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A B S T R A C T

Automatic detection of access control violations in software applications is
a challenging problem. Insecure direct object reference (IDOR) is among
top-ranked vulnerabilities, which violates access control policies and cannot be
yet detected by automated vulnerability scanners. While such tools may detect
the absence of access control by static or dynamic testing, they cannot verify if it
is properly functioning when it is present. When a tool detects requesting access
to an object, it is not aware of access control policies to infer whether the request
is permitted. This completely depends on the access control logic and there
is no automatic way to fully and precisely capture it from software behavior.
Taking this challenge into consideration, this article proposes a black-box
method to detect IDOR vulnerabilities in web applications without knowing
access control logic. To this purpose, we first, gather information from the web
application by a semi-automatic crawling process. Then, we tricksily manipulate
legal requests to create effective attacks on the web application. Finally, we
analyze received responses to check whether the requests are vulnerable to
IDOR. The detection process in the analysis phase is supported by our set
theory based formal modeling of such vulnerabilities. The proposed method
has been implemented as an IDOR detection tool (IDOT) and evaluated on a
couple of vulnerable web applications. Evaluation results show that the method
can effectively detect IDOR vulnerabilities provided that enough information is
gathered in the crawling phase.

c© 2020 ISC. All rights reserved.

1 Introduction

Web applications have changed from static and
read-only systems to dynamic, complex, and in-

teractive systems, which provide plenty of informa-
tion and services for users. Their widespread use and
high availability on the one hand, and the need for
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prohibiting unauthorized access to classified and con-
fidential information on the other hand have led to
the condition in which the existence of even a slight
vulnerability could cause irreparable damages.

Web application vulnerabilities can be divided into
three classes including injection, session management,
and business logic related vulnerabilities [1]. Injection
vulnerabilities usually occur due to a weakness in the
validation of user inputs. Session vulnerabilities result
from a weakness in managing session identifiers. Both
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of these vulnerabilities can be properly detected using
some methods such as static analysis [2] or fuzzing [3].
The third class of vulnerabilities is related to access
control violations and improper authorizations. The
main challenge of this type of vulnerabilities is their
dependence on the access control logic. While auto-
mated testing tools may detect the absence of access
control by static or dynamic testing, they cannot ver-
ify if it is properly functioning when it is present. Ac-
cording to the latest report of OWASP top-ten vul-
nerabilities, broken access control is the fifth-ranked
vulnerability [4].

Insecure direct object reference (IDOR) is a vulner-
ability in the third aforementioned class of vulnerabil-
ities, results in access control violation. In IDOR, re-
quest parameters are manipulated in such a way that
direct access to an internal object is illegally allowed.
Such direct references can be to a file, a database
record, or a key sent via a URL or a form field. Con-
ducted researches also confirm that automated IDOR
discovery requires a detection tool empowered with
the knowledge of access control policies for the appli-
cation under evaluation, which in general is a very
sophisticated task [5].

1.1 Problem Statement

Increasing services and functionalities of web applica-
tions, variety and volume of users, and more granular
and complex access policies, make IDOR a prevalent
vulnerability. Unfortunately, automated solutions are
not yet able to detect IDOR vulnerabilities [6–8]. This
is because vulnerability scanners, despite their plu-
rality, cannot determine whether a response received
from an application contains an object to which the
user must not access.

Considering the above limitations for automated
IDOR detection, this paper proposes a black-box
method to identify potentially vulnerable requests
against IDOR without knowing the access control
policies of the application under evaluation. The po-
tentially vulnerable requests are then knowingly ma-
nipulated and their responses are examined to detect
whether they are actually vulnerable. We limited the
implementation of our method to GET and POST
HTTP methods. Also, the current implementation
acts as a proof-of-concept for our method without
focusing on the performance issues.

1.2 Contributions

The contributions of this paper are as follow:

• A black-box method to detect IDOR vulnerabil-
ities without knowing access control policies is
presented.

 

   Insecure            Direct        Object Reference 
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Figure 1. General approaches for IDOR prevention

• Themethod is formalized based on the set theory
to show whether the attack on the application
is successful.
• The method is implemented as an IDOR detec-
tion tool (IDOT) and is evaluated on vulnera-
ble web applications to show its effectiveness in
finding IDOR vulnerabilities.

The rest of the paper is organized as follows. Sec-
tion 2 details the related work focusing on IDOR pre-
vention and detection approaches. Section 3 presents
the proposed method in three subsections namely in-
formation gathering, attack phase, and analysis phase,
according to three steps of the method. Section 4 re-
ports the implementation issues and evaluation results.
Finally, Section 5 concludes the paper and gives some
suggestions for future work.

