-On et al. pub-
lished their improved attacks on Zorro in IACR ePrint
Archive [10], that made use of different differential
characteristics and linear trails from what they previ-
ously announced in FSE 2014 Rump session. It must
be mentioned that their linear attack has same time,
data and memory complexities as ours, because of
using the same linear trails and same key recovery
method. Also, their differential attack uses the same
differential characteristics as ours. But, by using an
improved key recovery method, their differential at-
tack has better time and data complexities.

1.2 Outline

This paper is organized as follows: Section 2 defines
some definitions and abbreviations used in the pa-
per. Section 3 presents a brief description of Zorro. Sec-
tion 4 represents the outline of the differential attack
on full-round Zorro with all details and evaluates its
complexities. Furthermore, the outline and details of
linear attack and evaluation of its complexities are
presented in Section 5. Section 6 shows results and
the complexity of our practical attacks to Zorro. Fi-
nally, Section 7 concludes this paper.
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Table 1. Summary of cryptanalytic results on Zorro

Attack Type Rounds attacked Time Data Memory Ref.

Differential Full-round* 254.3 254.3 CP 254.3 [6]

Statistical Slide 16 (out of 24) 2123.8 2123.62 CP - [8]

Statistical Slide 16 (out of 24) 2124.23 2121.59 CP - [8]

Linear

(Distinguisher)
Full-round 2105.3 2105.3 CP - [7]

Differential Full-round 2108 2112.4 CP 232 [7]

Differential Full-round 298 295 CP - [9]

Linear Full-round 288 283.3 KP 280 [9]

Differential Full-round 255.40 255.15 CP 217 Sec. 4

Linear Full-round 245.44 245.44 KP 217 Sec. 5

Differential Full-round 245.40 244.40 CP 219** [10]

Linear Full-round 245 245 CP 217 [10]

* This attack works only for 264 keys of the whole key space 2128.

** The memory complexity is estimated 210 in [10]. However, they need to save

DDT with its inputs for every index in searching level for key recovery method.

CP: Chosen Plaintext, KP: Known Plaintext.

2 Definitions and Notations

The main notation and definitions used in the paper
are listed as bellow.

• DP(α → β) Differential probability of Zorro S-
Box with input difference α and output difference
β.

• Pnr Differential probability for a n-round differ-
ential characteristic of Zorro.

• PPRP Differential probability for a pseudo ran-
dom permutation.

• C(α, β) The linear correlation of Zorro S-Box
with input mask α and output mask β.
• cnr Linear correlation for a n-round linear trail

of Zorro.
• cPRP Linear correlation for a pseudo random

permutation.

Differential Distribution Table (DDT): For
an S-Box, the Differential Distribution Table is a
table which the rows represent ∆X values and the
columns indicate ∆Y values, and each element of the
table represents the number of occurrences of the
corresponding output difference ∆Y value given the
input difference ∆X.

Linear Approximation Table (LAT): For an
S-Box, the Linear Approximation Table is a table
which the rows represent ΓX values and the columns
demonstrate ΓY values, and each element of the table
represents the number of matches between the linear

equation represented as sum of the input bits speci-
fied by ΓX and the sum of the output bits specified
by ΓY minus 2n−1, where n shows the number of bits
for input of S-Box. Hence, dividing an element value
by 2n gives the correlation for the particular linear
combination of input and output bits.

Signal to Noise Ratio (SNR or S/N ): The Ra-
tio between the number of right pairs and the aver-
age count in counting scheme of differential attack is
called signal to noise ratio of counting scheme and is
denoted by S/N.

3 A Brief Description of Zorro

The block cipher Zorro has a 128-bit key and a 128-bit
block size. It has 24 rounds which is divided into 6
steps of 4 rounds each.

As in AES, the internal state in Zorro is a 4×4
matrix of bytes, and every round consists of four
transformations:

(1) SB∗ is the S-Box layer where 4 similar S-Boxes,
which are different from AES S-Boxes, are ap-
plied to the 4 bytes of the first row in the state
matrix.

