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A B S T R A C T

In information security, ignorance is not bliss. It is always stated that hiding

the protocols (let the other be ignorant about it) does not increase the security

of organizations. However, there are cases that ignorance creates protocols.

In this paper we propose distributed contingency logic, a proper extension of

contingency (ignorance) logic. Intuitively, a formula is distributed contingent

in a group of agent if and only if it is not follow from the knowledge of all

individual agents put together. We formalize secret sharing scheme (a security

property that is built upon ignorance of all agents), and a man in the middle

attack to a weak protocol in our logic. We also illustrate a condition where

disclose a secret may hide another one for ever. Finally we prove the main

theorems of every logics, soundness and completeness. We also prove that the

distributed contingency logic is more expressive than the classical contingency

logic and the epistemic logic.

c© 2018 ISC. All rights reserved.

1 Introduction

S ecurity protocols are widely used in transporta-
tion and storage of data. They are some rules and

instructions that perform security-related functions.
Are they safe and correct? How we can detect unau-
thorized actions? A path to answering these questions
is formal methods [1–3]. They are approaches to de-
scribing computational entities in a logical language
and reasoning about their behavior.

In this paper we define a logical language to de-
scribe ignorance based properties in security proto-
cols. We study three different problem. The first one
is the formal description of secret sharing schema, the
next one is formalization of a man in the middle at-
tack. The third problem is too interesting, we provide
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an environment with two secrets, then by uncovering
the first secret, we hide the second one forever.

Consider a secret sharing schema [4–6] with m+
1 agents. Each agent, i, has a unique local secret,
(xi, yi). Everyone knows that yi = f(xi) where f is a
polynomial of degree m. The polynomial is the main
secret and no one knows it. If the agents share their
knowledge about local secrets then by polynomial
interpolation techniques they can find f .

Secret sharing schema has two properties, the first
one is capability to learn the main secret whenever
all agents cooperate and put their local secrets to-
gether. Besides that the second property is any proper
subgroup of agents can not learn the main secret. In
above example any group B of m agents can not find
f through communication since they do not have
enough points to run interpolation algorithm.

The part that agents can learn main secret through
communication can be formalized in epistemic logic
with distributed knowledge [7–10] operator. A formula
is distributed knowledge among a group of agents if
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it is deducible from all their knowledge put together.

The second property of secret sharing states that
for proper subgroups of agents the main secret is
not distributed knowledge, it means agents of the
subgroup can not learn the main secret if they do not
share local secrets with other agents. The property
stronger it also says the agents in the proper subgroup
can not put aside the main secret. More formally
if φ is the main secret then ¬φ is not distributed
knowledge for them, too.

In logic of knowledge when an agents does not know
a fact and also does not know its negation, we for-
malize that with contingency operator. Contingency
[11–14] is an important notion in the logic of knowl-
edge. If something is contingent then it is possibly
true or possibly false. More precisely a “formula φ is
contingent” means the agent is ignorant about φ, or
in other words he does not know whether φ. Some-
thing is non-contingent if it is not contingent.

In some related articles [13, 15, 16] iglearnnorance
and knowing whether operators are used to capture
similar notion to non-contingency. In some models
the non-contingency ∆φ, can be defined by the knowl-
edge operator as Kφ ∨K¬φ. The interesting muddy
children puzzle [17] can be formalizing better in con-
tingency logic [18] instead of epistemic logic.

To formalizing the second property of secret shar-
ing schema where the main secret and its negation are
not distributed knowledge for the proper subgroup
we extend the contingency logic to distributed contin-
gency logic and we say the main secret is distributed
contingent for the subgroup.

We denote distributed contingency operator with
D. Intuitionistically, a formula DBφ means agents in
group B can not learn φ, and we say φ is distributed
contingent for B.

A formula φ maybe contingent for every agent in
the group (nobody knows whether φ) and be dis-
tributed knowledge between them. In this paper we
study the situation where the agents can not reach to
φ even if they put all their knowledge together. Thus
they can not learn φ. We call this notion distributed
contingency.

In [19], which is an extended abstract, author de-
fined a similar notion distributed knowledge whether,
with a bisimulation relation, on Kripke semantics. In
this paper we focus to use our logic in formal mod-
eling of security properties [1, 20, 21]. We also use
neighborhood semantics that present possible worlds
in a more geometric space, which can be seen in Sec-
tion 3.1.

