The ISC Int'l Journal of
Information Security

July 2011, Volume 3, Number 2 (pp. 77-101)

http://www.isecure-journal.org

Alert Correlation and Prediction Using Data Mining and HMM

Hamid Farhadi!, Maryam AmirHaeri!, and Mohammad Khansari 2

1 Data and Network Security Lab, Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
2 Faculty of New Sciences and Technologies, University of Tehran

ARTICLE INFO.

ABSTRACT

Article history:

Received: 12 July 2010

Revised: 13 September 2011
Accepted: 28 September 2011
Published Online: 28 October 2011

Keywords:

Alert Correlation, Multistep
Attack Scenario, Plan Recognition,
Hidden Markov Model, Intrusion
Detection, Stream Mining.

1 Introduction

Intrusion Detection Systems (IDSs) are security tools widely used in computer
networks. While they seem to be promising technologies, they pose some serious
drawbacks: When utilized in large and high traffic networks, IDSs generate high
volumes of low-level alerts which are hardly manageable. Accordingly, there
emerged a recent track of security research, focused on alert correlation, which
extracts useful and high-level alerts, and helps to make timely decisions when a
security breach occurs.

In this paper, we propose an alert correlation system consisting of two ma-
jor components; first, we introduce an Attack Scenario Extraction Algorithm
(ASEA), which mines the stream of alerts for attack scenarios. The ASEA has a
relatively good performance, both in speed and memory consumption. Contrary
to previous approaches, the ASEA combines both prior knowledge as well as
statistical relationships. Second, we propose a Hidden Markov Model (HMM)-
based correlation method of intrusion alerts, fired from different IDS sensors
across an enterprise. We use HMM to predict the next attack class of the in-
truder, also known as plan recognition. This component has two advantages:
Firstly, it does not require any usage or modeling of network topology, system
vulnerabilities, and system configurations; Secondly, as we perform high-level
prediction, the model is more robust against over-fitting. In contrast, other pub-
lished plan-recognition methods try to predict exactly the next attacker action.
We applied our system to DARPA 2000 intrusion detection scenario dataset.
The ASEA experiment shows that it can extract attack strategies efficiently.
We evaluated our plan-recognition component both with supervised and un-
supervised learning techniques using DARPA 2000 dataset. To the best of our
knowledge, this is the first unsupervised method in attack-plan recognition.

© 2011 ISC. All rights reserved.

We can classify IDSs based on their detection mech-
anism into two classes: misuse detection and anomaly

Nowadays, intrusions into computer systems have
grown enormously. Attacks are increased both in quan-
tity and sophistication. Intrusion Detection System
(IDS) is a tool that can detect attacks with practically
reasonable accuracy.

Email addresses: farhadi@alum.sharif.edu (H. Farhadi),
haeri@ce.sharif.edu (M. AmirHaeri), m.khansari@ut.ac.ir
(M. Khansari).

ISSN: 2008-2045 © 2011 ISC. All rights reserved.

detection. An IDS can take advantage of either one
of them or can be a hybrid of both methods. Mis-
use detection method uses a predefined database of
attack signatures. Any matching traffic with a sig-
nature fires an attack alarm. In anomaly detection,
we try to make some profiles from benign traffic in
the learning phase. Then, in the testing phase, any
traffic that deviates from the benign traffic profile is
announced as anomalous traffic. The former method

ISeﬂure@

suffers from high false negative detection rate caused
by inadaptability of the method to new attacks. The
latter may suffer from high false positive rates due to
the inaccuracy of profiling methods, used in the IDS.

When we are dealing with large networks with many
sensors, we cope with too many alerts fired from
IDS sensors each day. Managing and analyzing such
amount of information is a difficult task. There may
be many redundant or false positive alerts that need to
be discarded. Therefore, in order to extract useful in-
formation from these alerts we use an alert correlation
algorithm, which is the process of producing a more
abstract and high-level view of intrusion occurrences
in the network from low-level IDS alerts.

Alert correlation is also used to detect sophisticated
multistep attacks. A multistep attack is defined as a
sequence of simple attacks that are performed suc-
cessively to reach some goal. During each step of the
attack some vulnerability, which is the prerequisite of
the next step, is exploited. In other words, the attacker
chains a couple of vulnerabilities and their exploits
to break through computer systems and escalate his
privilege. In such circumstances, IDSs generate alerts
for each step of the attack. In fact, they are not able
to follow the chain of attacks and extract the whole
scenario. Getting advantage of alert correlation, it
is possible to detect complex attack scenarios out of
alert sequences. In short, alert correlation can help
the security administrator to reduce the number of
alerts, decrease the false-positive rate, group alerts
based on alert similarities, extract attack strategies,
and predict the next step(s) of the attacks.

In this paper, we propose an alert correlation system
consisting of two major and two minor components.
Minor components are the Normalization and the
Preprocessing components that convert heterogeneous
alerts to a unified format and then remove redundant
alerts. Major components are the ASEA and the Plan
Recognition components that extract current attack
scenario and predict the next attacker action.

In the ASEA component, we used data mining to
correlate IDS alerts. The stream of attacks is received
as input, and attack scenarios are extracted using
stream mining. While reducing the problem of discov-
ering attack strategies to a stream-mining problem has
already been studied in the literature, current data-
mining approaches seem insufficient for this purpose.
We still need more efficient algorithms as there are
a plethora of alerts and we need real-time responses
to intrusions. This issue is discussed in more details
subsequently.

Intrusion detection methods require human knowl-
edge for supervised gathering and acquisition of data.

18:0ured)

Alert Correlation and Prediction Using Data Mining and HMM — H. Farhadi, M. AmirHaeri, M. Khansari

Using Machine Learning (ML) methods, one can omit
such a manual necessity and automate the process. It
also makes the method independent of various intru-
sion types. However, ML techniques face some chal-
lenges. There are only a few examples of complex In-
ternet breaches publicly available. Thus, it is difficult
to apply ML on them, since most of ML algorithms re-
quire many examples to be trained. Besides, this prob-
lem affects the testing phase and performance mea-
surement. As a new approach, we move to probabilis-
tic approaches like Hidden Markov Models (HMMs).
This tool can model both sequential and probabilistic
nature of sophisticated intrusions. The insight behind
this idea is that ordering property of intrusions pro-
vides some advantages over other properties such as
frequency properties in detection.

In the Plan Recognition component, we used HMM
to predict the next attack class of the intruder that is
also known as plan recognition. The main objective of
the attack plan recognition is to arm the management
with information supporting timely decision making
and incident responding. This helps to block the attack
before it happens and provides appropriate timing for
organizing suitable actions.

Consider a four-step attack in which the first three
steps are occurred and detected by IDSs. If the fourth
step is a zero-day attack, it is unlikely to be detected
by the IDSs so that they fail to alert the administrator.
On the other hand, if we try to predict the future
attack at a high granularity level, we may determine
(at least) the next class of attack that is going to
happen. Given the dynamic nature of attacks, it is
beneficial to perform prediction at coarser granularity
level. Since particular attack methods usually evolve
during time, modeling and prediction in fine-grained
levels can be error prone. Thus, prediction at coarser
levels gives an overall sight and analysis of the target
network rather than specific but not necessarily precise
prediction at small granularities.

1.1 The Reference Architecture

Figure 1 represents the integrated correlation pro-
cess in which our solution plugs. “Normalization” and
“Pre-Processing” take place on each incoming alert.
The former converts heterogeneous events from vary-
ing sensors into a single standardized format which is
accepted by the other correlation components. This
unit is very helpful when we are dealing with different
encodings from different sensors. The latter compo-
nent ensures that all required attributes in alerts such
as source, destination, and start time of the attack
have meaningful values.