(2) AC is adding (XORing) the round constant to
the state martix. Specifically, in round i, the
four constants (i, i, i, i� 3) are XORed to the
four bytes of the first row of state matrix. By
� we mean left shift.
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(3) SR is similar to AES ShiftRow.
(4) MC is similar to AES MixColumn.

The key schedule of Zorro is similar to that of LED
block cipher [5]. Before the first and after each step
(i.e. each four rounds), the master key is XORed to
the state.

As Wang et al. argued in [7], by focusing on MC
layer used in Zorro, we will see an exclusive feature of
this layer. The forth power of MC matrix equals the
identity matrix.

M =


02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

⇒M4 =


01 00 00 00

00 01 00 00

00 00 01 00

00 00 00 01

 (1)

Since only 4 S-Boxes are applied to the first row in
each round, combined with this feature of MC matrix,
iterated differential characteristics and linear trails
are found for one step of Zorro.

4 Differential Cryptanalysis

In this section, we first find some iterated differential
characteristics for one step of Zorro, which have a high
probability. The independence of round functions is
a conventional assumption in differential (and linear)
cryptanalysis of block ciphers [1, 2]. For Zorro, the
secret key is XORed to the state every four rounds.
Furthermore, 4 rounds of Zorro can be seen as a step
that has no constants in the rounds, if we add one
constant to the input and one to the output of the
step [6]. Thus, the assumption that the step functions
are independent is more rational and realistic than
the one which the round functions are independent.
Using this assumption, we will construct three groups
of distinguishers for 23, 22 and 21 rounds of Zorro.
The first distinguisher is used in the first phase of the
key recovery attack to reduce the key space of 2128 to
296. Having recovered 32 linear relations between bits
of the key in the first phase, we use the second and
third distinguishers in the next two phases to recover
64 more relations. Finally, the remaining candidates
of key can be retrieved by an exhaustive search.

4.1 Iterated Differential Characteristic

Our strategy to find an efficient iterated differential
characteristic for one step of Zorro with the minimum
number of active S-Boxes is to exploit the maximum
flexibility in the input difference. This is as follows:

• Set the difference of the first row equal to zero
to prevent the S-Boxes of the first round being

active.
• Set the differences of the third and fourth columns

equal to that of the first and second ones, respec-
tively. This bypasses the influence of SR trans-
formation and makes the MC property (1) valid
for a 4-round Zorro.

• Do not impose any more conditions on the re-
maining six bytes now and let their dependency
be utilized in minimizing the number of active
S-Boxes in the next rounds.

We can extend this input difference to four rounds
with only two active S-Boxes as shown in Figure 1. In
this figure, the AC transformation is omitted, since
it does not have any effect on the differentials. The
active S-Boxes are shown in gray whose difference
value is written inside. For attaining such a differen-
tial characteristic, some conditions in MC transfor-
mations between states (#3, #4), (#6, #7), (#12,
#1), as well as two conditions for SB∗ transforma-
tion between states (#10, #11) must be satisfied. All
these conditions are presented in detail in Appendix
B, which results in the following representation of all
the variables based on A and B.

C = A⊕B D = A⊕B E = 2A⊕B

F = A⊕ 2B G = 2A⊕ 3B H = 3A⊕ 2B

I = A⊕ 5B J = 5A⊕B K = 3A⊕ 4B

L = 4A⊕ 3B M = A⊕ 8B N = 8A⊕B

O = 13(A⊕B) P = 13(A⊕B) Q = 10A⊕B

R = A⊕ 10B S = 20A⊕ 4B T = 4A⊕ 20B

U = 6A⊕ 31B V = 31A⊕ 6B W = 17A⊕ 5B

X = 5A⊕ 17B Y = 7A⊕ 24B Z = 24A⊕ 7B

Now, we focus on the SB∗ transformation of the
fourth round. We need that for all the four active S-
Boxes, each output difference equals its own input
difference. Suppose this happens with the probability
of p. Then,

p = DP (S → S)2 ×DP (T → T )2 (2)

We will try to maximize p. Also, we still have 2 degrees
of freedom, A and B. So, we can set one of S or T to
zero and confine the number of active S-Boxes to two,
per four rounds. Let