The paper is organized as follows. In section 2 we

define the distributed contingency logic, its syntax,
semantics, axiom sets, and the completeness theo-
rem. Section 3 is assigned to application of our logic
in security. We formalize three interesting security
cases (secret sharing scheme, man in the middle at-
tack, and Revealing A Secret To Hide Another One)
in distributed contingency logic. In section 4 we show
that our logic is more expressive than classical con-
tingency logic, and epistemic logic. We put logical
backgrounds and proofs of main theorems of logical
part in the appendix.

2 Distributed Contingency Logic:
Language and Semantics

In the following we define the syntax and semantics
of distributed contingency logic. A finite group of
agents A and a countable set of atomic formulas P
are assumed to be given.

Definition 1. The language of Distributed Contin-
gency logic, LDC , over P and A is given by the fol-
lowing BNF:

φ := p ¬φ (φ ∧ φ) ∆aφ DBφ

Formula ∆aφ is read as “it is non contingent for a
that φ” and DBφ is read as “in group B it is dis-
tributed non-contingent that φ”.

Definition 2 (Neighborhood Model). A neigh-
borhood model is a triple M = (S,N, V ) where S is
a nonempty set of possible worlds, N = {Na | a ∈ A}
is a set of functions such that Na : S → P (P (S)),
and V is a valuation function.

Definition 3. Let M = (S,N, V ) be a neighbor-
hood model. The satisfaction relation between a
world (M, s) and a formula φ ∈ LD is inductively
defined as follows,

M, s |= > iff true

M, s |= p iff s ∈ V (p)

M, s |= ¬φ iffM, s 6|= φ

M, s |= φ ∧ ψ iffM, s |= φ and M, s |= ψ

M, s |= ∆aφ iff φM ∈ Na(s) or

(¬φ)M ∈ Na(s)

M, s |= DBφ iff φM ∈ NB(s) or

(¬φ)M ∈ NB(s)

where φM denotes the truth set of φ in M , (the
set of all possible worlds that satisfy φ), also NB(s)
is defined as follows,

NB(s) = {X ⊆ S |
⋂

a∈B ca(s) ⊆ X}
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where ca(s) =
⋂

a∈ANa(s) is the core of Na(s).

Example 1. Let M = (S,N, V ) be a neighborhood
model where A = {a, b}, S = {0, 1}, V (p) = {1} and

• Na(0) = Nb(0) = {{0, 1}},
• Na(1) = Nb(1) = {{1}, {0, 1}}.

then pM = {1} /∈ Na(0) so M, 0 |= ¬∆ap.

Definition 4 (Neighborhood Properties). Let
M = (S,N, V ) be a neighborhood model, s ∈ S, a ∈
A and X,Y ⊆ S. Then,

(r) : Na(s) contains its core if
⋂
Na(s) ∈ Na(s)

(s) : Na(s) is closed under superset, if X ∈ Na(s)
and X ⊆ Y ⊆ S implies Y ∈ Na(s)

(t) : X ∈ Na(s) implies s ∈ X
Definition 5. The proof system D∆ for distributed
contingency logic is defined as follows:

TAUT all instances of tautologies

∆Equ ∆aφ↔ ∆a¬φ

Re∆
φ↔ ψ

∆aφ↔ ∆aψ

D1 Daφ↔ ∆aφ

D2 ∆aφ→ DBφ if a ∈ B

DEqu DBφ↔ DB¬φ

ReD1
φ↔ ψ

DBφ↔ DBψ

ReD2 DCφ→ DBφ if C ⊆ B

Theorem 1 (Soundness). D∆ is sound with respect
to the class of neighborhood models with properties
(r) and (s).

Proof. See B.1.

Theorem 2 (Completeness). D∆ is strongly com-
plete with respect to the class of neighborhood models
with properties (r), (s) and (t).

Proof. See B.2.

3 Security Properties

A bug is a fault in source code or design of computer
program (protocol) that causes it to produce an in-
correct or unexpected result. Usually the producer
(designer) is ignorant about the bug. A hacker is the
one who is aware of the bug and knows how to use
it to perform an attack. Thus, contingency can play
a useful role in formalizing security properties and

protocols. In this section we demonstrate three inter-
esting security problems.