2 IDOR Prevention and Detection
Approaches

IDOR vulnerabilities occur when an unauthorized
user or process can directly refer to an internal object
or a function by manipulating parameters or values in
a request. The prevention methods can be classified
into two general categories; obfuscating references to
objects, and controlling access to objects (Figure 1).
In the reference obfuscation, the possibility of a direct
reference to an internal object is limited. The con-
cept of Random Access Map can be used to convert
direct references to indirect ones or define internal
references separately for each user or session [9]. In
the access control, access requests to internal objects
are checked and denied for unauthorized requests. For
the white-box detection of this vulnerability, the same
two approaches can be used, as well. That is, the pro-
gram code is analyzed to check if there are any direct
references to internal objects in a system, and in such
cases, it is checked if a sound access control routine
mediates access requests.

The main challenge to detect this vulnerability is
when the application code is missing. In this case, the
behavior of the program should be analyzed in re-
sponse to the requests sent to the program by a tester.
The tester must actively test every parameter (whose
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value is used to refer to objects) in every request of
the application under evaluation. This is a very time-
consuming task and the result completely depends on
the expertise of the tester in the sense that how to
manipulate each parameter to access private objects
of another user. Therefore, IDOR cannot be detected
in general by traditional security testing tools. Excep-
tionally, a small subset of IDOR, known as path traver-
sal, which leads to insecure access to files in the host
system, e.g., passwd, can be detected by existing tools
[10]. Few research works have been reported for the
black-box detection of IDOR [6, 8, 10, 11]. Vithanage
and Jeyamohan [8] presented a method to detect in-
secure configurations, insecure direct references, and
injection vulnerabilities. However, the method’s effi-
cacy completely depends on a human agent who iden-
tifies suspicious requests and analyzes corresponding
responses. Also, the method suffers from false nega-
tives since it confines IDOR vulnerabilities only to
the parameters in the URL address of web pages.

Dolati et al. [6] presents a method to detect IDOR
vulnerabilities. The general approach is to extract ex-
changed parameters from the traffic between client
and server and to apply some rules to the param-
eters to identify immune or susceptible parameters.
The key point is to derive appropriate rules to cor-
rectly identify susceptible parameters. The evaluation
results of their work confirm its inefficiency in prac-
tice, which is mainly due to the poor performance of
the defined rules. The rules in their work only pick
out four percent of parameters (on average) as non-
vulnerable parameters. That is, the remaining 96%
of parameters must be manually checked by an ex-
pert human. Moreover, this method is just limited to
extracting susceptible parameters, and the actual soft-
ware behavior after manipulating those parameters is
not analyzed. Therefore, IDOR vulnerabilities are not
actually identified in their work.

Discovery of access control vulnerabilities, which
are closely linked to IDOR, has been also the focus of
some research, either on white-box [12–16] or on black-
box [17–21] approach. The closest work to the aim of
this paper is the research conducted by Li et al. [17] .
They try to extract access control policies, and then
to identify violations of the policies by examining the
traffic between client and server. One problem with
this research is that the authors assume that IDOR
occurs for users with different roles while it is possible
to have users with the same role having their private
objects. Besides, it puts the basis of extracting access
control policies on queries sent between the application
and the database, which reflects only a part of access
control policies. Furthermore, it cannot be considered
as a black-box method since it requires the interaction
between the program and its database.

Noseevich and Petukhov [21] used state preserving
differential analysis to discover access control vulner-
abilities in a program. In their method, HTTP re-
quests are first divided into some classes based on
their behavior similarity. Then, use-case graphs and
their dependencies are obtained regarding the classes
of requests and user roles. The main problem with this
study, as mentioned by the authors, is its weakness
in extracting use-case graphs and their dependencies,
which reflect access control policies.

How to manipulate request parameters plays an im-
portant role in exploiting IDOR vulnerabilities. The
manipulation of parameters has been investigated in
some studies [9, 22–26]. For example, Bisht et al. [25]
propose a black-box method to detect parameters, fit
for parameter manipulation. Their method through
which the input parameters are automatically gener-
ated and injected into the program suffers from both
false positives and negatives. This is because their
method is not able to generate all possible input values
to test the parameter. Moreover, there is not a reliable
way in their method to determine whether the pro-
gram has accepted the input. More importantly, their
focus is on considering syntactic limitations to gen-
erate parameter values whereas semantic limitations
are of more importance for IDOR vulnerabilities.

Table 1 has compared four related works, which
are closer to the aim of this paper. As we can see
in the table, Li et al.’s work [19], needs application-
dataVithanage and Jeyamohan’s work base interac-
tions in addition to browser-application traffic. This
is in contrast with the black-box assumption of this
work. Although Dolati et al. [10] present a black-box
noninvasive method, they only focus on detecting pa-
rameters susceptible to IDOR.Moreover, their method
is not effective in practice due to lots of false posi-
tives. Noseevich and Petokhov’s method [23] has false
negatives in its detection, related to hidden function-
alities that are not in the graphical user interface. It
also suffers limitations in the method implementa-
tion. Vithanage and Jeyamohan’s work [11] efficiently
detects IDOR vulnerabilities but it is limited to pa-
rameters in URL addresses, which makes lots of false
positives in some web applications. More importantly,
its effectiveness is directly related to the human agent
who has a great responsibility in the detection process
(both in attack generation and response analysis). Our
approach, compared to the existing works, formalizes
the solution, tries to reduce the human intervention
in the detection process, and increases the accuracy of
detection by reducing false negatives and positives.