S = 0⇒ B = 5A

or

T = 0⇒ A = 5B

(3)

Hence, for the best probability of the proposed 4-round
differential characteristic

P4r = max
1≤x≤255

DP (x→ x)2 (4)

According to DDT of S-Box, the maximum probabil-
ity is equal to P4r = (6/256)2 = 2−10.83 and there are
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Figure 1. Iterated differential characteristic of one step of Zorro.

three choices for x to achieve this value. Considering
the two cases of S = 0 or T = 0, there would be, in
total, six options for the input difference to construct
a differential characteristic with this maximum prob-
ability. These six differential characteristics are listed
in Table 2, in which every row shows the difference val-
ues A, ..., Z corresponding to one characteristic. Fur-
thermore, similar to [7], we can replace the difference
of state #1 by that of #4, #7 or #10, to get new sets
of iterated differential characteristics.

Table 2. Six iterated differential characteristics for one step

Number A B C D E F G H I J K L M

1 136 158 22 22 149 175 178 164 88 0 205 178 20

2 158 136 22 22 175 149 164 178 0 88 178 205 178

3 92 55 107 107 143 50 225 138 183 0 56 225 255

4 55 92 107 107 50 143 138 225 0 183 225 56 225

5 22 78 88 88 98 138 254 166 123 0 25 254 80

6 78 22 88 88 138 98 166 254 0 123 254 25 254

Number N O P Q R S T U V W X Y Z

1 178 254 254 185 51 0 123 85 136 0 35 42 131

2 20 254 254 51 185 123 0 136 85 35 0 131 42

3 225 169 169 89 145 0 234 168 92 0 93 113 228

4 255 169 169 145 89 234 0 92 168 93 0 228 113

5 254 213 213 210 204 0 247 79 22 0 140 168 58

6 80 213 213 204 210 247 0 22 79 140 0 58 168

4.2 Key recovery

The full key recovery attack on full-round Zorro pro-
ceeds in three phase. In each phases, we recover 32
linear relations between bits of the secret key.

4.2.1 Phase 1. Recovering 32 Relations
Between Bits of Key.

Using each of the six 4-round iterated differentials
introduced in Table 2, we can construct a 23-round (=
5 steps + 3 rounds) differential characteristics with
probability of

P23r = (P4r)5 × P3r = 2−10.83×5 × 1 = 2−54.15 (5)

Note that, the last three rounds of this characteristics
have no cost in probability, i.e. P3r = 1. Since P23r is
too far from that of a Pseudo Random Permutation,
PPRP = 2−128, such a 23-round distinguisher can be
successfully used to distinguish the correct key from
the wrong key in a 24-round attack, as Biham et al.
thoroughly discussed in [1] for key recovery attack on
DES.

In the following, we explain a key recovery attack
on full round Zorro which extracts 32 bits information
of the secret key K. Similar to [7], a structural attack
which merges all the six differential characteristics
simultaneously requires less data here. We also change
the order of MC and AK in the last round where the
equivalent key K ′ = MC−1(K) is added before MC.
In fact, this attack recovers 32 bits of the first row of
K ′, each of which, is a linear function of K, in two
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(potentially simultaneous) procedures: In the first one,
we find the second and fourth bytes of first row by
using iterated differential characteristics respected to
No. 1, 3 and 5 of Table 2; In the other one, the first
and third bytes are recovered respected to No. 2, 4
and 6 of Table 2. At the end, we will come up with
296 key candidates for the whole 128-bit key.

Step 1. Choosing the Plaintext Pairs
Our Attack is a structural chosen plaintext at-
tack, where we choose some structures and all
the plaintexts in every structure are queried from
the encryption oracle to get the corresponding
ciphertexts. Suppose that we construct M struc-
tures which, in total, give N differential pairs
with the difference according to #1. The pre-
cise relation between M and N can be found in
Appendix A and discussed more in Section 4.3.

