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1 Introduction

So far, various components of image characteristics have been used for steganal-
ysis, including the histogram characteristic function, adjacent colors distribu-
tion, and sample pair analysis. However, some certain steganography methods
have been proposed that can thwart some analysis approaches through man-
aging the embedding patterns. In this regard, the present paper is intended to
introduce a new analytical method for detecting stego images, which is robust
against some of the embedding patterns designed specifically to foil steganalysis
attempts. The proposed approach is based on the analysis of the eigenvalues of
the cover correlation matrix used for the purpose of the study. Image cloud par-
titioning, vertical correlation function computation, constellation of the corre-
lated data, and eigenvalues examination are the major challenging stages of this
analysis method. The proposed method uses the LSB plane of images in spatial
domain, extendable to transform domain, to detect low embedding rates-a ma-
jor concern in the area of the LSB steganography. The simulation results based
on deviation detection and rate estimation methods indicated that the proposed
approach outperforms some well-known LSB steganalysis methods, specifically
at low embedding rates.

© 2012 ISC. All rights reserved.

materials, such as the embedding algorithm, the cover
signal attributes, patterns of the embedding locations,

LSB (least significant bit) embedding is a steganogra-
phy method in which informative bits of the message
are replaced with the LSBs of the cover signal. Ste-
ganalysis consists of a set of operations that finally
determine the existence of the secret message in the
cover signal. Image steganalysis methods are classi-
fied into non-blind, i.e. algorithm specific methods, or
blind ones, which are mostly based on statistical analy-
sis approaches. Information about the steganographic

¥ This article is an extended/revised version of an ISCISC’11
paper.

* Corresponding author.

Email addresses: farhatQee.sharif.edu (F. Farhat),
diyanat@ee.sharif.edu (A. Diyanat), ghaemmag@sharif.edu
(Sh. Ghaemmaghami), aref@sharif.edu (M. R. Aref).

ISSN: 2008-2045 © 2012 ISC. All rights reserved.

etc. could help the steganalyzer to improve the de-
tection results. Algorithm-specific steganalysis have
been devised to be optimal for certain steganography
methods; however the other kind of methods attempt
to blindly detect the existence of the secret message
without any prior knowledge about the steganography
method

LSB steganalysis specifically focuses on the ste-
ganalysis of the LSB embedding by means of some
statistical or machine learning-based methods. There
are some prominent reports on the LSB steganaly-
sis found in the literature. As for the present study,
the eigenvalues of the correlation matrix, extracted
from a given suspected image have been used. This
method is believed to be the first approach to the im-
age steganalysis. Which, through eigenanalysis of the
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correlation matrix, achieves a higher sensitivity to the
LSB embedding at very low rates, compared to the
conventional LSB steganalysis methods.

In the same vein, a straightforward approach to
LSB-steganalysis has been proposed by Dumitrescu et
al. [1] which analytically estimates the LSB embedding
rate of a stego. Their method is based on a special
statistical property of certain sets of odd/even pixels.
The LSB replacement properly changes this statistical
characteristic, and the difference value of the identity
can quantify the embedding rate of the secret message.
Steganalysis of LSB Encoding in Color Images [2] is a
steganographic method to detect LSB embedding in
24-bit color images using the Raw Quick Pairs (RQP)
method that analyzes close pairs of colors created by
LSB embedding. Yet RQP method works well only
when 30% of the number of pixels is greater than the
number of image unique colors. In fact, RQP only
provides a hard estimate of the embedding rate.

In [3], a new framework has been proposed for ste-
ganalysis of the LSB embedding, based on Closure of
Sets, which is not dependent on the type and transfor-
mation domain of the cover signal. Likewise, a singu-
lar value decomposition (SVD) based blind steganal-
ysis method is suggested in [4] which is aimed at de-
tecting spatial domain steganographic methods. The
proposed steganalyzer models linear dependencies of
neighboring image pixels and content independency
determined through a Wiener filtering process. This
algorithm, however, fail to operate in some cases be-
cause of the (1), given below. In the cases where some
parts of the image are dark, using (1), the other sym-
metric side of the image could be embedded without
changing the singular values, since the SVD of the
image is not affected by the correlation of the neigh-
boring pixels.