3 The Proposed Method

In this section, the proposed solution to detect IDOR
vulnerabilities is described.
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Table 1. Comparison of black-box IDOR detection methods

key idea
Implementation/

tool
advantages disadvantages

[23]

state-based

differential analysis,

utilizing use case graph

a proof-of-concept aided

with human agent to build

use case graph

method accuracy

false negatives,

implementation

limitations

[19]

virtual SQL query concept,

role-level and user-level

policy inferences

yes
efficient

implementation

false negatives, needs

Application-Database

interactions

[10]
rule-based

parameter extraction
no tool not invasive

considerable false positives,

limited effectiveness

[11]

human-aided

URL address

investigation

yes but highly dependent on

human agent
low false positives

limited in URL addresses,

high dependency on

human agent

our method
targeted manipulation and

affected page investigation

yes (aided with

human agent in crawling)

method formalization,

low rates of false

positives/negatives

performance issues in

implementation

3.1 Solution Overview

IDOR vulnerability detection in our method is the
result of performing the three following phases, per-
formed iteratively:

(1) Information gathering: We improve our under-
standing of the program by interacting with it
as a normal user.

(2) Attack: An illegal request is built and sent to
the program

(3) Response analysis: The program response to
the attack is evaluated to find out whether it is
vulnerable.

Figure 2 depicts the general process of IDOR detection
in our method. As illustrated in the figure, the steps
are performed iteratively. After each iteration, the
information is updated based on the previous attack,
and its response is used for triggering the next attack.
We elaborate more on the aforementioned phases in
the following subsections.

3.2 Information Gathering

In the information gathering phase, the information
extracted from user interactions with the application
is collected. We assume that in this phase, a non-
malicious user normally interacts with the application
interface through which access control policies have
been correctly implemented. Moreover, we assume
that the user performs a complete crawl to generate all
possible requests. The more comprehensive we crawl,
the more precision we get in our results. In Section 4,
we show the effect of the comprehensiveness of the
crawling process on the precision of our detection
method. It is worth to mention that in this phase,
two users for each distinct role should do the crawling
process. The result of crawling is a set of sextuples
(user, session, url, request, response, state) where:

• user identifies the crawling user account.

Attack

(unauthorized 
request generation)

Information
Gathering

(Automatic)

Analysis
(response 

evaluation)

Information 

Gathering 

(automatic/ manual 

crawl)

Primitive

Application Information

The request is safe 

The request is vulnerable

Web Application

check another

request

Figure 2. The general process of the proposed method

• session identifies the session in which the crawl-
ing process is performed. Obviously, when a user
logs out from the application the session is termi-
nated and a new session is assigned if he re-logs
into the application.
• url is the address of the visited page.
• request is the request sent by the crawler to the

application.
• response is the application response to the re-

ceived request.
• state identifies the system state in which the

system is when crawling a page.

More precisely, state is specified by the database state,
which in turn is specified by the data stored on it.
That is unless the data stored on the database is not
modified (inserted, deleted, or updated), the system
state does not change. When a request modifies data
stored on the database, the application enters a new
state. We model state as an incremental integer ini-
tialized by zero when we start the crawling process.
A database change results in a new state whose value
is obtained by adding one to the current state value.
Database change is recognized by permanent changes
in the pages/forms of the web application.
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3.3 Attack Phase

To detect vulnerabilities, it is required to examine the
application with unauthorized requests. The attack is
performed for pairs of users -an attacker and a victim-
who have different access rights according to access
control policies. The attacker submits an illegal request
to access a victim’s private object. The problem is
how to tricksily manipulate each parameter to access
private objects of another user without knowing the
access control logic of the application under evaluation.
In this section, we show how to build targeted illegal
requests for IDOR detection. The detection process is
to examine the application behavior when confronting
illegal requests.

Consider A as the attacker and B as the victim. The
request is called vulnerable against IDOR if A gets
access to the requested resource, which is a B’s private
object. A request is modeled as a set of parameters
and their values.

Let define Requpg = {req1, req2, . . . , reqn} as the set
of authorized requests of user u from page pg. Assume
that B visits a page pg and creates a request reqB to
the server where reqB ∈ ReqBpg. Let reqA, submitted
by A, is the corresponding request to reqB from page
pg. Performing the attack is to manipulate reqA to
have an illegal request, whichmay lead to unauthorized
access to a B’s private object. Manipulating reqA is
done by modifying any parameters in reqA. It may
also be possible to submit the same request reqB by A.

According to the above explanations, there are two
main steps for performing an attack; finding an at-
tacker’s request corresponding to a victim’s request,
and subtly manipulating the request. In the following
subsections, we elaborate on the two main steps of
performing an attack.