Step 2. Filtering the Ciphertext Pairs
Partially decrypt all the N ciphertext pairs gen-
erated in Step 1 to get their corresponding differ-
ence in the output of SB∗ of round 24. Keep only
those pairs that satisfy the condition in the third
row of #10 as well as the two zero differences in
the first row (see Figure 2). For a pseudo random
permutation, this happens with the probability
of 2−112. Whereas, for Zorro this probability is
2−54.15. Therefore, about N × 2−54.15 pairs of
data remain, which can be used to distinguish
the right key from the wrong keys.

Step 3. Recovering 16 bits of K ′

Guess the two bytes of the first row of K ′ corre-
sponding to those two active S-Boxes, and par-
tially decrypt the remaining pairs to get their
differences in the first row of the input of round
24. If it is consistent with that of #10, increase
the corresponding counter of the guessed key.
There are N × 2−54.15 differential pairs to dis-
tinguish the right key from the wrong keys. An
incorrect key is suggested with a probability of
2−16 while it is sufficiently high for the right
key. Since for each triple of subkeys and a ci-
phertext pair, which satisfy condition of Step 2,
there are in average 7.82 key candidates for the
desired input/output differences, so S/N ratio
for this attack is about 216/7.82 ' 210 which is
significantly high and guarantees that the right
key will be suggested with a high probability [1].
Utilizing the probability differences between the
correct key and incorrect keys, we can extract
the correct candidates for secret key. By this
procedure we find two bytes of K ′ in the first
row. A similar procedure can be repeated for
the other two active S-Boxes to find the other
two bytes in the first row.

4.2.2 Phases 2 & 3. Recovering the 96
Remaining Key Bits.

If we replace the state of #1 by #4 or #7 in Figure 1,
we will come up with another 6 iterated differential
characteristics, which can be used to construct 22 or
21-round differential characteristics with the same
probability of P22r = P21r = 2−54.15. So, we need the
same number of differential pairs (N) to distinguish
the right key from the wrong keys.

The steps of Phase 2 are similar to that of Phase
1 with two minor differences: In Step 2, the cipher-
texts differences are filtered based on their partially
decrypted values in the output of SB∗ transformation
in round 23 (rather than 24). Thanks to the 32 bits
of K ′ retrieved in Phase 1, this can be performed. In
Step 3, We need to guess 16 bits of K ′′, where K ′′ =
MC−1(SR−1(K ′ with all bits 0 in the first row)).

In this phase, we partially decrypt all the ciphertexts
in the structure for one round. But, in AC layer, in
addition to round constant, we add bitwisely the first
row of K ′ which was found in Phase 1, and continue
the rest of the attack similar to Phase 1. We guess all
the 216 keys involved in active S-Boxes, and repeat
this procedure once more to get the other 216 key bits.
So, we can finally find 32 bits of the first row of K ′′.

Also in Phase 3, we make use of 21-round differen-
tials and find the third 32 bits of K ′′′, where K ′′′ =
MC−1(SR−1(K ′′ { with all bits 0 in the first row })).
We do similar to Phase 2, except that at first all the
ciphertexts in the structure are partially decrypted
for two rounds, and in AC layers, in addition to round
constant, we add the first row of K ′ in round 23, and
the first row of K ′′ in round 22.

Finally, by using the information retrieved from K ′,
K ′′ and K ′′′, we end up with only 232 candidates for
the 128-bit secret key K. With an exhaustive search
on these 232 key, we can find the whole 128 bits of
secret key.

4.3 Complexities

(1) Data Complexity
For both attacks procedures presented in Phase
1, we need in total 2N differential pairs. Accord-
ing to Appendix A, we have x = 6 hence, each
structure has 26 plaintexts and 2N = 6× 25M
where M is the number of structures. So the
Data complexity of this phase would be D1 =
2/3×N ' 253.57.