3.1 Secret Sharing

We began our paper with introducing secret sharing
among a group of agents. In Example 2 we formalize
a problem in this category.

Example 2. Let f = x2 +x+1 be a polynomial and
{a, b, c} be a set of agents. Suppose each agent se-
cretly knows a unique pair of integers. Assume agent
a holds (knows) the pair (1, 3), agent b has (−1, 1)
and agent c knows (0, 1). All the agents know that
there is a main secret Ax2 +Bx+C, that is a poly-
nomial of degree 2 and no one knows it. Let M =
(S,N, V ) be a neighborhood model where,

• S = {(A,B,C)|A,B,C ∈ Z},
• Na(s) = {X ⊆ S | s ∈ X and {(A,B,C) |
A+B + C = 3} ⊆ X},

• Nb(s) = {X ⊆ S | s ∈ X and {(A,B,C) |
A−B + C = 1} ⊆ X},

• Nc(s) = {X ⊆ S | s ∈ X and {(A,B,C) | C =
1} ⊆ X},

• V ((A,B,C)) = Ax2 +Bx+ C.

Then for agents {a, b} we have

N{a,b}(s) =

{X ⊆ S | s ∈ X and

{(A,B,C) | A+B + C = 3 and

A−B + C = 1} ⊆ X} =

{X ⊆ S | s ∈ X and

{(A,B,C) | A+ C = 2} ⊆ X}

Since for any X ∈ N{a,b}(1, 1, 1) we have (2, 1, 0) ∈
X and (1, 1, 1) ∈ X then M, s 6|= D{a,b}(x2 + x+ 1).
In other words function f is distributed contingent
between a and b. By similar reasoning for any proper
subset of {a, b, c} we can conclude distributed con-
tingent of that group about f .

3.2 Man In The Middle Attack

In the following we are going to relate distributed
contingency with “Man in the Middle attack”, a pop-
ular security protocols [22–24]. Consider the messages
passing between Alice to Bob in Table 1. Alice asked
for the public key of Bob and he sent his key PB to Al-
ice. Then she encrypted a message and sent it to Bob,
now he can decrypt the message with his private key.

A man in the middle attack can be applied success-
fully to the above protocol, where Mallory (attacker)
intercepts the messages. (Table 2)
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Figure 1. Two planes A + B + C = 3 and A−B + C = 1.

1 Alice “Hi Bob, it’s Alice.

Give me your public key” − >Bob

2 Bob “PB (Bob’s public key)” − >Alice

3 Alice “(Meet me!”)PB
− >Bob

Table 1. A non-secure protocol.

1 Alice “Hi Bob, it’s Alice.

Give me your public key” − > Mallory

1′ Mallory “Hi Bob, it’s Alice.

Give me your public key” − > Bob

2 Bob “PB (Bob’s public key)” − > Mallory

2′ Mallory “PM (Mallory’s public key)” − > Alice

3 Alice “(Meet me!”)PM
− > Mallory

3′ Mallory “(Meet me!”)PB
− > Bob

Table 2. A Man in the middle attack to a non-secure protocol.

In this attack Mallory plays the role of Bob (Alice)
when she talks to Alice (Bob). In (2′) she replace
Bob’s public key with her own key and sent it to Alice.
Therefore she can decrypt (3) and again encrypt it
with Bob’s public key in (3′).

Let p be “Mallory intercepted the messages”. The
neighborhood model for this attack is M = (S,N, V )
where,

• S = {0, 1},
• Na(0) = Nb(0) = Na(1) = Nb(1) = {S},
• V (0) = ¬p and V (1) = p.

Then M, 1 |= ¬D{a,b}p, and after the attack Alice
and Bob has distributed contingent that Mallory in-
tercepted their sequence of message. A man in the
middle attack can be successful if after its execution
the two parties have distributed contingent about the
attack.