The set of all m-by-n matrices over the complex
numbers field is abbreviated to Mat,. The singular-
values of the matrix M shown in (1) are those of the
matrix 777 together with those of the matrix 755 and
it is not dependent on those of matrix T75. For detailed
explanation, see [5].

Ty T
Mz[“ 12-|;TZ-Z-€Matni i=1,2 (1)
| 0 Tu)

In a similar vein, Fridrich et al. [6, 7] also proposed
the Regular and Singular groups as RS method. This
technique saves the frequencies of variations of the
regular groups and singular groups in the image in
order to approximately guess the LSB embedding
rate. Such threshold-free detections are ambiguous,
as the method is dependent on the type of image and
a steganalyzer is necessary to check if a particular
estimated embedding rate is positive or zero.
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Elsewhere, Harmsen et al. [8] used Histogram Char-
acteristic Function (HCF') to discover additive noise
steganography in color images, their algorithm failed
in the case of grayscale images though. Ker also at-
tempted to extend the detection of the LSB matching;
a skilled variant of the LSB embedding that was unde-
tectable by typical LSB steganalysis methods, e.g. [9].
In fact, Ker employed an empirical matrix in order
to develop the probability of detection of the HCF
technique [8]. The empirical matrix which resembled
the adjacency histogram, improved Ker’s detection
results. Using the combinatorial structure [10], Ker
also proposed a general framework for detection and
length estimation of hidden messages.

Dumitrescu et al. [11, 12] also presented Sample
Pair Analysis (SPA) as a technique to detect the
LSB steganography. This technique can estimate the
embedding ratio accurately when the embedding rate
is larger than 3%. Lu et al. [13] improved the SPA
method for the LSB embedding detection and came up
with the one called Least Square Method (LSM) which,
in comparison to, SPA and the RS methods, could
give a better estimate of the length of hidden message
using the cardinality of some pre-defined subsets.

In the same regard, the present paper aims to intro-
duce a new analytical method for steganalysis of the
LSB steganography. This steganalysis method relies
on the eigenvalues analysis as a powerful mathemat-
ical tool that analyzes some correlated parts of the
signal to detect the existence of the secret message
embedded in the signal through the LSB steganogra-
phy. The method also gives an estimate of the LSB
embedding rate of the stego signal. The simulation
results given in Section 5, especially those presented
in Figure 6 and Figure 7, provide sufficient evident to
confirm this new approach.

In this respect, the remainder of the article is
structured as follows. The steganography modeling
used in this paper is being explained in Section 2.
Next, eigenvalues-based steganalysis stages including
partitioning, correlation matrices construction, and
eigenvalues analysis will be described in Section 3. A
brief analysis of the computational complexity of the
method is being offered in Section 4 and the simula-
tion results are subsequently presented in Section 5.
Finally, the paper is concluded in Section 6.

2 Steganography Modeling

In this section, the steganographic system as a math-
ematical function is being modeled by means of ma-
trix analysis methods, in which the input is the cover
signal and the output is the stego signal.
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2.1 I/0 Domain Definitions

At this stage, it is assumed that the input of the
steganographic system is a grayscale image as the cover
signal and a binary sequence as an additive message.
The cover signal (image) is represented by an m-row
n-column (m x n) matrix whose entries (pixels) are
integer numbers between 0 and 255, that is to say that
the image is considered to be in the spatial domain.
Cover Signal : Cpup = [cij]é‘:li'm (2)

n
Additive message is a sequence of bits that are added
to some pixels of the cover signal. For simplicity, the

message is shown as a vector of length k, as:
Message : Myxj = [mij] =1 (3)

Jj=1..k
The resulting image known as stego signal is also an
m X n matrix whose elements are also integers between
0 and 255.