The other two phases require also D2 = D3 '
253.57 chosen data, so for the full key recovery
attack we need about D = 3 × 253.57 ' 255.15

chosen plaintexts.
(2) Time Complexity
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Figure 2. Differential characteristics on 23-round Zorro

For Phase 1, in Step 1 we need to produce the
ciphertext for chosen plaintexts that it takes
D1 full-round Zorro, and in Step 2, we need to
partially decrypt each remaining pair for less
than one round. Therefore, it takes about N ×
2−54.15×1/24 full-round Zorro encryption. Step 3
requires less than one round encryption for N ×
2−54.15 × 216 times. Thus, the time complexity
for finding 32 bits of K ′ is about

T1 = D1 + 2×N × 1/24× (1 + 2−54.15 × 216)

' D1 + 1/12×N

full-round Zorro encryption. As described in [1]
and [3], for a differential attack with differential
characteristics with probability of p, about c/p
differential pairs are needed to distinguish the
right key from the wrong keys, where c is a small
constant. These all results thatN is smaller than
254.15 and time complexity is about T1 = 253.74

full-round Zorro encryption.
Similar to what explained for Phase 1, for the

other two phases we have:

T2 = D2 +N × 1/24× (1 + 2× (1 + 2−54.15 × 216))

' D2 + 1/8×N

T3 = D3 +N × 1/24× (2 + 2× (1 + 2−54.15 × 216))

' D3 + 1/6×N

All in all, the time complexity for the key re-
covery attack on full-round Zorro would be T =
T1 + T2 + T3 + 232 = D + 3/8×N = 255.40

(3) Memory Complexity
The memory required for all the three phases
of the attack is used to keep the counters of the
two 16-bit keys. For the simultaneous attack

procedures in three phases, it is M = 2× 216 =
217 counters. Note that, the memory required
for keeping each structure pairs is negligible. So,
the memory complexity is independent of N .

5 Linear Cryptanalysis

The procedure of linear attack is very similar to that
of differential attack, presented in Section 4. We first
try to find iterated linear trails with a high correlation
for one step of the algorithm. Then, we make use
of this trail to construct 23, 22 and 21-round linear
distinguishers, which are used for a key recovery attack
on the full-round Zorro.

5.1 Iterated Linear Trail

Same as the way of finding iterated differential char-
acteristics in Section 4.1, we can find iterated linear
trails for Zorro. There exists some iterated linear tri-
als for one step of Zorro, whose patterns are identical
to that of differential characteristics given in Figure 1,
where the gray bytes are the ones with a non-zero
mask. For satisfying conditions of MixColumn trans-
formation between states of (#3, #4) , (#6, #7) and
(#12, #1), we use 3 lemmas about the correlation ma-
trixes of boolean functions in [11]. All these conditions
are presented in detail in Appendix C, which results in
the following representation of all the variables based
on Q and R.
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A = 10Q⊕R B = Q⊕ 10R C = 13Q⊕R

D = 13Q⊕R E = Q⊕ 8R F = 8Q⊕R

G = 3Q⊕ 4R H = 4Q⊕ 3R I = Q⊕ 5R

J = 5Q⊕R K = 2Q⊕ 3R L = 3Q⊕ 2R

M = 2Q⊕R N = Q⊕ 2R O = Q⊕R

P = Q⊕R S = 20Q⊕ 4R T = 4Q⊕ 20R

U = 7Q⊕ 24R V = 24Q⊕ 7R W = 17Q⊕ 5R

X = 5Q⊕ 17R Y = 6Q⊕ 31R Z = 31Q⊕ 6R

Since the only nonlinear parts involved in this trail
are the active S-Boxes of state #10, the absolute
correlation |c| of this four round trail is

|c| = C(S, S)2 × C(T, T )2 (6)

Again, we have 2 degrees of freedom, Q and R to
maximize |c|. So we can set one of S or T to zero.

S = 0⇒ R = 5Q

or

T = 0⇒ Q = 5R

(7)

which in two cases yields

|c4r| = max
1≤x≤255

C(x, x)2. (8)

After searching the LAT of Zorro S-box, the largest
linear correlation occurs when x = 136. With this
setting the absolute of the corresponding correlation
would be |c4r| = (28/128)2 ' 2−4.39. Also, we can
find new linear trails with the same correlation, if we
change the relative location of #1 with #4, #7 or #10.
In Table 3, each row shows the mask values A, ..., Z
corresponding to one of the above-mentioned linear
trail.