3.3 Revealing A Secret To Hide Another
One

In epistemic logic [8, 25], the principle of full commu-
nication states, A set of formulas Φ entails a formula
φ, Φ ` φ, if and only if every pointed model that
satisfies all formula in Φ also satisfies φ. Let

∆S(M, s) = {ψ |M, s |= (ψ∧∆aψ) for some a ∈ A}

be the non-contingency set (knowledge set) in (M, s).
The principle of full communication is formalized as
follows,

M, s |= (φ ∧DBφ)⇒ ∆S(M, s) ` φ

Intuitively, the principle states “if a secret is dis-
tributed, then it follows from the knowledge of all
individual agents put together. The principle is not
always accurate [9, 26, 27]. There exists models where
M, s |= (φ ∧DBφ), but ∆S(M, s) 6` φ.

Consider a neighborhood model, M = (S,N, V )
where, S = {w, x, y, z, v}, V (w) = V (z) = {p, q},
V (x) = V (y) = {q} and the neighborhood set for
agents a and b and all the states is,

• Na(w) = Na(x) = {X ⊆ S | {x,w} ⊆ X},
• Nb(w) = Nb(y) = {X ⊆ S | {y, w} ⊆ X},
• Na(y) = Na(z) = {X ⊆ S | {z, y} ⊆ X},
• Nb(x) = Nb(z) = Nb(v) = {X ⊆ S |
{x, z, v} ⊆ X},

• Na(v) = {X ⊆ S | {v} ⊆ X},

Let w be the real world. In state (M,w) the secret
p holds and is distributed non-contingent in group
{a, b}. The principle of full communication is true in
(M,w).

By semantics, M,w |= D{a,b}p since ca(w) ∩
cb(w) = {w} and N{a,b}(w) = {X | w ∈ X}, which
means pM = {w, z} ∈ N{a,b}(w). It is also clear that
M,w |= p. Thus M,w |= (p ∧D{a,b}p). This means
the left part of the principle holds.

For the right part,

1 M,w |= (∆bq ∧ q)→ p because M,w |= p.
2 M,w |= ∆a((∆bq ∧ q) → p) because ((∆bq ∧
q)→ p)M = {w, x, z} ∈ Na(w) 1 .

From 1 and 2 we conclude,

M,w |= ∆a((∆bq ∧ q)→ p) ∧ (∆bq ∧ q)→ p (∗)

Moreover,

3 (∆bq ∧ q)M = {w, y} ∈ Nb(w) which means
M,w |= ∆b(∆bq ∧ q) ∧∆bq ∧ q.

4 Since q ∈ V (w), M,w |= q

1 In world w and z secret p holds. In world x the formula ∆bq

does not holds.
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5 M,w |= ∆bq because qM = {w, x, y, z} ∈
Nb(w).

From items 3,4 and 5 we conclude

M,w |= ∆b(∆bq ∧ q) ∧∆bq ∧ q (∗∗)

Now from (∗) and (∗∗) and definition of ∆S(M,w)
we have (∆bq ∧ q) ∈ ∆S(M,w) and ((∆bq ∧ q) →
p) ∈ ∆S(M,w). Thus, ∆S(M,w) ` p. Therefore the
principle of full communication holds in this models.

The attractive part happens when someone reveal
the secret q to public. Suppose someone publicly an-
nounce q, then the updated model M ′ = (S′, N ′, V ′)
is the previous structure, M , only limited to worlds
S′ = {w, x, y, z} 2 . Thus, V ′(w) = V ′(z) = {p, q},
V ′(x) = V ′(y) = {q} and,

• N ′
a(w) = N ′

a(x) = {X ⊆ S′ | {x,w} ⊆ X},
• N ′

b(w) = N ′
b(y) = {X ⊆ S′ | {y, w} ⊆ X},

• N ′
a(y) = N ′

a(z) = {X ⊆ S′ | {z, y} ⊆ X},
• N ′

b(x) = N ′
b(z) = {X ⊆ S′ | {x, z} ⊆ X},

We claim that if the agents a and b talk to each
other and share their knowledge, they can not access
to p.

More formally, ∆S(M,w) 6` p.

i For every φ, M,w |= φ iff M, z |= φ and M,x |=
φ iff M,y |= φ. (The proof is straight forward
by induction on the length of φ.)

ii Let φ ∈ ∆S(M,w), then for some c ∈ {a, b},
M,w |= ∆cφ ∧ φ. If c is a then since Na(w) =
Na(x) we have M,x |= ∆aφ, and similarly if c
is b then M,y |= ∆bφ. This means ∆S(M,w) ⊆
∆S(M,x) ∪∆S(M,y).

iii For every φ, M,x |= φ∧∆aφ iff M,x |= φ∧∆bφ.
(By part (i) and induction on the length of φ.)