The “Alert Fusion” component combines alerts is-
sued from different sensors, but related to the same

July 2011, Volume 3, Number 2 (pp. 77-101)

Sensor Alerts Normalization

4

Pre-Processing }—b Alert Fusion

Thread

Alert Verification)
Reconstruction

Sensor
Ontology
Database

A

Active J;

Probing
Reconstruction

e

Asset
Database

Attack Session

‘ & < Intrusion Reports | Prioritization

Impact Analysis

Multi-Step Focus
Correlation Recognition

\

Security Administrator

Figure 1. Correlation Process Overview [1]

activity. The “Alert Verification” unit takes an alert as
an input and determines if the suspicious correspond-
ing attack is successfully performed. Failed attacks
are then labeled so that their effectiveness will be de-
creased in upcoming correlation phases. The “Thread
Reconstruction” component combines and series the
attacks having the same source and target addresses.
In the “Attack Session Reconstruction” component,
both network-based alerts and host-based alerts that
are related to the same attacks are gathered and asso-
ciated.

All four previous components (i.e. Alert Fusion,
Alert Verification, Thread Reconstruction, and Attack
Session Reconstruction) operate on similar alerts and
try to simplify later processing through some sort of
unification and reducing redundancy. The next two
units (i.e. “Focus Recognition” and “Multi-Step Cor-
relation”) deal with attacks that are potentially tar-
geted at wide range of hosts in the enterprise. The
“Focus Recognition” component identifies those hosts
to which a considerable number of attacks are tar-
geted or originated from. This component hopefully
detects port scanning attempts as well as Denial of
Service (DoS) attacks. The “Multi-Step Correlation”
component identifies common attack patterns, which
are composed of different individual attacks possibly
occurring at different zones in the network. Finally,
the “Impact Analysis” component calculates the im-
pact factors of current attack(s) on the target network
and assets. In the last two components (i.e. “Impact
Analysis” and “Proioritization”), based on the tar-
get network, alerts will be contextualized as the final
stage of the correlation process. The “Proioritization”
component ends the process with classifying events in
different importance groups providing faster ability to
find relevant information about a specific host or site.

In this research we focus on the “Multi-Step Corre-
lation” component to extract attack scenarios using
sequence mining and to predict future attacker behav-
ior based on a learned Hidden Markov Model (HMM).

The remainder of this paper is organized as follows:
The next section discusses the related work. Section
3 describes our system architecture. Our correlation
model and attack prediction algorithm is discussed in
Section 4. Section 5 explains the ASEA components.
Section 6 briefly reviews HMM. Section 7 details the
Plan Recognition component. In Section 8 and 9, we
present the experimental results. The last section
concludes the paper.

2 Related Work

The related works fall into two categories. First, works
related to intrusion correlation for detecting complex
attack scenarios, and second, works related to predict-
ing the attacker’s next action(s).

2.1 Intrusion Detection

Valeur et al. [1] proposed a comprehensive approach
to alert correlation. The paper defines a five step
process to correlate alert sequences: preprocessing,
reconstructing attack session, attack prioritization,
effect analysis and reporting intrusion.

However, most proposed alert correlation methods
do not consider all of these processes. Pietraszek [2],
Smith et al. [3], and Morin et al. [4] tried to reduce the
amount of alerts as well as decreasing the false positive
rate. Some concentrate on clustering similar alerts (as
in Cuppens and Miege [5], and Peng et al. [6]) and
others focus on discovering attack strategies (as in Li
et al. [7], Zhu and Ghorbani [8], and Al-Mamory and
Zhang [9]).

The community proposed variant approaches
based on attacks’ prerequisite relations. Among them
JIGSAW (Templeton and Levitt [10]) introduced a
language to describe attacks in terms of their pre-
requisites and consequences and made a database of
such attacks to detect complicated multistage attack

scenarios.
@

Morin et al. [4] proposed M2D2 data model and
used formal tools for intrusion alert correlation. They
put together some motivating and relevant concepts
to construct a model. The model tries to raise the total
detection accuracy while keeping the false positive as
low as possible.

Al-Mamory and Zhang [9] proposed a different ap-
proach to discovering attack scenarios based on con-
text free grammars. They express the similarity be-
tween the “construction of attack graph from alerts”
and “compiling a program and generating its machine
code”. The method describes attack scenarios using
an attribute context-free grammar. Attributes denote
prerequisites and consequences of attacks. For each
alert stream, an SLR parser generates the parse tree
and then the attack graphs are constructed similar to
generating executable code.

Zhu and Ghorbani [8] utilized neural networks for
extracting attack scenarios without using prior knowl-
edge. They used a multilayer perceptron is used to
extract the causal correlation between a pair of alerts.
In this method, the causal correlations all newly ar-
rived alerts are calculated to determine which previous
alert should be correlated to the new alert

In addition to previous methods, some data min-
ing based approaches are presented to the community.
Shin and Jeong [11] presented a data mining frame-
work for alert correlation. Their framework consists
of three components: (1) association-rule miner, (2)
frequent-episode miner and (3) cluster miner. This
method incorporates some data mining methods which
are inefficient for this application such as Apriori al-
gorithm to extract frequent episodes. This algorithm
suffers from being too time consuming. Li et al. [7] pro-
posed a statistical filtering approach which is based
on sequence-mining. The filter discards irrelevant and
scattered alerts to reduce the amount of alerts. The al-
gorithm is incapable of discovering infrequent attacks
while it can mine for frequent attack sequences.

2.2 Attack Plan Recognition

Bayesian networks and HMMs were used for alert cor-
relation. In De Vel et al. [12], the input data is divided
into T intervals, each of which forms a hidden state of
an HMM. Observations are organized as a Bayesian
network including case specific evidences of criminal
activities. In computer forensics, this structure is used
to detect evolution over time of a criminal activity.
Even though, the idea of embedding a Bayesian net-
work in an HMM is quite novel in the community. The
processing is performed in the off-line mode and after
crime commitment. Therefore, the prediction capabil-
ity of the system is not effective. In Ourston et al. [13],
HMM is used to detect the current intrusion through

18:0ured)

m Alert Correlation and Prediction Using Data Mining and HMM — H. Farhadi, M. AmirHaeri, M. Khansari

its prerequisites. To the best of our knowledge, this is
the first attempt to use HMM for alert correlation.

In addition to Bayesian networks and HMMs,
signature-based correlation engines have also been
used as in Lee and Qin [14] to detect multi-stage
attacks. It uses a six-stage predefined HMM for each
attack (as the attack signature) and puts them all in
a signature database. Then, using the HMM sequence
decoding algorithm and alerts as observations, it can
compute the most probable signature in the database
to detect current multi-stage attack. Of course, de-
tection capability of the system is limited to the
predefined signature database. Similar to the other
signature based detection systems, it suffers from poor
adaptiveness to newly introduced attack patterns.

Detecting the current attack using its prerequisites
and/or consequences is proposed in Zhai et al. [15]
where the concept of state-based evidences (e.g. open
ports) is defined. It uses this kind of extra informa-
tion in addition to raw IDS alerts as the input of a
Bayesian network based inference engine to cope with
the detection of current attacks.

All the aforementioned methods use the sequen-
tial nature of multi-step cyber attacks, getting advan-
tage of sequence modelers such as Bayesian networks
and HMMs. Nevertheless, unlike previously explained
methods, in plan recognition component, we address
the problem of predicting the attacker’s next possi-
ble action employing ordering properties of correlated
IDS alerts. In other words, the component is not an
intrusion detection system:; it settles on top of a series
of IDS sensors to obtain attack patterns and predict
their behaviors. Some old approaches to sequence pre-
diction exist (such as Ehrenfeucht and Mycielski [16])
that look for the longest repeated suffix of a sequence.
More complicated approaches were introduced later,
including Qin and Lee [17] and Lee and Qin [18]. These
series of complementary articles use adaptive Bayesian-
based correlation engine for attack steps that are di-
rectly related to each other (i.e. pre/post conditions)
similar to a signature based detection engine. More-
over, they exploit Granger Causality Test (GCT) to
recognize unknown attacks without any prior knowl-
edge close to an anomaly detection engine. Limitation
of this method is its non-automatic construction of
the initial lattice by a domain expert. The technique
also suffers from performance related issues because of
its computational complexity. Furthermore, the GCT
target needs to be specified manually; otherwise, the
pairwise GCT operation can be quite time consuming.