3.3.1 Finding Corresponding Requests

To find corresponding requests between the attacker
and the victim users, we first need to find the corre-
sponding pages from which the requests are sent. For
this purpose, we use the URL address of pages.

Based on RFC 1738 [27], a URL can be defined as
a triplet url = (scheme, host, path). For example,
in http://idor-vul.com/path/to/directory/index.html,
“http” is the scheme, “path/to/directory/index.html”
is the path, and “idor-vul.com” is the host. Formally,
the path in a URL is a set of directories, ended up
with a file name as following:

path = (dir1, . . . , dirn, file) ; n ≥ 0

To find corresponding pages it is required to find
the corresponding paths. Let us define corresponding
paths, corresponding URLs, and corresponding pages.

Definition 1 (Corresponding paths). We say
pathi and pathj are corresponding and show it by
pathi ≡ pathj if and only if the two paths are different
in only one of their constituent directories.

Definition 2 (Corresponding URLs). We say two
URLs urli and urlj are corresponding and show it by
urli ≡ urlj if and only if the host parts of the URLs
are equal and their path parts are corresponding:

urli ≡ urlj ⇐⇒ urli.host = urlj .host ∧
urli.path ≡ urlj .path

Definition 3 (Corresponding pages). We say two
HTML pages pgi and pgj are corresponding and show
it by pgi ≡ pgj if and only if urli ≡ urlj where urli is
the URL address of pgi and urlj is the URL address
of pgj.

Remark 1. When two users visit the same page, it
does not mean that they see the same contents. For
example, suppose that each user has access to his
setting page. The URL address of the setting page may
be the same for all users but the content is different
for each user.

Using the information collected in the first phase,
i.e., data gathering, and based on the above definitions,
we can find the corresponding requests. The next
step is to manipulate an attacker’s request for its
corresponding victim’s request.

3.3.2 Manipulating Parameters

Parameter manipulation can be performed by substi-
tuting parameter values with random values, which
makes it a time-consuming and hard-to-analysis task.
Instead, we perform parameter manipulation in such
a way that illegal parameter values are knowingly cho-
sen such that the attack is more likely to be successful.

Each request sent to the server consists of several
parameters (user-defined or predefined). Formally, a
request is defined as follows.

Definition 4 (Request). A request generated by a
user u is a triple of the form requ = (method, url, P )
where method is a constant from the set Method =
{GET, POST, DELETE, HEAD, PUT, OPTIONS,
CONNECT, TRACE, PATCH} to show the request
method, url is the URL address from which the request
is sent, and P is the set of request parameters {p1, p2,
. . . , pn} where each pi (1 ≤ i ≤ n) is a pair of (name,
value).

Based on the above definition, PV req
u

p ={v1, . . . ,
vn} is the set of permitted values for parameter p in
the request req sent by the user u. In this notation,
it is assumed that req is sent from a page pg with
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an address url. The set of permitted values for each
parameter can be extracted from the traffic based
on the information collected during the information
gathering phase. Specifically, for each parameter in
a request req from a page with the URL address url,
the sextuples are extracted for which username is u,
address is url, and request is req.

Definition 5 (Corresponding requests). Two re-
quests req from user u and req′ from user u′ are corre-
sponding if and only if their method parts be the same
and their URLs be corresponding:

req ≡ req′ ⇐⇒ req.url ≡ req′.url ∧
req.method = req′.method

When A attacks B on parameter p in request req,
a targeted manipulation of A’s request is to find an
illegal value v for a parameter p where p is a parameter
among the set of parameters ofReq. We show IV p,req

A

A→B

as the set of illegal values for p in request req when A
attacks B. IV p,req

A

A→B is computed by Equation 1. That
is, all victim’s permitted values can be assigned to p
by the attacker.

IV p,req
A

A→B = PV req
B

p (1)

Example 1. Consider a “send-message” request with
the following URL address in which an attackerA with
id = 6 sends a message to a victim user B with id = 1:
GET http://www.idor-vul.com/sendmessage?sender_id=6&
receiver_id=1&message_body=some+text+here HTTP/1.1
Now, we calculate illegal values for receiver_id in
this request. If the attacker has already sent messages
to users with id = 1 and id = 2, and the victim has
previously sent messages to users with id = 1, id = 2,
and id = 7, we have:

IV
receiver_id,reqA

A→B = PV req
B

receiver_id = {1, 2, 7}.

Illegal values can be found for all parameters of all
requests using the information gathered in the first
phase. If P = {p1, . . . , pm} is the set of parameters in
reqA, we must find IV pi,req

A

A→B for i= {1, . . . ,m} where
B is the victim user. Any subset of parameters can
be chosen for manipulation. For example, consider
m = 3, x = |IV p1,req

A

A→B |, y = |IV p2,req
A

A→B |, and z =

|IV p3,req
A

A→B |. There are x+y+z+xy+xz+yz+xyz =
(1 + x)(1 + y)(1 + z)− 1 different manipulations.