By (i), we have ∆S(M,w) = ∆S(M, z) and
∆S(M,x) = ∆S(M,y), so by part (ii) we conclude
that ∆S(M,w) = ∆S(M,x). By part (iii) we have

{ψ |M,x |= (ψ ∧∆aψ)} = {ψ |M,x |= (ψ ∧∆bψ)}
Therefore,

∆S(M,w) = ∆S(M,x) = {ψ |M,x |= (ψ ∧∆aψ)}
Finally since M,x 6|= p, we conclude,

∆S(M,w) 6` p
Hence revealing secret q to public remove access to
secret p forever.

4 Expressiveness

In this section we deal with expressivity of logic D∆.
We will show that our logic is more expressive than

2 Secret q does not hold in world v so after announcement we

should remove v.

contingency logic. In order to do that we first trans-
late neighborhood models to Kripke models, then we
present two bisimilar Kripke model, and show that
they can be distinguished by distributed contingency
logic but not by contingency logic. We will use some
results from [14]. The following is the usual definition
for expressivity of logical languages.

Definition 6 (Expressivity). Let L1 and L2 be
two logical languages that are interpreted in the same
class of models M. Then,

• L2 is at least as expressive as L1, notation L1 �
L2 if for every formula φ1 ∈ L1 there is an
equivalent formula φ2 ∈ L2 over M,

• L1 and L2 are equally expressive, notation
L1 ≡ L2, if L1 � L2 and L2 � L1,

• L1 is less expressive than L2, notation L1 ≺ L2

if L1 � L2 and L2 6� L1.

Let ML be the language of modal logic:

If φ, ψ ∈ LML then ¬φ, φ ∧ ψ, 2aφ ∈ LDC

where 2aφ is read as “it is necessary that φ”. The
proof system of modal logic, ML, consist of TAUT,
K and M , where

K := 2a(φ→ ψ)→ (2aφ→ 2aψ)

M := 2aφ→ φ

Also let CL be the language of contingency logic:

If φ, ψ ∈ LML then ¬φ, φ ∧ ψ, ∆aφ ∈ LDC

where TAUT, ∆Equ and Re∆ form the proof system
for contingency logic.

In [14] they study expressivity of CL and ML in
neighborhood models with different kind of properties
and they reach to the following result.
Proposition 1. CL and ML are equally expressive
on the class of neighborhood models satisfying (t)

Proof. See [14] Prop 5.

A neighborhood model is called augmented if it
satisfies properties (r) and (s). The following theorem
presents a 1-1 correspondence between neighborhood
and Kripke models 3 for contingency logic CL.
Theorem 3.

• For every Kripke model MK = (S,R, V ) there
exists an augmented neighborhood model MN =

3 A Kripke model is a triple M = (S,R, V ) where S is a

nonempty set of possible worlds, R = {Ra | a ∈ A} is a set
of accessibility relations such that Ra ⊆ S × S, and V is a

valuation function.
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(S,N, V ) such that for all s ∈ S and all formula
φ ∈ CL, MK , s |= φ iff MN , s |= φ

• For every augmented neighborhood model
MN = (S,N, V ) there exists a Kripke model
MK = (S,R, V ) such that for all s ∈ S and all
formula φ ∈ CL, MK , s |= φ iff MN , s |= φ

Proof. See [14] Prop 9. and Prop 10.

At this state we are ready to prove Distributed
contingency logic is more expressive than contingency
logic.
Theorem 4. CL ≺ D∆

Proof. See B.3.
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Appendix A Backgrounds

A.1 Contingency Logic

Contingency [11–14] is an important notion in philo-
sophical and epistemic logic. In the literature it also
has appeared with other names, ignorance[15, 16] and
knowing whether [13]. A formula φ is contingent if it
is possibly true and possibly false, in other words the
agent is ignorant about φ.

A formula φ is non-contingent if it is necessarily
true or necessarily false, it means the agent knows
whether φ. If 2φ is necessarily φ then non-contingency

of φ, denoted by ∆φ, is defined by ∆φ := 2φ ∨2¬φ.