In Ning and Gong [19], another method was pro-
posed named Max-1-Connected Bayesian Network
(M1CBN), which improved the computation perfor-
mance (in particular with polynomial complexity) of

July 2011, Volume 3, Number 2 (pp. 77-101)

prior polytree-based approaches (Lee and Qin [18]).
The polytree is defined as the library of attack plans.
The paper has also provided more expressive power to
illustrate attack plans. Although it tries to improve
the computational performance of polytree, it still has
the problem of detecting newly introduced attacks. It
uses a prepared and relied attack plan library which re-
sults in the same bottleneck as static signature based
approaches.

Finite-state models (i.e. Markov based models) are
also center of concentration in attack behavior pre-
diction. In Fava et al. [20], Variable Length Markov
Model is exploited for attacker plan prediction. The
idea is a sequence modeling technique ported from
other fields like text compression and is adaptive to
newly observed attack sequences. Farhadi et al. [21]
uses Markov Model as a supervised tool to predict the
next attacker action.

In the following, after some explanations about our
system architecture, we first discuss our Alert Scenario
Extraction Algorithm (ASEA) that detects complex
attack scenarios, and then discuss our HMM-based
attack plan recognition method.

3 System Architecture

Figure 2 depicts main components of the proposed sys-
tem. In the following, we first describe Normalization
and preprocessing components, and then we discuss
ASEA and Plan recognition components in the next
sections.

3.1 Alert Normalization

Correlation engines, especially in large networks, usu-
ally receive a vast number of alerts from many hetero-
geneous detection sensors each of which may encode
alerts in a different format. In alert normalization,
these inconsistencies are converted into a single com-
mon unified format so that later processing units can
operate transparently from detection sensors. In such
a conversion, the alert format of each type of sensor
must be syntactically and semantically defined in ad-
vance. The conversion can be implemented either in a
centralized form or in a decentralized form. In the cen-
tralized implementation, sensors send alerts in their
vendor defined format and then all alerts are trans-
lated into the appropriate format in the correlation
engine side. In contrast, in decentralized implemen-
tation the load is distributed among normalization
modules on sensors. The former has simpler implemen-
tation while the latter has better performance. We use
the Intrusion Detection Message Exchange Format
(IDMEF) standardized by the Internet Engineering
Task Force (IETF) as alert input data model.

3.2 Alert Pre-Processing

Due to the possible existence of many security devices
in our target environment, an abundant number of
alerts might be generated per second. This fact makes
it difficult to perform any kind of processing on the
data in real time or at least in a timely fashion. Ac-
cordingly, we need to reduce redundancies via cluster-
ing, aggregation, and fusion to decrease the volume
of alerts. Our preprocessing approach in this unit is
based on Lee and Qin [18]. The goal of this unit is alert
volume reduction, keeping important and effective
alert attributes such as timestamp, source and desti-
nation IP addresses, port number, user name, process
name, attack class, and sensor ID. These attributes
are all defined in the IDMEF standard.

In alert aggregation, we gather alerts which have
slightly different timestamps but contain the same
attributes to form a super alert.

Assume the collection of intrusion alerts to be A =
{8;yi = 1,2,...}, in which ¢; is a super alert. §; is
an aggregated set of alerts {a(i,l),a(i’g),a(m), .. }
holding the same attributes (e.g. same port number
and source IP address) but with slightly different
timestamps that falls into the predefined window size
of T. Let a(; ;) be an intrusion alert composed of
several attributes (u1, ug, us, . ..). For instance, u; can
be the source IP address and us can represent the
destination IP address and so on. Now, we denote a
super alert as follows:

Ul U1 (5%
u U2 U9
5 = us o ug A us ;
(i.1)) 0.9)
4 ASEA

In this section we introduce ASEA for extracting at-
tack scenarios from the stream of IDS alerts. Subsec-
tion 4.1 describes several data mining terms we use
later. Subsection 4.2 is dedicated to formalization of
our model. In Subsection 4.3, we outline the proposed
algorithm.

4.1 Data Mining Terminology

In this section we proposed the definition of terms
and expressions that are used throughout the paper.
Even though the data mining community is familiar
with them, they may be alien to security experts.

Itemset: A non-empty set of items.
Sequential Pattern: An ordered list of items in a

1S¢0ured)

Alert Correlation and Prediction Using Data Mining and HMM — H. Farhadi, M. AmirHaeri, M. Khansari

Input P r

Output

Attack Scenario Extraction

Attack
Scenario

Raw IDS Alerts

Normalization
N

N
— Preprocessing Plan recognition Attack
Plan
\, v \ S

Figure 2. System Architecture

data stream.

Support Count: The frequency of an itemset in a
data set.

Minimum Support Count (min_sup): The mini-
mum number of an itemset in a data set in order to
be considered as frequent.

Frequent Itemset: An itemset with support count
of at least min_sup.

Frequent Sequential Pattern: A pattern s =
S1,89,--.,8, which, for all 1 <14 < j < n, we have
8; # Six1, and item s; has occurred at least min_
sup times before item s; in the data stream.

Super-pattern: A pattern which has all items of
another pattern in the same order. Formally, pattern
s = 81,82,...,8, I8 a super-pattern of pattern t =
t1,ta,..., L, if there exists m indices 1 < i1 < ig <
-+« < iy < nsuch that for every 1 < 5 < m, we
have s;; =t;

Proper Super-pattern: A pattern which is super-
pattern of another pattern, but is not equal to it.
Maximal Sequential Pattern (MSP): A frequent
sequential pattern which none of its proper super-

patterns are frequent.

4.2 A Formal Description of the Model

We assume a network in which several IDSs are de-
ployed. IDSs generate a stream of alerts, which is col-
lected at a central place for further investigation (i.e.
alert correlation). This stream should be sorted based
on the timestamp of the alerts.

We formally describe an alert as a binary string. In
other words, the set of possible alerts is A C {0,1}*.
Each alert is assigned an ID, which distinguishes its
“type”. For instance, all alerts of type Sadmind_Ping
are assigned the same alert ID. Let ZD C N be the set
of possible alert types. Define a function @: A — ZD,
which takes an alert and returns its type. (We use
the symbol “@”—pronounced AT—as a mnemonic for
“Alert Type”). As a convention, to distinguish alerts
from alert types, we hereafter use lowercase Greek
letters for alerts, and lowercase Latin letters for alert

18:0ured)

types.

We need the correlation of any two alert types
to construct attack scenarios. Some approaches use
statistical analysis (as in Li et al. [7] and Zhu and
Ghorbani [8]) while others use prior knowledge to
determine the correlation (as in Al-Mamory and Zhang
[9], and Bahreini et al. [22]). The correlation should
reflect the causal relationships of alert types. For
instance, if alert type a € ZD is a prerequisite to alert
type b € ZD but the inverse is not true, the correlation
of a and b should be higher than the correlation of b
and a. To emphasis this property, we hereafter refer
to correlation as causal correlation, and denote it by
function ¥: ZD — [0, 1] . The above description is
then formally translated into ¥(a,b) > ¥(b,a) . We
use prior knowledge to compute causal correlation.
Note that unlike correlation coefficient, ¥ cannot be
negative.

Similar to Li et al. [7], Zhu and Ghorbani [8], and
Valdes et al. [23], we use a matrix to store causal cor-
relations of alert types. A Causal Correlation Matrix
(ccM) for alert types ay,as,...,a, € ID is defined
as an n X n matrix whose (¢, j)-element is ¥(a;, a;) ,
where 1 < 4,5 < n. This matrix is usually asymmetric.