Stego Signal : Sypxn = [sij]@zl.,m (4)

j=1l..n

For example, sample cover signal, message (Msg =
[1 0110]), and stego signal could be presented as:

1020 1 1120 O
C= 13040 11 | and S = [31 40 11
50 60 111 50 60 111

2.2 Steganography method

In order to have a secure steganography, most meth-
ods make use of a shared key between the sender and
the receiver. This shared key is usually applied to a
pseudorandom number generator (PRNG) as a seed.
The output of the PRNG, pseudo-random number se-
quence (PRNS), determines some random locations of
the cover signal that are suitable for steganography of
the message bits. Here, it has been assumed that the
applied steganography method embeds the informa-
tive bits of the message into some least-significant bits
(LSBs) of the cover signal accidentally using a PRNG.
The PRNG randomly chooses some LSBs of the cover
signal to hide the entire message. The relation be-
tween the cover and stego signals, the message, and
the PRNS (abbreviated as P) could be expressed as:

S’mxn =LSB_ EmbeddingP(menyMlxk) (5)

The LSB-Embedding function embeds the message
bits in the locations determined by the PRNS. The
MATLAB pseudo-code of the LSB-Embedding func-
tion is represented in Figure 1.

3 Eigenvalues-based Steganalysis

This section serves to describe a new approach to ste-
ganalysis of suspected signals which can be shown

function Stg = LSB_Embedding(Cvr,Msg)
PermSeq = randperm(Cvr.NumOfPixels) ;
form = 1:Length(Msg)
if (Msg(m) ==0)
Cvr(PermSeq(m)) =
bitset (Cvr(PermSeq(m)),1,0);
else
Cvr(PermSeq(m)) =
bitset (Cvr(PermSeq(m)),1,1);
end
end

Figure 1. The MATLAB pseudo-code of LSB-Embedding
function

as a matrix, e.g. an image consisting of m x n pixels
as a data matrix. The proposed steganalysis method,
called Eigenvalues based Steganalysis (EVS), uses some
mathematical tools in linear algebra and matrix anal-
ysis. The present method is mainly inspired by the
Karhunen-Loewe Transform (KLT) which is a linear
transform whose discrete analysis version is known as
the principal component analysis [14]. The EVS algo-
rithm works in the spatial domain. In cases of signals
given in other time/frequency transform domains, a
conversion into the spatial domain is required. All of
the operations could be applied to the whole value
of an entry of the matrix (e.g. the BYTE value of an
image pixel is between 0 and 255) or to the LSB of an
entry. The EVS algorithm consists of signal partition-
ing, correlation matrices construction, and eigenvalues
analysis.

3.1 Partitioning (A)

The initial stage of the EVS algorithm is the partition-
ing stage, in which the received signal is segmented
into some smaller slices. The partitioning stage re-
duces the order of complexity of the EVS algorithm,
without necessarily having to deviate from ideal ste-
ganalysis. In the following subsections,the 1-D and
2-D partitioning procedures are being introduced:

3.1.1 Sequential-Vector Partitioning (A.1)

Sequential-vector partitioning views the whole signal
as 1-D sequences of vectors, i.e. it places the columns
of the signal matrix sequentially and reads them as
FIFO. The MATLAB pseudo-code of the EVS-Seq
shown in Figure 2 represents the EVS algorithm with
sequential vectors cropping.

3.1.2 Window Partitioning (A.2)

Window partitioning considers the whole signal as
2-D sequences of windows or matrices, i.e. slices the
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signal into similar rectangular matrices. The window
partitioning makes the signal a puzzle with square
slices.

3.1.3 Cloud partitioning (A.3)

In cloud partitioning stage, some parts of the signal
are intelligently selected like clouds of anatural image.
The cloud selection method could be based on the
similarity of , for e.g. four most significant bits (4MSBs)
of the signal matrix entries. In an image of nature,
for instance, the cloud cropping chooses the sections
of the sky, jungle, river, or an object whose 4MSBs
are alike. Entropic analysis of the signal could help
steganalyzer to locate the clouded data.

3.2 Correlation Matrices Construction(B)

In this stage, a zero-mean correlation matrix is con-
structed for every cropped part of the partitioning
stage. The correlation operator could be multiplica-
tion, bitwise-XOR, or absolute of subtraction. The
function CorrMat(u, v) constructs the correlation ma-
trix of vectors u,v by manipulating each entry of the
vectors. It could calculate the cross-correlations be-
tween each element of cropped matrix of the previous
section. Therefore, four types of correlated-data con-
stellations are proposed in this paper, one for vector-
structured and three for matrix-structured data.