Table 3. Two iterated linear trails for one step

Number A B C D E F G H I J K L M

1 177 97 227 227 191 126 130 126 34 0 126 251 160

2 97 177 227 227 126 191 126 130 0 34 251 126 52

Number N O P Q R S T U V W X Y Z

1 52 133 133 234 234 0 136 95 37 0 170 163 234

2 152 133 133 234 234 136 0 37 95 170 0 234 163

5.2 Key Recovery

Similar to that of differential attack, the full key re-
covery attack on full-round Zorro proceeds in three
phase. In each phases, we recover 32 linear relations
between bits of the secret key.

5.2.1 Phase 1. Recovering the 32 Bits of Key.

Using each of the two 4-round iterated linear trails
in Table 3, we can construct a 23-round (= 5 steps +
3 rounds) linear trail with the correlation of

|c23r| = |c4r|5 × |c3r| = 2−4.39×5 = 2−21.93 (9)

This 23-round linear trail is similar to the 23-round dif-
ferential chararcteristic given in Figure 2 Since |c23r|
is much larger than that of a Pseudo Random Per-
mutation, |cPRP | = 0, such a 23-round distinguisher
can be successfully used to distinguish the correct key
from the wrong key in a 24-round attack, as discussed
thoroughly by Matsui in [2] for cryptanalysis of DES.

In the following, we explain a key recovery attack
on full round Zorro which extracts 32 bits of the first
row of K ′, in two sequential procedures: First, we
find the second and fourth bytes of the first row of
K ′ by using iterated linear trails respected to No. 1
of Table 3. Then, first and third bytes of key respected
to No. 2 of Table 3 gets found.

With the assumption that the secret key is ran-
domly chosen from the whole key space, the amount
of plaintext/ciphertext pairs required for this attack
would be NL = 1/|c23r|2 ' 243.85 as discussed in [2]
and [3]. The steps of this phase of attack are as follows:

Step 1. Data Collection
Ask the corresponding ciphertexts of NL ran-
domly generated plaintexts from the encryption
oracle.

Step 2. Data Processing
Compute

α = Γ#1 · P ⊕ Γ#10,rows 2,3,4 ·C ′rows 2,3,4 (10)

where P is the plaintext, C ′ is the one-round
partially decrypted ciphertext, · represent the
dot product, and Γ#n is the linear mask for state
#n in No.1 linear trail given in Table 3.

Step 3. Recovering the second and fourth bytes of K ′

Guess the second and fourth bytes of K ′, par-
tially decrypt the ciphertext to get the first row
of C ′ for every 216 guesses. Compute

β = Γ#10,row 1 · C ′row 1 (11)

If α = β, increase the counter of the correspond-
ing guessed key.

Step 4. Recovering the first and third bytes of K ′

Repeat Steps 2 and 3 for these two bytes of key.

At the end of this procedure, all the four bytes of K ′’s
first row are introduced.

In Step 3 we use a matrix with size of 256 × 256,
and index of (i, j) matrix shows the sum of mask for
S-Box input which its output equals to bitwisely sum
of i and j. For each active S-Box we take the x-th
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row of the matrix, that x is equal to output of S-Box
in partially decrypted ciphertext. We have only two
active S-Boxes, So, the first arrow is for 8 bits of key
for the first active S-Box, and the second arrow is for 8
bits of key for the second active S-Box. In each arrow
j’th bit shows sum of mask for S-Box input which
output is j bitwisely added to partially decrypted
ciphertext. With this method, we can check for all 216

keys, whether β equals to α or not, with a negligible
time for each pliantext-ciphertext pairs.

5.2.2 Phases 2 & 3. Recovering the 96
Remaining Key Bits.

Look like full-key recovery attack in Phase 2 and
3 of differential cryptanalysis , we use 22 and 21-
round linear distinguishers with c22r = c21r = 2−21.93,
which works with an amount of NL = 243.85 known
plaintexts. After reducing the key candidates to 232,
we perform an exhaustive search on the key candidates
to get the secret key.

5.2.3 Complexities

(1) Data Complexity
As mentioned before, for each phase we need
about NL ' 243.85 known plaintexts.