Two alert types are correlated if their causal corre-
lation is not less than a certain threshold. Formally,
let 7 be the causal correlation threshold, adjusted by
network administrator. Alert types (in the specified
order) are correlated if and only if . Two alerts are
correlated if their corresponding alert types are corre-
lated. That is, alerts (in the specified order) are corre-
lated if and only if . We define a Correlated Frequent
Sequential Pattern (CFSP) as a sequential pattern in
which every two adjacent alerts are correlated.

Our approach to find CFSPs is simple: An alert is
deemed important if it is frequent. Thus, we first
find MSPs and add them to MSP_Table. Based on the
definition of MSP, the MSPs of each window contain all
frequent sequential patterns (FSPs) of it. So, keeping
track of MSPs instead of FSPs helps in saving memory.

July 2011, Volume 3, Number 2 (pp. 77-101)

Then we check whether each sub-pattern of an MSP is
CFSP, by verifying the correlation condition described
above. If an FSP is found to be a CFSP, we add it to
CFSP_Table.

Importance caused by high frequency can some-
times be inaccurate. There are frequent alerts, which
are unimportant such as “stop words” in the case of
search engines. Moreover, we may face some infre-
quent alerts which are important. In both cases we
need to take care of such alerts and we should recog-
nize them beforehand, through trial-and-error. As a
simple solution, it is possible to assign an importance
factor to each alert type, based on which its mini-
mum support count is raised (in the former case) or
lowered (in the latter case). We define the importance
factor function Z: ID — (0, 00). The function takes
and alert type, and returns its importance. The more
important an alert, the lesser its associated “minimum
support count”. In the initialization step, the algo-
rithm computes Z(a) for each alert type a € ZD, and
computes min_sup, based on Z(a) and a system-wide
parameter min_sup.

Finding FSPs in a stream of alerts is a resource-
intensive task. Usually we are dealing with long se-
quences that it is infeasible to calculate FSPs for
them. To overcome this limitation, algorithms split the
stream into windows, and find FSPs in each window
separately. The window size (L) can be either a time
interval or the alert count. In the former case, the win-
dow contains a number of alerts raised in fixed time
intervals. In the latter case, the window contains a
fixed number of alerts. We adopt the second approach.

Suppose that aq, s, ... is a stream of alerts. We
can divide the window-based algorithms into three
broad categories:

Sliding window: In this approach, once the algo-
rithm is run with a window, the window “slides”
A alerts in the stream (1 < A < L). That is, if
[, @it1, ..., @irn—1] is a window, the next window
will be [y A, QifAt1, .- Qitatrr—1]- Any two ad-
jacent windows share L — A alerts.

Landmark window: In this approach, a “landmark”
alert is selected, and every window contains alerts
from the landmark up until now. That is, if «; is the
landmark alert, and «y is the current alert, the win-
dows will be [av;], [, 0+ 1], ..y [, Qigy - oy]
Note that if the landmark alert is the first one, the
last landmark window is the whole alert stream.

Damped window: This approach is similar to the
sliding-window model, but it gives “weights” to
each window in computations. In general, the more
recent a window, the higher the weight.

Our approach is similar to the sliding-window model,

but it borrows ideas from the other two models. We
describe the similarities after justifying our choice of
parameters.

The sliding window deals with two parameters: A
and L. At one extreme, A = 1. At the other extreme,
A = L. For a stream with N alerts, the choices corre-
spond to N — L+ 1 and (%1 windows, respectively. It
is obvious that in large data streams, the latter choice
outperforms the former by a factor of L, but it is less
accurate. In order not to sacrifice accuracy in favor of
performance, we introduced the retrospect factor (p).
This parameter determines how many prior windows
should be looked back in order to find longer corre-
lated patterns. Subsection 4.3 gives a more detailed
description.

Experimental results show that, by picking p and
L wisely, the loss of accuracy due to the adoption of
A = L is negligible.

4.3 Algorithm Outline

Algorithm 1 is an outline of ASEA. We tried to
make the outline as readable as possible, yet there
are some points that need to be explained. We will go
through the algorithm step-by-step:

Steps i—ii (Initialization): In these steps, the algo-
rithm computes min_sup, for each alert type a €
ID. The computation can be tweaked based on the
network environment, but a naive suggestion is to
let min_sup, <+ fm?(‘;)up]

Step 1-2: Step 1 sets the current window number
(i < 1). Step 2 sets the sequence—in which we
temporarily store alerts—to empty (Q + &). The
sequence holds alerts until its size equals L.

Steps 3—4: The algorithm blocks at this step, until
an alert receives. The alert triggers steps 3-21 (We
used event-based model to simplify the algorithm.
It can be easily translated into poll-based model).
In step 4, we concatenate the newly-received alert
to @ (@ + Q || &, where the binary operator ||
denotes concatenation).

Step 5: Checks whether the size of the temporary
sequence is L. If so, there are enough alerts to form
a window, and we proceed to steps 6-21.

Steps 6—8: The alerts are sorted based on their times-
tamps, copied to a window, and the temporary se-
quence is freed.

Step 9: MSPs of current window are mined and added
to MSP_Table. This table stores MSPs as well as the
window number in which they are found.

Step 10: Each FSPs of current window is checked
whether it is CFSP according to the CCM. Add the
current CFSPs to the CFSP_Table.

Step 11-18: After Finding the current CFSPs CFSP_
Table should be examined that if the current CFSPs

1S¢0ured)

84

Alert Correlation and Prediction Using Data Mining and HMM — H. Farhadi, M. AmirHaeri, M. Khansari

Algorithm 1 ASEA

Input:

o Alert stream (alerts are collected from all sensors or IDSs in the network and sorted by their occurrence

time).
Window size (L)
Minimum Support Count (min_sup)

Retrospect Factor (p)
Causal correlation Matrix (CCM)
o Correlation Threshold (7)
Output:
o Attack Scenarios

Algorithm:
Initialization (Required once):

Importance Factor (Function Z: ZD — (0, 00))

i. For each alert type a € ZD in the stream, compute Z(a).
ii. Calculate min_sup, according to min_sup and Z(a).

1: let ¢ < 1.
2: let Q + @.
3: On receipt of each new alert a:
4 let Q<+ Q| a.
5: if |Q| = L then
6: Sort alerts in () based on their timestamps.
7. let window; + Q.
8 let Q + @.
9: Find MSPs in window;, and add them to MSP_Table.
10: Compute CFSPs from MSPs, and add them to CFSP_Table.
11: for j =1 tomin(i — 1, p) do
12: let CFSP; be any CFSP in CFSP_Table belonging to window;.
13: let CFSP; be any CFSP in CFSP_Table belonging to window;_;.
14: let a and b be the first and the last alert type of CFSP; and CFSP;, respectively.
15: if U(a,b) > 7 then
16: Add CFSP; || CFSP; to CFSP_Table.
17: end if
18: end for
19: leti<+1+4+1
20: end if

can be correlated to recent CFSPs. If the last alert
of each recent CFSP is correlated to the first alert
of current CFSP, then current CFSP is concatenated
to recent CFSP. A recent CFSP is a CFSP that the
difference between its window number and current
window number is less than the Retrospect Factor
(p). For each CFSP the window number of the last
alert is stored as its window number. This step helps
us to aggregate the previous alert to the current
alert and construct multistep attack scenarios.

Step 19: The current window marker (¢) is incre-
mented by 1.

4.4 Exemplifying the Algorithm

We illustrate the operation of the algorithm by a
simple example:

18:0ured)

Let L = 10, min_sup = 3, 7 = 0.5, and suppose
CCM is as shown in Table 1. Also, suppose that the
importance factor of all alerts is equal. Consider the
following stream, where each letter represents an alert
type:

AKAKACDAKK | BCBBCCCDCF |
FDDAFDAFAD

Once the first window is received, its MSPs are cal-
culated, as shown in Table 2.

Then we should extract CFSPs from MSPs. In the first
window, AK is a frequent pattern, but for extracting
attack scenarios, being frequent is not sufficient, the
alerts should also be correlated. So if alert A is followed
by alert type K in a CFSP, alert type K should be
correlated to alert A according to the CCM. All CFSPs
are extracted from MSPs in this stage. CFSPs of this

July 2011, Volume 3, Number 2 (pp. 77-101)

Table 1. The causal correlation matrix (CCM).