Generalizing this simple example, all possible pa-
rameter manipulation of a request can be enumerated
by Equation 2:

NPM =

m∏
i=1

(1 + |IV pi,req
A

A→B |)− 1 (2)

NPM in Equation 2 is the number of possible ma-
nipulations. Equation Equation 2 says that there are(
m
i

)
possible parameter selection and for each param-

eter p selected for manipulation, there are |IV p,req
A

A→B |
different manipulations.

3.4 Analysis Phase

In the analysis phase, the application response to the
manipulated request is analyzed to find whether the
attack is successful. The input to the analysis phase
is the illegal request to the server together with its
response. Depending on the type of request that can
be passive or active, two types of analysis are per-
formed. Active requests change the application state
by making a permanent change in data stored on the
database, e.g., password change, posting a comment,
or removing a file. In contrast, passive requests do
not change the application state, e.g., request to view
a page (reporting), search a keyword, or view users’
comments. An active request triggers an active attack
for unauthorized data modification while a passive re-
quest triggers a passive attack for unauthorized data
observation.

The first step in the analysis phase is to distinguish
whether the attack is active or passive. Assume that
a user u sends a request req from a page pg in state
α. AP req

u

α is defined as a set of pages affected by req:

AP req
u

α = {page|pageα 6= pageβ , β = α+ 1} (3)

Equation 3 specifies those pages, which are not equal
in the two subsequent states α (before sending the
request) and β (after sending the request). pageα and
pageβ in Equation 3 denote the same page page in
two states α and β, respectively. Therefore, req is a
passive request if AP req

u

α = ∅ and vice versa, it is
active if AP req

u

α 6= ∅.

3.4.1 Analysis of Passive Attacks

The key point for the analysis of response to a passive
attack is that the attack is successful if the attacker
receives the private information of the victim user.
The required information for the analysis of passive
attacks includes:

(1) Attacker (A) and victim (B) users
(2) reqA, which is the authorized request of A
(3) The illegal request reqAt (the tampered form of

reqA) and its response
(4) reqB, which is the B’s request, corresponding

to reqA

To analyze a passive attack based on the above inputs,
all the victim’s requests corresponding to reqAt are
extracted. For example, if the victim user has five
“View Comments” requests with different parameters,
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Figure 3. Venn diagram for (a) a successful passive attack
(b) an unsuccessful passive attack

all the five requests are extracted and the analysis is
performed on them. We show the response of a request
req by resp(req). A response has a body containing
HTML codes. For simplicity, the response body is
referred to by “page”, so we have:
pageA = resp(reqA).body,
pageB = resp(reqB).body, and
pageAt = resp(reqAt ).body

Consider the Venn diagram in Figure 3 (a). Each set
in the figure represents the data that the application
sends in response to a user’s request. Specifically, the
upper left circle represents the set of data sent by the
application to the attacker in response to his legal
requests. The upper right circle represents the set of
data sent by the application to the victim user in
response to his authorized requests. But the lower
circle represents the set of data, which the attacker
receives in response to his manipulated requests, e.g.,
a request to see the victim’s comments. Considering
Figure 3 (a), pageA is the “attacker specific” area,
pageB is the victim specific area, and pageAt is the
area specified by “data obtained from attack”. The
attack is successful when the gray area in Figure 3 (a)
is not empty. It means that the attacker, by generating
an illegal request and sending it to the application,
has obtained data from the victim user that he could
not access under normal circumstances. Equation 4
formulates the vulnerable area (V A), which is the gray
area in Figure 3:

V A = (pageB ∩ pageAt )− (pageB ∩ pageA) (4)

Figure 3(b) shows a situation where an attacker
has sent an illegal request, which has not been led
to a successful attack. reqB is not vulnerable against
IDOR, if for all attacker’s requests corresponding to
reqB, the analysis results show that the vulnerable
area is empty.

3.4.2 Analysis of Active Attacks

We assume active attacks cause changing the applica-
tion state and the change is reflected on the content
of at least one page in the application. It is also possi-

ble for active attacks to have more than one affected
pages, which are not necessarily among the response
page of the active request. Therefore, active requests,
which do not make permanent changes to the applica-
tion pages are subject to false negatives.

The key point in active attack analysis is to find
out to what extent a request of a victim user has been
emulated by an attacker. To this purpose, we need
to analyze affected pages as well as resulting changes
due to the illegal request.