(2) Time Complexity
We actually separated Steps 2 and 3 to avoid
some unnecessary repetitions in attack compu-
tations in practice. Though this two steps have
a negligible time in total, compared to Step 1,
which must produce ciphertext for a random
plaintext. So, time complexity for any of these
phases equals to T1 = T2 = T3 = NL ' 245.44.

(3) Memory Complexity
Since, the procedure of recovering the two 16 bits
of first row of K ′ are performed in parallel, it is
necessary to have enough memory for each 2×
216 keys, which is independent of NL. Another
memory complexity is to saving 256× 256 bits
matrices. All needed memory is equal to 217

counters.

All in all, the time, data and memory complexity
for the proposed key recovery attack on full-round
Zorro are 245.44, 245.44, and 217, respectively.

6 Practical Results

We have experimentally verified the efficiency of the
proposed attacks by simulating some variants by a
C++ code. As described in Section 3 and Section 4,
the complete key is recovered in 3 phases, in each phase
we find 32 linear equations, and then find the right
key from 232 remaining candidates with an exhaustive
search. We precisely implemented the 3 phases of the
attack, excluding the exhaustive search of the last 232
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Figure 3. Theoretical and practical results for differential
cryptanalysis

10 15 20 25
10

15

20

25

30

35

40

45

50

rounds

lo
g 2 (

T
im

e 
C

om
.)

 

 

Theoritical
Practical

10 15 20 25
10

15

20

25

30

35

40

45

50

rounds

lo
g 2 (

D
at

a 
C

om
.)

 

 

Theoritical
Practical

Figure 4. Theoretical and Practical results for linear crypt-
analysis

remaining candidates.

In particular, this attack can be well regarded as the
first successful practical attack on full-round Zorro. We
used a PC with an Intel(R) Core(TM) i7 CPU Q740
at 1.73GHz, and with 4GB of RAM. Our results show
that the proposed attack on round-reduced variants of
Zorro works and recovers the correct key as expected
theoretically. In Figure 3 and Figure 4, we report
some results of our program for both differential and
linear attacks on reduced to r = 8, 12, 16 and 20
rounds of Zorro. In our calculations, the time for
running a r-round Zorro is taken as the unit of time
complexity for a r-round attack. Figure 3 compares
the theoretical and practical results of our differential
attack, while Figure 4 is for linear attack.

7 Conclusion and FutureWork

In this paper, we presented an approach to break the
full-round version of Zorro by using differential and
linear cryptanalysis with practical complexities. These
attacks work for all the key space and make use of 23, 22
and 21-round differential characteristics or linear trails.
While differential cryptanalysis has a time complexity
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of 255.40 full round encryption and data complexity of
255.15 chosen plaintexts, linear cryptanalysis has a time
complexity of 245.44 full round encryption and data
complexity of 245.44 known plaintexts. Some reduced-
round variants of both attacks have been simulated
which absolutely validates the theoretically estimated
complexities.

As far as we know, this is the first practical attack
on full-round Zorro, which along with the previous
cryptanalyses shows that the partial nonlinearity in
the design of Zorro has obviously sacrificed the security
for efficiency.
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Appendix A. Structural Chosen
Plaintext

Assume that we have x differential characteristics and
we are going to choose minimum number of plaintexts
that provide enough pairs for these x differential char-
acteristics. Let’s define a graph in which the vertexes
are the plaintexts and the edges are the valid differ-
ential pairs. For any node we have x edges and the
number of nodes are 2x. So, we have x× 2x−1 differ-
ential plaintext pairs, in total. Thus, the ratio of the
chosen plaintexts to the differential plaintext pairs
in a stracture is 2/x. This method is an extension of
what was proposed in [1] for generating data.

Appendix B. Differential
Characteristic Conditions

The conditions that must be satisfied for the differen-
tial characteristic are formulated as below.