Alert A B C D K F
A 0.2 0.7 0.1 0.3 0.6 0.2
B 0.2 0.3 0.1 0.8 0.1 0.7
C 0.4 0.1 0.2 0.7 0.3 0.4
D 0.3 0.4 0.1 0.3 0.8 0.2
K 0.3 0.2 0.9 0.1 0.4 0.3
F 0.1 0.9 0.2 0.5 0.1 0.3

Table 2. MSPs (a).

Window number Maximal Sequential Pattern

1 AK

phase are shown in Table 3.

Table 3. CFSPs (a).

Correlated Frequent Window
Sequential Pattern number
A 1
K 1
AK 1

After receiving the next window, MSPs of this window
are calculated first (see Table 4), and then CFSPs are
generated. In this window BC'is a frequent pattern but
according to the correlation matrix, C' is not correlated
to B. Thus BC is not added to CFSP_Table. Now all

longer CFSPs should be generated from CFSP_Table.

For example, AK is a CFSP that occurred in the first
window, and C'is a CFSP, which occurred in the second
window. So AK is raised before C. Also, according to
the correlation matrix, C' is correlated to K so AKC
is a CFSP. All of CFSPs are generated and added to
CFSP_Table in this manner, as shown in Table 5.

Table 4. MSPs (b).

Window number Maximal Sequential Pattern

1 AK

2 BC

The third window is processed as described above.

MSPs and CFSPs after receiving the third window are
demonstrated in Tables 6 and 7.

5 Updating CCM

In this section we propose an algorithm to obtain
causal correlation between each pair of alerts and
propose an algorithm for updating alert correlation

Table 5. CFSPs (b).

Correlated Frequent ‘Window
Sequential Pattern number

A 1

K 1

AK 1

B 2

C 2

AB 2

KC 2

AKC 2

Table 6. MSPs (c).

Window number Maximal Sequential Pattern

1 AK
2 BC
3 FD, A

matrix. This algorithm belongs to ASEA component
in the system.

One of the helpful data mining methods is associa-
tion rules. They demonstrate the interesting relations
between data in large databases. Association rules can
help us to determine correlation between alerts, the
confidence of association rules can be considered as
causal correlation.

For example the following rule denotes that the
Sadmind_Amslverify_Overflow alert is raised after
the Sadmind_Ping alert after the time lag elapses:

Sadmind_Ping R Sadmind_Amslverify_Overflow
time lag

The confidence of an association rule A — B is

defined as S;f(ﬂ. The average delay between the
p(A)

occurrence of each rule antecedent and consequent is

considered using a time lag for each rule to denote, as

in Harms and Deogun’s algorithm in [24].

Since IDSs generate many alerts, we need an efficient
processing to respond to all alerts. The association
rule algorithm has to satisfy three requirements:

(1) Data stream support. The majority of associa-
tion rule algorithms reflect relations among at-
tributes. This feature is usually beneficial in case
of processing database transactions. Besides, we
are coping with alert sequences and need to look
at the whole sequence to extract the relation
between its elements.

(2) Low overhead. As the application is performing
in a real time manner it should be light both in

1S¢0ured)

Table 7. CFSPs (c).

Correlated Frequent Window

Sequential Pattern number
A 1
K 1
AK 1
B 2
C 2
AB 2
KC 2
AKC 2
F 3
D 3
FD 3
BF 3
ABF 3
BD 3
BFD 3
ABFD 3
CD 3
KCD 3
AKCD 3

terms of computational complexity as well as
memory consumption. In this application only
helpful association rule should be mined.

(3) Temporal relationships support. Typical associ-
ation rules for transactional dataset do not care
about temporal relations between antecedent
and consequent of the rules.

In our case, we need only two items association
rules. A sufficient way to do so is to find one and two-
items sequential patterns. Therefore, once we receive
each window, first, we find all one and two frequent
sequential patterns of the window. Next, we generate
possible association rules. An association rule a; — a;
is generated in two cases:

o If alert a;a; is a frequent sequential pattern in
the current window.

e If alert a; is frequent in this window and alert a;
is frequent in the recent windows.

The time lag of each rule is stored in an n X n matrix
called matrix T'. Tj; is the average time lag of a;a;. At
the beginning of the algorithm all elements of T are
set to “-.

In the correlation measure of two alerts, the similar-

18:0ured)

Alert Correlation and Prediction Using Data Mining and HMM — H. Farhadi, M. AmirHaeri, M. Khansari

ity between alerts and weighted confidence of a rule
is calculated as fallow:

sup(AB)
sup(A)
x sim(A, B)

Weightedconf(A = B) = x f(timelag)

where f is a function of time lag and sim is a function
of similarity between antecedent and consequent alerts.
If we increase the time lag of a rule, the weighted
confidence of the rule should decrease. As the result,
function f is defined as fallows.

—timelag

f(timelag) = « a € (1,2]

sim(aq,az) :% - destip_sim(ipy, ip2)+
1
2

- destport_match(porty, ports)

destport_match(porty, ports) =

1 if port; and ports match
0 otherwise

destip_sim(ip1, ip2) = n/32

where n is the maximum number of number high order
bits that these two IP addresses match.

Attackers may use IP spoofing techniques to hide
their IP addresses. Hence, we only use destination IP
address and port number to calculate the similarity
in a pair of alerts.

The pseudocode for updating CCM is listed in Algo-
rithm 2.

5.1 Exemplifying the Algorithm

In this section we consider an example usage of the
discussed algorithm to clarify the subject. Consider the
stream of example in subsection 4.4: once we received
the first window, we compute all frequent sequential
patterns of the window, as in Table 8.

Table 8. FSP_Table (a).

FSP Window number Frequency
A 1 4
K 1 4

AK 1 4

We store the window number and frequency (i.e.
support count) for each frequent sequential pattern.
Then, we generate association rules. In the first win-
dow AK is a frequent sequential pattern, so A — K is
an association rule. The next step is to calculate time
lag. That is, the difference between the window num-
ber and its antecedent and consequent. In the other
words, the time lag indicates the delay between the
occurrence of its antecedent and consequent.

July 2011, Volume 3, Number 2 (pp. 77-101)

Algorithm 2 Update CCM.
Input:
e FSP_Table extracted from MSP_Table.
e Retrospect Factor (p).
o Causal correlation Matrix (CCM).
Output:
e Updated CCM.

Algorithm:

1: let i « current window number.

2: let T_FSP; be any FSP of size 2 in FSP_Table

belonging to window;.

3: let a and b be the first and second alert types of
T_FSP;.
Generate the rule a — b.
let (time lag(a — b)) < 0.
Compute weighted confidence (a — b).
Update ¥(a,b).
for j = 1 tomin(i — 1, p) do

let 0_FSP; be any FSP of size 1 in FSP_Table

belonging to window;.
10: let O_FSP; be any FSP in FSP_Table belonging

to window;_;.
11: let a and b be the alert type of 0_FSP; and
0_FSP;, respectively.

12: Generate the rule a — b.
13: let (time lag(a — b)) < j.
14: Compute weighted confidence (a — b).
15: Update ¥(a,b).
16: end for

© % NS Tk

Table 9. Association rules table (a).

Association time lag | Weighted Confidence
rule
A— K 0 1 x f(0) x stm(A, K)

Association rule set of this step is shown in Table 9.

In the next stage, using the next window, we can
calculate the frequent sequential patterns. These pat-
terns are shown in Table 10. Then association rules
are generated from frequent sequential pattern of this
window and previous window. BC is frequent in this
window so B — (' is an association rule with time
lag 0. Moreover, B is frequent in the second window
and A is frequent in the first window so A — B is an
association rule with time lag 1. The rest of the rules
can be generated in a similar manner. The output
association rule set of step is illustrated in Table 11.