If we omit the distributed contingency operator
from definitions 1 and 3 we will have language and
semantics definitions of contingency logic. Two in-
teresting axioms of contingency logic are ∆Equ and
Re∆ (see Def. 5) where respectively state that,

• If we know whether φ then we also know
whether ¬φ
• If φ is equivalent to ψ then we are non contin-

gent about φ if and only if we are non contin-
gent about ψ.

A.2 Kripke Semantics

A Kripke model [28] is a triple (S,R, V ), where,

• S is a nonempty sets of worlds,
• R is a function, assigning to each agent a ∈ A

an accessibility relation Ra ⊆ S × S,
• V is a valuation function,

A relation sRat for a ∈ A and s, t ∈ S intuitively
means agent a can not distinguish two possible
worlds s and t. The satisfaction relation between a
formula φ in LDC and a pointed model (M, s), is
inductively defined as follows,

M, s |= > iff true

M, s |= p iff s ∈ V (p)

M, s |= ¬φ iffM, s 6|= φ

M, s |= φ ∧ ψ iffM, s |= φ and M, s |= ψ

M, s |= ∆aφ iff ∀t ∈ S sRat⇒M, t |= φ or

∀t ∈ S sRat⇒M, t |= ¬φ

M, s |= DBφ iff ∀t ∈
⋂

a∈ARa(s) M, t |= φ or

∀t ∈
⋂

a∈ARa(s) M, t |= ¬φ

A.3 Gossip Protocols

A gossip protocol [29–33] is a procedure for spreading
secrets among a group of agents using a connection
graph. In each call between a pair of connected agents,
they share all the secrets they have learned. In gossip
problem main secret, the collection of all individual
secrets is distributed knowledge between agents.

Initially, it seems the main secret can be learned
by all agents after execution of the protocol, how-
ever, the problem depends on other variables such as
connectivity of graph and expressiveness of protocol.
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The main secret cannot be learn 4 by agents if the
graph is disconnected. In a problem where the graph
is a tree with more than 2 nodes and the protocol is
LNS 5 the main secret is non-learnable too.

Appendix B Proofs

B.1 Proof of Theorem 1: (Soundness)

Proof.

• (∆Equ) M, s |= ∆aφ iff, φM ∈ Na(s) or
(¬φ)M ∈ Na(s), iff M, s |= ∆a¬φ.

• (Re∆) Suppose |= φ↔ ψ, then M, s |= ∆aφ iff
φM ∈ Na(s) or (¬φ)M ∈ Na(s) iff ψM ∈ Na(s)
or (¬ψ)M ∈ Na(s) iff M, s |= ∆aψ.

• (D1) By properties (r) and (s) it is easy to
show N{a}(s) = Na(s). Hence the claim holds.

• (D2) Suppose M, s |= ∆aφ, so φM ∈ Na(s) or
(¬φ)M ∈ Na(s). By property (r), ca(s) ⊆ φM

or ca(s) ⊆ (¬φ)M . Therefore φM ∈ NB(s) or
(¬φ)M ∈ NB(s).

• (DEqu) M, s |= DBφ iff, φM ∈ NB(s) or
(¬φ)M ∈ NB(s), iff M, s |= DB¬φ.

• (ReD1) Suppose |= φ ↔ ψ, then M, s |= DBφ
iff φM ∈ NB(s) or (¬φ)M ∈ NB(s) iff ψM ∈
NB(s) or (¬ψ)M ∈ NB(s) iff M, s |= DBψ.

• (ReD2) Since C ⊆ B, by Def. 3 we have
NC(s) ⊆ NB(s) (∗). If M, s |= DCφ then φM ∈
NC(s) or (¬φ)M ∈ NC(s). By (∗) φM ∈ NB(s)
or (¬φ)M ∈ NB(s). Thus, M, s |= DBφ.

B.2 Stages for Proof of Theorem 2:
(Completeness)

The canonical neighborhood model of D∆ is the triple
M c = (Sc, N c, V c) where

• Sc is the set of all maximal consistent sets,
• N c

a(s) = {|φ|| ∆aφ ∈ s},
• V c(p) = {s | s ∈ |p|},

and |φ|= {s ∈ Sc | φ ∈ s}.
Lemma 1 (Truth). For any s ∈ Sc and formula φ
M c, s |= φ if and only if φ ∈ s.