Example 2. Consider the following request in which
a message from a user with id=u6 is sent to another
user with id=u1:
GET http://www.idor-vul.com/sendmessage?sender_id=u6&
receiver_id=u1&message_body=some+text+here HTTP/1.1
Now, suppose that the attacker (id=u6) generates the
following unauthorized request in order to attempt to
send a message from the user with id=7 to the user
with id=u1:
GET http://www.idor-vul.com/sendmessage?sender_id=u7&
receiver_id=u1&message_body=msg+from+7+to+1 HTTP/1.1
After sending the above unauthorized request, if the
sent message (from u7 to u1) is in the u1’s “inbox” page
and also in the u7’s “sent messages” page, the attack
is successful and the “send message” request in the
application is vulnerable to IDOR. In this example, we
assume that the “inbox” and “sent messages” pages are
the only pages affected by a “send message” request.

The general procedure of analyzing active attacks
after submitting an illegal request reqAt is described
in five steps:

(1) checking error response to reqAt
(2) checking affected pages of reqAt
(3) extracting attacker’s requests corresponding to

reqAt as well as victim’s requests corresponding
to reqAt

(4) checking affected pages by the above sets of
corresponding requests

(5) find similarities between the set of affected pages

Now, each step is explained in the following.

Step 1. After submitting the illegal request reqAt ,
its response is examined. If the response contains a
web server error (400 and 500 series), the attack is
recognized as unsuccessful, so the application is not
vulnerable to the request reqAt . Otherwise, the next
step is carried out.

Step 2. The affected pages of the request reqAt , i.e.,
AP req

A
t , is analyzed. For simplicity, in the notation

of AP req
A
t , we ignore writing the current state α. By

definition, AP req
A
t contains pages, changed after sub-

mitting reqAt . AP req
A
t = ∅ means that the application

has not accepted the unauthorized request reqAt , so
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it is not vulnerable for this request. Otherwise, the
analysis must be continued to the next step.

Step 3. The next step is to extract requests, corre-
sponding to reqAt from the set of attacker’s requests.
CReqA in Equation 5 is the set of attacker’s requests
corresponding to reqAt . In Example 2, all authorized
“send message” requests sent by the attacker to differ-
ent users are extracted.

CReqA = {req | req ∈ ReqA , req ≡ reqAt } (5)

Subsequently, the requests corresponding to reqAt from
the set of victim’s requests are extracted. CReqB in
Equation 6 is the set of such requests. In Example 2,
all “send message” requests sent by the victim user to
different users are extracted.

CReqB = {req | req ∈ ReqB , req ≡ reqAt } (6)

Step 4. The next step is to obtain the set of affected
pages by CReqA and CReqB, denoted by APCReq

A

and APCReq
B

, respectively. These sets show which
pages of the application change after the attacker or
victim send requests corresponding to reqAt .

Step 5. The final step is to find the similarity be-
tween AP req

A
t and any member of APCReq

A

and
APCReq

B

. SimreqAt
APCReqA

is the similarity ratio of reqAt
and APCReq

A

. We calculate the similarity by dividing
the number of pages shared between the sets by the to-
tal number of pages. Then we have two sets of similar-
ity ratios SimreqAt

APCReqA
and SimreqAt

APCReqB
. We choose

the maximum value of each set, namely MaxSimA

andMaxSimB .MaxSimA shows the maximum sim-
ilarity between the response of the attacker’s manipu-
lated request and the response of the attacker’s autho-
rized requests. Similarly, MaxSimB shows the maxi-
mum similarity between the response of the attacker’s
manipulated request and the response of the victim’s
requests. MaxSimA > MaxSimB implies that the
application behavior when confronting the unautho-
rized request reqAt is more similar to its behavior when
confronting the authorized request of the attacker,
which in turn implies that the application is less likely
to be vulnerable. On the other hand, MaxSimA <
MaxSimB means that the application, confronting
an illegal request reqAt , behaves more similar to a re-
quest originated from a victim user, so it is more likely
to be vulnerable against IDOR. If the two values are
equal, we could not infer about the vulnerability and
analytical evidence should be increased. For example,
by manipulating the parameters in reqA, a new reqAt
can be made (Different from the previous one), and
then by performing the above analysis, reliable results
may be inferred.

Examples 3 and 4 exemplify the process of active
attack analysis. For the sample “send message” request,
Example 3 shows the concept of affected pages and
Example 4 shows their analysis.
Example 3. Considering Example 2, assume that the
victim u7 sends messages through the “send message”
request to three users u1, u2, and u3, and the attacker
u6 sends messages to u1 and u5. Assuming inbox and
sent pages are the only pages changed after a “send
message” request, then APCReq

A

and APCReq
B

are
as follows:

APCReq
A

= {{inboxu1, sentu6}, {inboxu5, sentu6}}

APCReq
B

= {{inboxu1, sentu7}, {inboxu2, sentu7},
{inboxu3, sentu7}}

Example 4. Consider Example 2 and Example 3. Ac-
cording to Example 2, AP req

A
t = {inboxu1, sentu7}.