6 Hidden Markov Model

In this section we briefly review the Hidden Markov
Model, one of the famous members of the Markov
family of models. This model has been used widely in

Table 10. FSP_Table (b).

FSP Window number Frequency
A 1 4
K 1 4
AK 1 4
B 2 5
C 2 3

Table 11. Association rules table (b).

Association rule time lag ‘Weighted
confidence
A— K 0 1 x f(0) x sim(A, K)
A—B 1 1x f(1) x sim(A, B)
K — B 1 1x f(1) x sim(K, B)
B—C 0 0.6 X f(0) x sim(B, C)
A—C 1 0.75 x f(1) x
sim(A,C)
K—C 1 0.75 x f(1) x
sim(C, K)

a verity of applications.

Assume we have a system that can be presented
at any time as being in one state from a set of N
distinct states S, 52,53, ...,Sn. In a discrete space
time, the system will change its state back and forth
based on the probabilistic nature of transitions among
the states. State changes are associated with time
instants of t = 1,2,3,.... Each state at time ¢ will be
indicated as ¢;. Here we are discussing discrete first-
order Markov Chains; so when we want to describe
the probabilistic behavior of the whole system, we
need to only denote specification of the current state
and its preceding state. Accordingly, we have:

Prig:=S; | ¢t—1 = Si, qt—2 = Sk, ..]
=Prlg =S | qi—1 = Si (1)

Now if we consider processes at the right hand side

of (1) as independent processes, we can compute state
transition probabilities of the form a;; as:

aij =Prlg = Sj [-1 = i 1<i,j <N, (2)
where state transitions have these properties:

aij 2 0

N
Y ay=1 (3)
j=1

These properties hold because they obey standard
stochastic constraints (Rabiner [25]). At each instant
of time, if each state corresponds to a physical (ob-
servable) event, the model can be named Observable

1S¢0ured)

Markov Model because these states can be imagined
as outputs of the process (Rabiner [25]). It is possible
to have states that are not pertaining to an observable
event. In such cases, we try to relate states to observa-
tions using the probabilistic method. Hidden Markov
Model is an extended version of Markov Model that
replaces physical Markov states with hidden states
that can produce some observable (physical) events.
We now formally define the following notations for an
HMM:

(1) N: The number of states in the model.

(2) M: The number of distinct observation symbols
per state. We denote the individual symbols as
V= V1,V2,0U3,...,UMN-

(3) A = a;;: The state transition probability distri-
bution where

aij =Prlg1=5;|¢=25] 1<4,j<N.

(4) B = b;(k): The observation symbol probability
distribution in state 5 where

by(k) = Pr[0; = v | ¢ = 5]
1<j<NI1ZkE<M

(5) m = m;: The initial state distribution where

Using the values of the above five symbols, we can
construct an HMM as the generator of the observation
sequence O = O01,0s,...,0r where and T is the
number of observations in the sequence.

For convenience, we use the compact notation A =
(A, B,) to indicate the complete parameter set of the
model (Rabiner [25]). The parameter A can illustrate
if the model represents an observation sequence as
well as the optimal state sequence S = S, S59,..., 5T
where S; € S.

7 Attack Plan Recognition

In this section, we introduce our attack prediction
method based on the probabilistic reasoning technique.
In particular, we use the so called Hidden Markov
Model, to predict future intruder activities based on
current observable facts and information gathered
from sensors. Such heterogeneous detection sensors
are installed throughout the enterprise network.

7.1 Basic Principles

In practice, when an intruder breaks into a system,
either she continues attacking on the same target to
escalate her privilege on the victim or uses it as a
zombie to launch attacks against other systems. We
can use an attack consequence to investigate whether
it is the prerequisite of another attack. This kind of

18:0ured)

m Alert Correlation and Prediction Using Data Mining and HMM — H. Farhadi, M. AmirHaeri, M. Khansari

reasoning requires a database of preconditions (pre-
requisites) and postconditions (consequences) of each
attack. Due to the infeasibility of gathering all such
conditions for every possible attack, we apply proba-
bilistic reasoning into attacker plan recognition.

Plan recognition has been an active research area
in artificial intelligence for years, where observations
are received from an agent and then the object’s goals
will be inferred from those activities (observations).
There are two types of plan recognition: keyhole recog-
nition and intended recognition (Cohen et al. [26]).
The main difference between these two is the role of
the target agent. In keyhole recognition, the agent is
not informed whether it is under observation and so it
is unable to affect the recognition process. Contrary
to keyhole recognition, in intended recognition, the
agent intentionally tries to help the recognition pro-
cess. Unfortunately, in our case, none of the above
plan recognition schemes are applicable. The reason is
that the intruder is neither unaware of the existence
of monitoring systems nor she is trying to help intru-
sion detection systems to predict her future activities.
Instead, she tries to deceive the monitoring agents,
and hide her activities from being sensed. Therefore,
this sort of plan recognition can be categorized as ad-
versary recognition where there are more uncertainty
and complexity (Qin and Lee [17]).

Assumptions of traditional plan recognition meth-
ods do not hold anymore in intrusion plan recognition.
For instance, those methods assume that any reach-
able target by the agents has a plan record in the
database. This is impractical in the area of network
security, as human intruders are creative and even un-
predictable in many ways. In addition, in plan recog-
nition, a plan is carried out when a complete ordered
sequence of tasks is performed; whereas, in network se-
curity there may exist different incomplete sequences
of tasks in which some observations are made invisible
by the attacker.

7.2 Sequence Modeling

The next step is to build a model that captures the
ordered properties of sequences of super alerts. We use
finite-state models (Bell [27]), also known as Hidden
Markov Models, which form one of two major sequence
characterization techniques ' . HMM is composed of
some observables or events plus some hidden states.
The Markov Model used for HMM is a first order
model. That is, the state transition probabilities only
depend on the previous state. HMM can specify the
likelihood of an attack based on a given observation

L The other group of models is called finite-context models.
For more information please refer to Bell [27].

July 2011, Volume 3, Number 2 (pp. 77-101)

sequence. In order to specify an HMM A, we need to
determine the following parameters:

(1) N: The number of states in the model;

(2) M: The number of distinct observation symbols

per state;

(3) A: The state transition probability distribution;

(4) B: The observation symbol probability distribu-

tion;

(5) m: The initial state distribution.

Alerts can be categorized in a way that each group
represents a single-stage of a multi-stage attack sce-
nario. The name of each class shows the general cate-
gory of that class. The number of states in our model
is the number of attack classes. This classification is
based on Snort IDS (Roesch [28] and RealSecure IDS
[27]) signature description manuals. These classes are
derived in Al-Mamory and Zhang [9] and listed in
Table 12.

Table 12. Alert Classes Indicating Stages of Attack Scenarios

No. | Attack Class
1 Enumeration
2 Host Probe
3 Service Probe
4 Service Compromise
5 User Access
6 Root or Administrator Access
7 System Compromise
8 Sensitive Data Gathering
9 Active Communication Remote
10 | Trojan Activity
11 Availability Violation
12 | Integrity Violation
13 Confidentiality Violation

Alert classes as our hidden nodes determine the
current state of the target system using super alerts
as its input. In our model, observations are distinct
alerts that are fired from IDS sensors installed on the
target network. Given a sequence of super alerts O =
01,045,035, ...,0r, it should be decoded to help de-
termining the most probable matching state sequence
O =51,5,853,...,57. Thus, S would be the most
probable sequence of states that has generated O. The
last state in the sequence S shows the current state
of the system which we use as the base in the plan
recognition component. By applying the Viterbi algo-
rithm, we define the highest probability along a single
path at time ¢ which corresponds to the first t < T
observations ending in state .S; as:

Algorithm 3 Attack Class Prediction

Predict (int current_node)

: initialize prediction < 0, ¢ < 1.

: repeat

if G(current_node,i) > Prediction then
let prediction « 0.

end if

: until ¢ = # of states

if @(current_node,i) > threshold then
return prediction.

. else

return false.