Proof. By induction on φ. The base case and boolean
cases are trivial.

• Case ∆aφ.

4 Note that the idea of defining distributed contingency is
formalizing non-learnable facts.
5 Learn New Secret: x will call y if x does not know the secret

of y

M c, s |= ∆aφ⇔semantics

φM
c

∈ N c
a(s) or (¬φ)M

c

∈ N c
a(s)⇔IH

|φ|∈ N c
a(s) or |¬φ|∈ N c

a(s)⇔Def. Nc

∆aφ ∈ s or ∆a¬φ ∈ s⇔∆Equ

∆aφ ∈ s

• Case DBφ.

M c, s |= DBφ⇔semantics

φM
c

∈ N c
B(s) or (¬φ)M

c

∈ N c
B(s)⇔Def. NB

for all a ∈ B φM
c

∈ N c
a(s) or

for all a ∈ B (¬φ)M
c

∈ N c
a(s)⇐⇒IH

for all a ∈ B |φ|∈ N c
a(s) or

for all a ∈ B |¬φ|∈ N c
a(s)⇐⇒Def. Nc

for all a ∈ B ∆aφ ∈ s or

for all a ∈ B ∆a¬φ ∈ s⇐⇒∆Equ

for all a ∈ B ∆aφ ∈ s⇐⇒D2

DBφ ∈ s

The following lemma prove that N c is well defined.
(See [14] Lemma 2).
Lemma 2. If |φ|∈ N c

a(s) and |φ|= |ψ| then ∆aψ ∈ s.
Theorem 5 (Completeness). D∆ is strongly com-
plete with respect to the class of neighborhood models
with properties (r), (s) and (t).

Proof. Suppose Γ 6` φ, then Γ ∪ {¬φ} is consistent.
By Lindenbaum’s Lemma, there exists s ∈ Sc such
that Γ ∪ {¬φ} ⊆ s. By Truth Lemma Γ 6|= φ.

B.3 Proof of Theorem 4

Proof. Let M (up) and M ′ (down) be the Kripke
models in Fig.2.

It is easy to see that M and M ′ are bisimilar with
relation Z = {(s, s′), (t, t′), (t, v′), (u, u′)} From the-
orem 2.20 in [28] we induce that ML can not distin-
guish M from M ′. By Thm.3:

• Mn = (S,N, V ) is neighborhood model corre-
sponds to M where S = {s, t, u}, V (p) = {s, u}
and
◦ Na(s) = Nb(s) = {{s, t, u}}.
◦ Na(t) = Nb(t) = {X | {t} ⊆ X ⊆ S}.
◦ Na(u) = Nb(u) = {X | {u} ⊆ X ⊆ S}.

• M ′
n = (S′, N ′, V ′) is neighborhood model

corresponds to M ′ where S′ = {s′, t′, u′, v′},
V ′(p) = {s′, u′} and
◦ N ′

a(s′) = {{s′, t′, u′}, {s′, t′, u′, v′}}.
◦ N ′

b(s
′) = {{s′, v′, u′}, {s′, t′, u′, v′}}.

◦ N ′
a(t′) = N ′

b(t
′) = {X | {t′} ⊆ X ⊆ S′}.

◦ N ′
a(u′) = N ′

b(u
′) = {X | {u′} ⊆ X ⊆ S′}.

◦ N ′
a(v′) = N ′

b(v
′) = {X | {v′} ⊆ X ⊆ S′}.
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Figure 2. Two bisimilar Kripke models M (up) and M ′

(down).

By Prop.1 Mn and M ′
n indistinguishable for contin-

gency logic CL. We claim that Mn, s |= ¬D{a,b}p but
M ′

n, s
′ 6|= ¬D{a,b}p

• Since Na(s) = Nb(s) we have N{a,b}(s) =
Na(s) = {S}. Hence pMn /∈ N{a,b}(s) and
(¬p)Mn /∈ N{a,b}(s). Thus, Mn, s |= ¬D{a,b}p.

• N ′
{a,b}(s′) = {X | {s′, u′} ⊆ X ⊆ S′}. Hence

pM
′
n ∈ N ′

{a,b}(s) and , M ′
n, s

′ 6|= ¬D{a,b}p.
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