3.2.1 Correlation Matrix of a Vector (B.1)

Zero-mean cross-correlation matrix (CM,,, =
CorrMat(v,w)) of sequential vectors v,w (resulting
from section A.1) is simply derived by multiply-
ing zero-mean vector v — mean(v) and zero-mean

transposed vector (w — mean(w))?, as:

CorrMat(v,w) = CM, , = (6)
(v — mean(v)) x (w — mean(w))T

It is assumed that CorrMat(v,v) £ CorrMat(v).

3.2.2 Horizontal Correlation Matrix of a
Matrix (B.2)

The cropped matrix (C M, xn ), resulting from section
A2 or A3, could be written as:
]

T
T2

CMpyxn = [Cmij}ii11..m = (7)
r,a
= [Cl cy - Cn]

where 77 is the i-th row vector, and ¢ is the j-th
column of the matrix CM,,«,. Horizontal zero-
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mean cross-correlation matrix of the cropped matrix
(CM,,xr) is defined as:

CorrMatH(CM) £ [CorrMat(r!, 7 )iz1.m (8)

j=1l..m
where the CorrMatH(CM) is an m? x n? matrix
with n X n entries.

3.2.3 Vertical Correlation Matrix of a
Matrix (B.3)

Vertical zero-mean cross-correlation matrix of the
cropped matrix (CM,,x,) can be defined as follows.

1 (9)

1;:
j=1l..n

CorrMatV(CM) £ [CorrMat(c;, c;)]

where the CorrMatV (C' M) is an m? x n? matrix with
m *m entries. Simulation results are usually based on
this function.

3.2.4 Horizontal-to-Vertical Correlation
Matrix of a Matrix (B.4)

Horizontal-to-vertical zero-mean cross-correlation ma-
trix of the cropped matrix (C M, ) is stated as:

CorrMatHV (CM) £ [CorrMat 7, Ci)]i=1..m
e =)
j=1l..n
(10)

where the CorrMatH(CM) is an m? x n? matrix with
n X m entries.

3.3 Eigenvalues Analysis (C)

In this stage, the eigenvalues of the correlation ma-
trices of the previous stage are extracted. To analyze
these eigenvalues the following cost functions were
used:

(1) Mean
(2) Variance
(3) Maximum
(4) Sum
(5) L?*Norm

As shown in Figure 2, for the different percentages
of the embedding, from zero to 100, the A, B, and C
stages are run to get the reference curve. This refer-
ence curve can help the steganalyzer to distinguish
the innocent signal from the stego signal. In the simu-
lation section, it is viewed that for different increasing
embedding rates of an image, the eigenvalue analyzer
gets a new initial point increasingly and reference
curve augments almost linearly, where the final point
is an almost constant value even for messages with dif-
ferent pseudo-random binary sequences. Hence, higher
embedded images have a lower gradient.
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for EmbdRate = EmbdRates
LSBEmbdCvr=LSB_Embedding(Cvr,Msg) ;
for cSeq=1:Sequencelength:NumOfPixels
Sequence=
LSBEmbdCvr (cSeq:min(cSeq+
SequenceLength-1,NumOfPixels));
MeanOSeq=double (Sequence) -
mean (Sequence) ;
CorrelationMatrix=Mean0OSeq’*Mean0OSeq;
Eigenvalues(cSeq:min(cSeq+
SequencelLength-1,Num0fPixels))=
eig(CorrelationMatrix) ;
end
EVsMeans (EmbeddingRate+1)=
mean(Eigenvalues) ;
EVsVARs (EmbeddingRate+1)=
var (Eigenvalues) ;
end

Figure 2. The MATLAB pseudo-code of EVS-Seq

3.4 Deviation Detection

The steganalysis method proposed here observes the
behavior of the reference curve of a suspicious image,
through injecting a new random message into the
image. It has been revealed that the reference curve
of a stego image is supposed to show quite noisier,
as compared to an innocent image, because the noise
power of the LSB sequence is sometimes the sum of
the noise power of the message sequence and injected
sequence. However, in some other cases, it is only
the noise power of the injected sequence as injected
sequence overwrites all of the message sequence in the
cover. To parameterize the noise of the reference curve
as Deviation-Ratio (DR), a cubic spline of the curve
is given in (11), where the difference of the spline and
the reference curve are normalized.