. end if

© PO NP RN

— =
= O

0:(i) = argmax Pr[Sy,...,S:,01,...,0¢ | A
S1,..,8¢-1

Now, using induction we can determine the state
sequence. Note that we need to keep track of the values

of 6¢(4): 6441(j) = argmax {8:(¢)ai;} - b;(Op41).
1<i<N

7.3 Sequence Prediction (Plan Recognition)

Let B = {B1,02,0s,...,0n} where §; is an attack
class, be a sequence of attack actions that is decoded by
the correlation unit. In sequence prediction, our goal is
to recognize the next attacker activity 5,1 assuming
we have the sequence of previous actions B and a
learned HMM \. Let Pr[3’] denote the probability of
the next symbol in B being 3’ according to the HMM.
The intuition is to find the most likely path from the
current state node. Using (4) we can find the most
probable path from the current state which is identical
to the next attacker action.

Pr[8] = argmax {Pr[q; = 8" | -1 = Bn]} (4)

1<i<N

In order to reduce false positive rate, we may set
a probability threshold such that lower probabilities
are discarded in the plan recognition process. Algo-
rithm 3 illustrates the pseudo code of our attack class
prediction. Note that in the algorithm a(cyrrent_node,s)
is an element of the state transition probability ma-
trix A = a;; where a;; = Prigy1 =955 ¢ =S,
1<i,5<N.

In the following section we discuss evaluation results
of the proposed system. First, we explain evaluation
results of the ASEA components and then we describe
experimental results of the attack plan recognition
component which uses HMM as the base.

1S¢0ured)

8 Attack Scenario Extraction
Experiments

In this section we discuss our experimental results.
We used the famous DARPA 2000 dataset to evaluate
our algorithm [29]. The dataset consists of two sub
datasets (i.e. LLDDOS 1.0 and LLDDoS 2.0). We used
both sets to test our algorithm.

8.1 LLDDOS1.0

LLDDOSI1.0 is a packet dump corresponding to a
multistep attack scenario with five phases:

(1) Using ping sweeping to detect live IP addresses
in the target network.

(2) Detecting sadmind demon running on live IPs
obtained in the previous step.

(3) Using the sadmind vulnerability to get access
to the vulnerable systems.

(4) DDoS software via telnet, rcp or rsh.

(5) Launching a DDoS attack.

DARPA dataset is a large set of raw network packets

dumps. But, our system receives IDS alerts as input.

So, we should feed these packets into IDS, and dump
the output alerts. Instead, we used RealSecure IDS
alert log [30]. This alert log was produced by playing
back the “Inside-tcpdump” of LLDDOSL1.0.

The Input parameter of our algorithm is set as
follows:

Window Size: L = 20.

There is a trade off in determining the L. If we choose
a large L, we then need a considerable time and
memory to computer all frequent patterns. Also we
should wait until L alerts are generated. Therefore,
the real time characteristics of the algorithm do
not hold anymore. In contrast, a small L causes the
algorithm to be inaccurate.

We use some heuristics to determine the window
size. L is selected such that there is no more than

some number (e.g. 6) of alert types in each window.

Causal Correlation Matrix: The CCM is filled with
values determined by prior knowledge, as shown in
Table 13.

Correlation Threshold: 7 = 0.5.

Retrospect Factor: p = 3.

Importance Factor: Z(a) = 3 for each critical alert
types, Z(a) = 2 for typical alert types and Z(a) = 1
for non-trivial alerts.

Minimum Support Count: min_sup = 4.

min_sup, is calculated as follows:

18:0ured)

m Alert Correlation and Prediction Using Data Mining and HMM — H. Farhadi, M. AmirHaeri, M. Khansari

0.25 x min_sup if Z(a)

min_sup, = { min_sup if Z(a)

3
2
3 X min_sup ifZ(a) =1

Some alerts, such as Email_Ehlo, are unimportant;
so the importance factor (Z) of these alert are low and
they are almost ignored because of their high min_sup
threshold. Ignoring Email_Ehlo alerts, the number
of alerts is reduces by 56 percent. Thus, considering
different importance factors leads to a more efficient
algorithm. Also, the Stream_DoS alert is an important
alert that may not be frequent so we set the importance
factor (Z) of this alert to 3.

After setting parameters we ran the algorithm on
dataset. The following sequences are detected as a
multistep attack scenario:

Sadmind_Ping, Sadmind_Amslverify_Overflow,
Admind, Rsh, MStream_Zombie, Stream_DoS.

Sadmind_Ping, Admind, Sadmind_Amslverify_
Overflow, Rsh, MStream_Zombie, Stream_DoS.

The RealSecure generates the fallowing alerts for
each phase of this multistage attack scenario [8, 17].

(1) IP sweep: Since RealSecure ignores ICMP ping,
no alert is generated for this phase.

(2) Probing sadmind service: For this phase
RealSecure raises a number of Sadmind_Ping
alerts.

(3) Exploiting sadmind vulnerability: In this
phase two alert types are raised:

(a) Sadmind_Amslverify_Overflow: This
alert is raised because of exploiting sad-
mind vulnerability and trying to break
into the sadmind service.

(b) Admind: It is raised for illegal access to
Solaris administration.

Since alert types Sadmind_Amslverify_
Overflow and Admind are usually raised by a
single attack step, each of which can be consid-
ered as a prerequisite to the other. This fact is
reflected in the Causal Correlation Matrix: This
is why both of the extracted attack scenarios
are valid.

(4) Installing DDos Trojan: Rsh and MStream_
Zombie are alerts raised in this step.

(5) Launching DDos attack: Finally a Stream_
DoS alert is raised. Some approaches do not
detect this alert since it occurs only once. We
are able to detect it because we value this alert
type by increasing its importance factor.

The details of detecting each step of the attack is
as follows: The Sadmind_Ping was detected in win-
dow 10, Sadmind_Amslverify_Overflow is frequent
in window 11, the pattern Rsh— MStream_Zombie is

July 2011, Volume 3, Number 2 (pp. 77-101)

Table 13. CCM.

=
o
—~ l
V] Lol >
o ~ L]
> o hat
P > Y
—~ o o o >
< ! > Pl ©
a0 =l — — Q ° ~ —
= - - %} 2] E (0] 20 o5 —
o g o} o — g o o el 3 1) < 172}
=¥ H g — [~ < N () () Q - > o
| [} — o N 2] L > () | = | 7] [0) [} o =] =]
T [<< 23] [[} 0] < T O 5 Rl + A L] <3} |
5l » | | %) Il > L) 0 °g |8~ &) % 1 o 2 E
A 15} — — =) a, 0 [1 g |H o 1 a —~ 15} 1)
S a8 |8 e || |[E|E|EIRS |8 8|8 |3 |a|2]s
© (] =] =] I I I |} = o > 2} n B n =] [0} 0] 2
Alert n [=3} =3} =9} =9} =9} ==} ==} << n o ~ = == n [=3) B [0
Sadmind_Ping 0 0 0 0 0 0 0 0 0 0.5105(025{0.25] O 0 [0.25]0.25] O 0
TelnetTerminaltype 0 [|05]05]|05|05|05[05] 0 0 [0.25[0.25|/0.25/0.25| 0 |0.25|0.25| O [0.25| O
Email_Almail_Overflow] O 05|05 |05|05]|0.5]0.5 0 0 0 0 [0.25| O 0 0 |0.25] O 0 0
[Email_Ehlo 0 0 05|05 |05|05]|0.5]0.5 0 |0.25[/0.25|0.25| 0 |0.25| 0.5 | 0.5 0 0 0
FTP_User 0 0 0.5 (0.25| 0.5 | 0.5 | 0.5 0 0 0 0 0 0 |0.25| 0 |0.25| O 0 0
FTP_Pass 0 0.5 0 05|05 |05 |05 0 0 0 0 0 0 0 0 |0.25] O 0 0
FTP_Syst 0 0.5 0 0505 |05 | 0.5 0 0 0 0 0 0 10.25/0.25| O 0 0 0
HTTP_Java 0 0.5 0 0.5 [0.25|0.25|0.25| 0.5 |0.25| O 0 0 0 0 0 0 0 0 0
HTTP_Shells 0 0 0 0 0 0 0 025 O 0 0 0 0 0 0 0 0 0 0
Admind 0 0 0 0 0 0 0 0 0 05105105105 0 0 0 10.25]/0.25(O
Sadmind_Amslverify_
Overflow 0 0 0 0 0 0 0 0 0 05105105105 0 0 0 10.25]0.25| O
Rsh 0 0 0 0 0 0 0 0 0 0 0 0.5]0.25| 0 0 0 10.25]/0.25| O
MStream_Zombie 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0.5
HTTP_Cisco 0 0 0 0 0 0 0 0 0 0 0 0 0 (025 O 0 0 0 0
SSH_Detected 0 0 0 |0.25] O 0 0 0 0 0 0 0 0 0 [0.25(0.25| O 0 0
[Email_Debug 0 0 0 |0.25] 0 [0.25| O 0 0 0 0 0 0 0 0 0 0 0 0
TelnetXdisplay 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 |0.25] O
TelnetEnvAll 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0
Stream_DoS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