Then, the similarity ratios Sim
reqAt
APCReqA

and

Sim
reqAt
APCReqB

are calculated as follows:

Sim
reqAt
APCReqA

= {1
2
,
0

2
} , Sim

reqAt
APCReqB

= {2
2
,
1

2
,
1

2
}

For the maximum similarity ratios, we have
MaxSimA = 0.5 and MaxSimB = 1. That it,
MaxSimB > MaxSimA. It implies that the applica-
tion, confronting an illegal “sent message” request by
A, behaves more similar to the response of a “sent
message” request originated from the victim user (B).
Therefore, the “send message” request is supposed to
be vulnerable against IDOR.

4 Implementation and Evaluation

We have implemented our method as an IDOR detec-
tion tool, called IDOT 1 . In this section, we briefly
review some implementation issues we encountered
while developing IDOT. Then, we report the evalua-
tion results of applying our method on two web ap-
plications. For the sake of simplicity, in the current
version of IDOT, we focus only on GET and POST
methods in requests. The tool can be easily extended
to adopt other method types of a request, mentioned
in Section 3.3.2.

4.1 Implementation Issues

IDOT architecturally consists of three main modules,
as depicted in Figure 4. The crawler module crawls
the application and gathers information. The attack
module tries to attack the application by generating
illegal requests. The analysis module analyzes the
results of an attack to find out whether the application
is vulnerable. IDOT outputs a report of vulnerable

1 IDOR detection tool
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requests together with their attack payloads. IDOT
has been implemented in about 4000 lines of code
in Python programming language (version 3) and
SQLite as the database management system. A human
agent can interact with IDOT in a command-line
environment.

4.1.1 The Crawler Module

To do the automatic part of crawling, we use a frame-
work called Scrapy. Scrapy provides APIs to help pro-
grammers for using the framework and sending their
requests. We use some libraries such as requests for
sending requests and beautiful soup for parsing HTML
pages.

To perform crawling, at first, a text file containing
some primary settings to run Scrapy, e.g., usernames
and passwords to login to the application, is inputted
to IDOT. IDOT then starts a full scan of the web
application by Scrapy using the provided input. A hu-
man agent can help the crawler module and manually
crawls those pages, which cannot be crawled automat-
ically. The information obtained from the crawling by
the human agent is added to the information of the
automatic crawling. After completing this step, the
crawling process is performed again (for the second
time) for the same user in another session. That is,
the crawling process is performed for each user in two
distinct sessions. We also crawl the web application as
the guest user (without username and password), so
he is usually limited in using most of the application
capabilities.

The output of the information gathering phase con-
sists of the sextuples, described in Section 3.2 and
stored on a database table.

4.1.2 The Attack Module

The attack module uses the information previously
gathered by the crawler module. The information is
processed to subtly manipulate data in a user’s request
such that the request leads to unauthorized access to
a private object of another user. In short, this module
is responsible to generate deliberate illegal requests
by manipulating their parameters.

4.1.3 The Analysis Module

The main part of the analysis module is to find the
affected pages of an illegal request. Affected pages are
those pages whose contents have changed after sending
illegal requests. To find affected pages, an exhaustive
search is done within all pages of all users using the
information gathered in the crawling process. Any
changes in a page compared to the last version of the
page, stored in the database, indicates that the page

has been affected by the request. There are also some
false positives in detecting affected pages due to some
constantly changing parameters in a page such as anti-
CSRF tokens and the current time. We considerably
reduce such false positives in our implementation by
retrieving a page at two different times without change
to the application state.

In the analysis of passive attacks, it is required to do
intersection and subtraction on two HTML pages. For
this purpose, we use the tree-based DOM structure of
HTML pages. In such a structure, those parts of an
HTML page that are visible to a user are generally
placed in leaf nodes. Therefore, leaves contain page
content and internal nodes contain HTML tags. By
using subtraction and intersection operations, based
on Equation 4, the vulnerable area can be obtained.
Let us exemplify the intersection and subtraction
operations over two HTML pages.

Example 5. Consider a simple page like the one in
Figure 5 for two users Arash and Ramin. In these
pages, the first paragraph is a shared text between
the two users. The second paragraph of each page
is a dedicated text specific to each user. There is
also a form on the page with three input elements:
a submit button, a text input, and a drop-down list
having two common options for Arash and Ramin and a
private option specific to each user. Figure 6 is the tree
structure of HTML code of Figure 5. IDOT constructs
a similar tree structure except adding some metadata
for the nodes of the tree. For the sake of simplicity,
the metadata is not shown in Figure 6. The colored
part is the difference between the content of the two
pages of Arash and Ramin. To subtract Figure 6 (b)
from Figure 6 (a), that is a− b, all identical leaves are
removed from a together with their identical parents
until the root. Figure 7 (a) shows the subtraction
result.
To intersect between Figure 6 (b) and Figure 6 (a),
that is a ∩ b, all leaves in a without an equivalent
leaf in b (the colored parts in Figure 6) are removed
together with their parents until the root. The result
of the intersection is shown in Figure 7 (b).