Some categorized stego images may exceed some
DRs, while innocent images of that category remain
below of that DR. To detect an embedded signal, one
needs to evaluate the DR of the image. If this param-
eter exceeds the normal threshold of that category,
that image will be labeled as stego; otherwise, it is
regarded as an innocent one.

YR (EV Spare — Spline(EV Spare))?
|EVS%100 - EVS%O|

D.R. =
(11)

Combining the different methods of the stages A, B,
and C could result in a new route to the EVS. The num-
ber of the possible routes is thus 1 x 1 x5+2x3 x5 =
35. Following regular inspections, the routes which

23191

23181

23171

2316

Sum of Eigenvalues of EVS A3 B3 C.4

23151

2314
——— EVS characteristic curve
Cubic spline of characteristic curve

L L L L L L . L L
233y 0 20 0 a0 0 &0 70 0 %0 100

Embedding Rate

Figure 3. Characteristic curve of Lena’s image by EVS(A.3
B.3 C.4) given by embedding rate, as compared to its cubic
spline

were found to yield the best response were chosen to
be executed. Figure 3 shows the real curve of a sample
image computed by the EVS algorithm as A.3 (with
norms of 16 x 16 clouds) B.3 (Vertical Correlation
Matrix) C.4 (sum of eigenvalues) given by the embed-
ding percentage (from 0 to 100), as compared to its
cubic spline (smoothed curve). It is noteworthy that
the DR may increase, when there is a larger difference
between these two curves due to a higher embedding
rate. Figure 4 illustrates the surface of Lena’s picture

T
mu\\\\‘\\\\\\m\\‘\ll

il ‘,‘“\\\“““\‘“‘u\\\\ll

ittt

7058 Number (0-127) o Embedaing Rt
mbedcing Rete:

Figure 4. Characteristic curve of Lena’s image by EVS al-
gorithm as A.3 B.2 C.4 given by embedding percentage and
7-MSBs colors

by the EVS algorithm as A.3 (with norms of 8 x 8
clouds) B.2 C.4 (sum of eigenvalues) given by the
embedding percentage (from 0 to 100) and 7-MSBs
colors (from 0 to 127). Some 7-MSBs colors are more
informative than the others. In general, intermediate
colors are more sensitive to the embedding than near
black/white colors in natural images, because natural
images are more or less greyish rather than exactly
white/black and the color distribution is more dense
in middle colors. Furthermore, more pixels in a spe-
cific color establish a good covert channel for hiding,
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and more pixels can help steganalyzer to detect stego.
Figure 5 displays the characteristic curves of Lena’s
image with different initial embedding rates by EVS
algorithm as A.3 (with norms of 8 x 8 clouds) B.3 C.4
(sum of eigenvalues) given by embedding rate percent-
age (from 0 to 100). As indicated by the figure, higher
initial embedding rate results in a noisier characteris-
tic curve.

3.5 Rate Estimation

One of the crucial steps in the LSB steganalysis is
believed to be rate estimation of the bits embedded in
the image. In this regard, the present section is aimed
at introducing an easy efficient method to estimate
the amount of bits existing in the cover. Assuming a
stego image (I0) as the input of the system, the stego
image 10 is resulted from the cover image I.

First, the Characteristic curve of the image (10)
is calculated using the EVS algorithm as A.3 B.3
C.4 given by the embedding percentage. Then, the
polynomial approximation of the characteristic curve
can be considered as y = ajox™ 4 byg , in which, n is
regarded as optional.

Second, the image (10) bits are right-shifted for one
bit, therefore, the 8th bit-plane (LSBs) is replaced by
the 7" bit-plane. We call this new image I1 and then
calculate its Characteristic curve by means of the EVS
algorithm, as A.3 B.3 C.4 given by the embedding
percentage. Next, the polynomial approximation of
the characteristic curve is taken as y = ar12™ + br1.

Subsequently, similar to the previous stage, the
image (I1) bits are right-shifted for one bit so that the
7" bit-plane (LSBs) of 10 is replaced by the 6" bit-
plane of the image. This image is called 12 and again
the Characteristic curve is computed using the EVS
algorithm, as A.3 B.3 C.4 given by the embedding
percentage.