The condition for MC transformation between states
(#3, #4) results:
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E = 3A ⊕ D

F = 3B ⊕ C
⇒



G = B ⊕ 2C

H = A ⊕ 2D

I = 4B ⊕ C

J = 4A ⊕ D

K = 7B ⊕ 3C

L = 7A ⊕ 3D

(12)

The condition for MC transformation between states
(#6, #7) results:

K = 3G ⊕ J

L = 3H ⊕ I
⇒



M = H ⊕ 2I

N = G ⊕ 2J

O = 4H ⊕ I

P = 4G ⊕ J

Q = 7H ⊕ 3I

R = 7G ⊕ 3J

(13)

Also after MC transformation between states (#9,
#10), we have:

S = 3N ⊕ O ⊕ R T = 3M ⊕ P ⊕ Q

U = 2N ⊕ 3O ⊕ R, V = 2M ⊕ 3P ⊕ Q

W = N ⊕ 2O ⊕ 3R, X = M ⊕ 2P ⊕ 3Q

Y = N ⊕ O ⊕ 2R, Z = M ⊕ P ⊕ 2Q

(14)
Hence, after combining mentioned conditions with
each other and some simplifications, we can represent
all the variables based on A and B:

C = D = A ⊕ B

E = 2A ⊕ B F = A ⊕ 2B

G = 2A ⊕ 3B H = 3A ⊕ 2B

I = A ⊕ 5B J = 5A ⊕ B

K = 3A ⊕ 4B L = 4A ⊕ 3B

M = A ⊕ 8B N = 8A ⊕ B

O = P = 13(A ⊕ B)

Q = 10A ⊕ B R = A ⊕ 10B

S = 20A ⊕ 4B T = 4A ⊕ 20B

U = 6A ⊕ 31B V = 31A ⊕ 6B

W = 17A ⊕ 5B X = 5A ⊕ 17B

Y = 7A ⊕ 24B Z = 24A ⊕ 7B

(15)

Using equations in (15) we see that condition for
MC transformation between states (#12, #1) are
automatically satisfied.

Appendix C. Linear Trail Conditions

The conditions that must be satisfied for the linear
trail are formulated as below.

The condition for MC transformation between states
(#3, #4) results:

G = I ⊕ 3K

H = J ⊕ 3L
⇒



A = 3J ⊕ 7L

B = 3I ⊕ 7K

C = I ⊕ 4K

D = J ⊕ 4L

E = 2J ⊕ L

F = 2I ⊕ K

(16)

The condition for MC transformation between states
(#6, #7) results:

M = O ⊕ 3Q

N = P ⊕ 3R
⇒



G = 3P ⊕ 7R

H = 3O ⊕ 7Q

I = O ⊕ 4Q

J = P ⊕ 4R

K = 2P ⊕ R

L = 2O ⊕ Q

(17)

Also after MC transformation between states (#9,
#10), we have:

W = 2S ⊕ U ⊕ 3Y

X = 2T ⊕ V⊕ 3Z
⇒



M = T ⊕ 3V ⊕ 2Z

N = S ⊕ 3U ⊕ 2Y

O = 5S ⊕ U ⊕ 7Y

P = 5T ⊕ V ⊕ 7Z

Q = 7T ⊕ 2V ⊕ 7Z

R = 7S ⊕ 2U ⊕ 7Y

(18)
Hence, after combining mentioned conditions
with each other and some simplifications, we can
represent all the variables based on Q and R:
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A = 10Q ⊕ R B = Q ⊕ 10R

C = D = 13 Q ⊕ R

E = Q ⊕ 8R , F = 8Q ⊕ R

G = 3Q ⊕ 4R , H = 4Q ⊕ 3R

I = Q ⊕ 5R , J = 5Q ⊕ R

K = 2Q ⊕ 3R , L = 3Q ⊕ 2R

M = 2Q ⊕ R , N = Q ⊕ 2R

O = P = Q ⊕ R

S = 20Q ⊕ 4R , T = 4Q ⊕ 20R

U = 7Q ⊕ 24R , V = 24Q ⊕ 7R

W = 17Q ⊕ 5R , X = 5Q ⊕ 17R

Y = 6Q ⊕ 31R , Z = 31Q ⊕ 6R

Using equations in (8) we see that condition forMC
transformation between states (#12, #1) are automat-
ically satisfied.
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