4.2 Experimental Evaluation

In this section, we report the evaluation results of our
method to detect IDOR vulnerabilities in two web
applications, as case studies. Since IDOR is a logical
vulnerability, it can only be detected bymanual testing
and existing vulnerability scanners are not yet able to
detect it. Therefore, we cannot compare IDOT with
exiting vulnerability scanners. Instead, we compare
the results of IDOT with expected results obtained
by manual tests of a software security expert. We
examine two web applications, namely RailsGoat and
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Figure 5. The pages for user Arash (a) and user Ramin (b) 
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Figure 6. Trees corresponding to (a) Arash’s page and (b)
Ramin’s page

GetBoo. They are publicly available and chosen from
OWASP Broken Web Applications (BWA) 2 project.
OWASP BWA consists of vulnerable web applications
offered as virtual machines. We chose RailsGoat and
GetBoo since they are vulnerable to IDOR and the
vulnerabilities are publicly known and verifiable. For
certainty, the IDOR vulnerabilities were detected and
verified by an expert software security tester.

2 https://www.owasp.org/index.php/OWASP_Broken_Web_
Applications_Project, [visited: August 2019]

 

(a) 

 

(b) 

 

Figure 7. The tree obtained by (a) a - b and (b) a ∩ b

For the valuation of GetBoo and RailsGoat, IDOT
together with XAMPP was installed on a virtual ma-
chine having Ubuntu (version 16.04) operating system
with about 3GB RAM and two processing cores. we
first perform a crawling process in separate sessions
for each role using the Scrapy framework as described
in Section 4.1.1. Then, the information gathered in
the crawling phase is used for the attack and anal-
ysis phases by IDOT. The evaluation time for each
of our case studies takes about 30 minutes, which is
not short for such small applications. However, the
attack and analysis time can be reduced by manual
intervention in choosing a subset of parameters for
manipulation (instead of trying all possible parame-
ter manipulations). Also, since the bottleneck is pro-
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cessing, the time decreases in case there exist more
processing cores.

RailsGoat was evaluated as our first case study. In
this web application, users can view and manage their
incomes and send messages to other users. We crawled
RailsGoat using three registered users as well as a
guest user. Our investigation shows that there are 29
passive and eight active requests in this application.
IDOT, after attack and analysis, detected three vul-
nerable passive requests and two vulnerable active
requests. The test performed by the software secu-
rity expert showed that two passive requests among
29 and two active ones among eight requests are vul-
nerable. Comparing IDOT results with the expected
results obtained by manual tests indicates that for the
case of RailGoat IDOT has one false positive (in pas-
sive requests) and there is no false negative. Table 2
summarizes the results of testing RailsGoat by IDOT.

Table 2. Test results of RailGoat

Passive

Requests

Active

Requests
Total

Number of requests 29 8 37

Number of Expected vulnerable requests 2 2 4

Number of Detected vulnerable requests 3 2 5

GetBoo is our second case study. It is a web ap-
plication for managing user bookmarks including 35
passive and 15 active requests. Running IDOT on
Getboo resulted in detecting only a vulnerable pas-
sive request. The vulnerable request opens the re-
lated link in a stored bookmark. For example, as-
sume u1 has stored a bookmark b with an access link
http://getboo.com/redirect.php?id=9. Now, if u2 uses
this link in his request, he can get access to u1’s
bookmark. No other vulnerable request is detected
by IDOT. The result obtained through manual tests
performed by the human expert also confirms that no
other IDOR vulnerability exists in this application.
Table 3 summarizes the results of testing GetBoo by
IDOT.

Table 3. Test results of GetBoo

Passive

Requests

Active

Requests
Total

Number of requests 35 15 50

Number of Expected vulnerable requests 1 0 1

Number of Detected vulnerable requests 1 0 1

5 Conclusion and Future Work

IDOR is a logical vulnerability exploited by manipu-
lating request parameters to get unauthorized direct
access to an object and violating access control poli-
cies. The logical nature of IDOR makes its black-box
detection a challenging problem. Since existing vul-
nerability scanners cannot understand access control

policies of web applications and the policies are differ-
ent for each application, they are not able to detect
such vulnerabilities. Considering this gap, we proposed
a black-box method to detect IDOR without being
aware of the access control logic of web applications.
We implemented our method as an IDOR detection
tool, called IDOT, and experimentally evaluated its
effectiveness using a couple of case studies. The evalu-
ation results show that IDOT detects IDOR vulnera-
bilities with low rates of false-positive and negative.

The current version of IDOT has some limitations.
For example, it neglects file upload requests, which
may lead to false-negative if there exist such requests
in an application. Moreover, it only supports HTML
and CSS codes. While our method is not conceptually
limited to these technologies, we plan to improve IDOT
implementation to support technologies such as Ajax
and JavaScript to decrease the false-negative rate of
detection.

We also plan to extend IDOT in terms of time
efficiency. Now, it takes a long time to evaluate an
application, most of it pertains to generating different
forms of manipulated requests and also finding affected
pages of a request.
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