Then, the linear approximation of the characteris-
tic curve is obtained as y = ajox™ 4 by2. The main
objective, however, is to estimate y = ajx™ + by as
the polynomial approximation of the characteristic
curve of the cover image I. From the similarity of the
polynomials y = ajx™ + b, y = apix™ + by, and y =
arax™ + bre , it can be concluded that almost aa—f =

Z—;; . Thus, an approximation to a; can be achieved.

Moreover, from y; = ay X 1 4+ by, we can get b; as
Y1,70 = Y1,1- & comparison of y = ayz™ 4+ by and y =
arox™ + byo yields the estimate rate as (byg — by)/ay.
It is worth noting here that, with the help of this
method, the stego rate in real-time can be estimated
as well. In this regard, the next section is dealing with
the complexity of different routes of the EVS method,
and subsequently, the related experimental results
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obtained from some of the best routes will be reported
on.

4 Computational Complexity
Analysis

The EVS method could be run in some different ways.
The computational bottleneck of the EVS algorithm is
when it calculates the eigenvalues. In order to find the
most computationally expensive part of the algorithm,
MATLAB'’s profiler was employed. It was revealed
that Stage C consumes the most of the CPU clocks.
Furthermore, using the LAPACK [14] algorithm to get
eigenvalues, the computational complexity has been
found to be nearly O(n?).

It has to be noted that, in case the length of the
sequence in Sequential EVS is [ for an m x n-pixel
image, the order of the complexity of Sequential EVS
is almost O(m x n/l x 13) = O(m x n x [2). The same
rule applies for the Windowed EVS (EVS_Window),
i.e., if the size of the window is [y X Iy = [ for an
m X n-pixel image, the order of the complexity of the
EVS_Window is nearly O(m x n x [?).

In addition, if stage D of the EVS_Window is run at
s-sample rate (usually 100 samples), for an m x n-pixel
c-color (usually true-color or 224-color) RGB image,
the complexity of the algorithm is more accurately
30000 x m x n x {2, computed as:

ll Xlg

7 D Z {I x (I —1) x (logy ¢ + (logy ¢)?)}

(12)

m

s X

5 Experimental Results

As for the purpose of this study, BOSS [15], NRCS [16]
and COREL [17] databases of images were used in or-
der to run the simulation on a Pentium IV Quad-Core
2.83GHz PC for five days using MATLAB. During
the simulation, 4 thousands images were used for the
training stage and about 6 thousands images (3000
clear and 3000 stego images), taken from different
databases, were processed in the testing stage.

Among all the methods presented in Section 3, the
one having the highest performance was selected to
detect the stego images. Having a window size of
8 x 8 (JPEG-like), the norm-based (C.4) vertical (B.2)
windowed (A.2) EVS algorithm (EVS_Window_V) was
found to be the best among the others to arrive at the
desired results in a reasonable time of about one hour.
As expected, increasing the window size could yield
better results according to 12.
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Figure 5. The characteristic curves of Lena’s image with different initial embedding rates by EVS algorithm as A.3 B.3 C.4 given
by embedding rate percentage
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Figure 6. Characteristic curve of Lena’s image by EVS(A.3

B.3 C.4) given by embedding rate, as compared to its cubic
spline
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Figure 7. Characteristic curve of Lena’s image by EVS(A.3
B.3 C.4) given by embedding rate, as compared to its cubic
spline

The image database is classified into different cate-
gories according to a measure of their noise. The noise
levels of the images are estimated by the DWT (Dis-
crete Wavelet Transform) HH partial coefficients of a
robust median estimator [18] called RiskShrink. The
images are transformed into wavelet domain using
symmetric Daubechies’ transformation of the length
8. Then, the HH coefficients are selected from the
wavelet coefficients and the noise variance of the im-
ages is computed as:

Median(|Y;])
0.6745

In the next stage, based on 13, a number of features
are selected to classify the database. The first feature
is the Noise estimation (NE) of the image based on

ISeGure@

(13)

a':

13. To compute the second feature in the analysis,
we set the LSB levels of the images to zero, making
imageSet0 files. The noise estimation of the seventh
bit-level of the imageSet0 files is then chosen as the
second feature. This is based on the fact that, in the
LSB steganography, only the LSB levels are changed
and the other bit-levels of the image are kept the same
as those in the innocent image.

Deviation Ratio (DR) parameter, image dimensions,
noise estimation of LSB, 7*" level, and the whole im-
age are taken as a 5-feature set of a support vector
machine (SVM) with 5-degree polynomial core with
5000 iterations of quadratic programming for con-
vergence. About four thousands pictures taken from
BOSS, NRCS and COREL database are added to
train the machine.

In the first experiment, all of the data was given
to the SVM for learning. Given the second one, the
innocent images and the stego images with embed-
ding rates greater than 5% were given to the SVM.
Table I shows the EVS results as compared to the
best performance achieved by some well-known meth-
ods introduced earlier for steganalysis of the LSB
steganography [1, 2, 6-8]. Besides, the receiver operat-
ing characteristic (ROC) curves were also computed
for the EVS_Window_V and the other methods for 5%
embedding rate, as depicted in Figure 6.

As observed from Table 1 and Figure 6, the
EVS_Window_V algorithm achieves a quite better
detection performance when compared to the best
performance of the other schemes. Figure 7 illus-
trates the ROC curve of the EVS_Window_V for 15%
(the inner), 10% (the middle), and 5% (the outer)
embedding rates.

Table 1. Detection rates for comparison between the EVS
and the best of some other algorithms

Emb. Rates
5 10 15 20 25

Algorithm

EVS_Window_V 94.5 64.8 80.6 95.1

89.1 51.7 66 783 859 90.1

99 99.5
Best outputs of [1, 2, 6-§]

In addition, the proposed method has been tested
on other LSB-based methods like LSB Matching [19]
and LSB+ [20]. The LSB+ method is detected more
easily compared to the others, as it embeds even more
bits to compensate some other steganalysis methods.
The intuition, observations, and results are almost the
same, mostly due to the fact that the EVS method is
basically dependent on the statistical distribution of
LSBs. The detection results obtained from both the
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conventional LSB replacement and LSB Matching-like
algorithms such as HUGO [21] are nearly the same.

Finally, comparisons were made between some of
the new steganalysis methods participated in the re-
cent competition called BOSS [22] and the EVS algo-
rithm. To this end, the EVS was trained by BOSSBase
database and tested with BOSSRank database taken
by Leica M9 camera [15] as it was randomly embedded
by the well-known algorithm HUGO [21].

Table 2 facilitates the comparison between the EVS
algorithm and the other ones mentioned in [22] for a
half subset of BOSSRank. The results indicate that,
in some image subsets, the algorithms proposed here
could outperform new approaches, though those non-
universal methods are found to achieve a slightly
higher detection accuracy due to their adaptation to
that specific algorithm, HUGO.

Table 2. Detection rates for comparison between the EVS
and Boss competition algorithms

Andreas
Algorithm EVS (our Hugobreakers Gul &  Westfeld
algorithm) [15, 22] Kurugollu [15, 22]
[15, 22]
Classifier 65%-75%  68%-82%  73%-77%  67%
Score

6 Conclusion

The present paper was aimed at introducing a new
eigenvalues based steganalysis method, called EVS
algorithm. To this end, the sum of the eigenvalues of
the correlation matrix extracted from the suspected
image were used for steganalysis. The phases of the
proposed algorithm, including image partitioning, cor-
relation computation, and the detection analysis were
also investigated and explained.

It has to be noted that the stages of the EVS algo-
rithm have different implementations that make the
complete EVS algorithm marvelous for different ap-
plications. The better route over stages the better the
steganalyzer will work. The EVS is designed in a way
that is feasible in terms of complexity. Besides, the
performance of the EVS is comparable with similar
LSB steganalysis methods. It is also worth mentioning
that the LSB embedding rate of the stego could be es-
timated by using EVS when the thresholds of different
categories of images are used by RiskShrink estimator.

A comparison between the simulation results ob-
tained from the application of the EVS versus those
of the conventional steganalysis methods provides suf-
ficient evidence as for the superiority of the EVS algo-
rithm for the LSB image steganalysis, particularly in

challenging cases of low embedding rates. Moreover,
comparisons were drawn between the results of EVS
algorithm on BOSS database and those achieved from
some new methods participated in BOSS competition.
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