detected in windows 13 and 14, and Stream_DoS is
raised in window 15.

Our scenario is comparable with the attack graph
extracted by algorithm proposed in Zhu and Ghorbani
[8], and Ning et al. [31]. Figure 3 shows the attack
graph of Zhu and Ghorbani [8], and Figure 4 demon-
strates the hyper-alert correlation graph of Ning et al.
[31].

8.2 LLDDOS2.0

LLDDOS2.0 is a packet dump corresponding to a
multistep attack scenario including five phases:

(1) Probe of public DNS server, via the HINFO
query;

Exploiting sadmind vulnerability and breaking
into a vulnerable host;

Installing DDoS software and attack scripts via
FTP;

Trying to compromise two other hosts and

achieving one successful exploitation;
(5) Telnet to the compromised host and initiate
mstream DDoS attack.

To test our alert correlation algorithm, again we
used IDS alert logs from [30]. This alert log includes
494 alerts from 18 distinct types. The input parameter
setup was the same as Section 5.1 and the Causal
Correlation Matrix is depicted in Table 15.

After initial parameter setup we ran the algorithm
on the dataset. The algorithm extracted following
attack sequences illustrating two multistep attack
scenarios:

Sadmind_Amslverify_Overflow,
Put, MStream_Zombie, Stream_DoS.

Admind, FTP_

Admind, Sadmind_Amslverify_Overflow,
Put, MStream_Zombie, Stream_DoS.

FTP_

Each phase of the above attacks causes the RealSe-
cure IDS to generate the fallowing alerts.

1S¢0ured)

Alert Correlation and Prediction Using Data Mining and HMM — H. Farhadi, M. AmirHaeri, M. Khansari

Table 14. Updated CCM.

=
o
— |
[0 L >
I = Ll
> [} el
+ 1 H
— o [J] Q >
] | = R]
80 a — — Q ° —~ —
o o o %) 0 El o} 00 o, —
- =] o o — =] o o £ 3] < 92}
o ~ g — © — << N 192 19 Q s B o
[} (V) — =} ~ wn + > Q | = ! n [(93 ° [=} A
e} = << 23] [] 2} 2]] =l T O 5 - + [=] = s3] |
a +2 [} | 2] © > - w0 ° q (&} [92 [} +L +L 5
Bl ()] — — =3 o wn I I o o () I A — [Q
B2 % % |ale|e|e|e|d85 |5l (3 (8|88
] [V} = I I =) =) c > 2] 22} |} n [V} (0] 2
Alert 7 =1 & & [[[o m < |wo| x = o 7 & =1 [0
Sadmind_Ping 0 0 0 0 0 [0.15]| O 0 0 |05 [0.63/0.25/0.25| 0O 0 [0.25(0.25] O 0
TelnetTerminaltype 0 |05]|05]|05|05[05]05(| 0 0 |0.25(0.25/0.25/0.25| 0 |04 (0.25| O |0.25| O
Email_Almail_Overflow, O | 0.5 |05 |05 |0.5|0.5]0.5(019| 0 0 0 10.25| 0O 0 0 [0.25] O 0 0
[Email_Ehlo 0 0 [05(05]05|05]05|05| 0 [025]/0.25/0.25| 0 [0.25|05 |05 | O 0 0
FTP_User 0 |0.17| 0.5 |0.25] 0.5 |0.81| 0.5 | O [0.37| O [0.19 O 0 (025 0 |0.25| O 0 0
FTP_Pass 0 (061 O 05]05|05|065 0 (031 0O |0.15 O 0 0 0 025 O 0 0
FTP_Syst 0 [0.63| O 0505|0505 0 0 0 0 0 0 10.25/0.25| O 0 0 0
HTTP_Java 0 05| 0 |05]0.25/0.25(0.25| 0.5 (0.25| 0 |0.14] O 0 0 0 0 0 0 0
HTTP_Shells 0 0 0 0 0 0 0 [0.32| 0 [0.18| O 0 0 0 0 0 0 0 0
Admind 0 0 0 0 0 0 0 0 0 |0.5[0.820.65| 05| 0 0 0 [0.25(0.25] O
Sadmind_Amslverify_
Overflow 0 0 [0.19| O 0 [0.19| O 0 0 [0.85|0.5]0.64| 0.5 | O 0 0 [0.25(0.25] O
Rsh 0 0 0 0 0 0 0 0 0 0 0 |05]|025] 0 0 0 [0.25(0.25] O
MStream_Zombie 0 0 0 0 0 0 0 0 0 0 0 0 [05] O 0 0 0 0 |05
HTTP_Cisco 0 0 0 0 0 0 0 0 0 0 0 0 0 1025 O 0 0 0 0
SSH_Detected 0 0 0 [0.25] O 0 0 0 0 0 0 0 0 0 [0.25(0.25] O 0 0
Email_Debug 0 0 0 [0.25] 0 [0.25| O 0 0 0 0 0 0 0 0 0 0 0 0
TelnetXdisplay 0 0 0 0 0 0 0 0 0 0 0 0 05| 0 0 0 0 [0.25] O
TelnetEnvAll 0 0 0 0 0 0 0 0 0 0 0 0 05| 0 0 0 0 0 0
Stream_DoS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(1) IP sweep: Since RealSecure ignores ICMP ping MStream_Zombie alerts are raised while the
packets, no alert is generated for this phase. intruder tries to install the DDoS software on
(2) Exploiting sadmind vulnerability: In this two other hosts.
phase, two alert types are raised: (5) Launching DDoS attack: Finally a Stream_
(a) Sadmind_Amslverify_Overflow: This DoS alert is raised. Some approaches do not
alert is fired after successful exploitation detect this alert since it occurs only once. We
of sadmind vulnerability. are able to detect it because we value this alert
(b) Admind: It is generated because of illegal type by increasing its importance factor.
access to Solaris administration. . .
. . . The extracted scenario is comparable with the at-
Since Sadmind_Amslverify_Overflow and . .
. . tack graph constructed by the algorithm proposed in
Admind alert types are usually raised through- . . .
, Zhu and Ghorbani [8]. Figure 5 shows their attack
out a single attack step, each of them can be .
. . . graph, where we can see the fifth stage of the attack
considered as a prerequisite to the other. This . . .
) - . scenario is not detected by their algorithm. The rest
fact is reflected in the Causal Correlation Ma- o
trix and that is whv both extracted attack of the phases are detected similar to ASEA. Table 16
x w > .
. . Y illustrates the updated CCM. Note that gray cells are
scenarios are valid, changed by the algorithm
(3) Installing DDoS Software: The attacker tries ged by & '
to install the DDoS software on a host via FTP.
So, the IDS raises FTP_Put alert.
(4) Distributing DDoS Software: Rsh and

18:0ured)

July 2011, Volume 3, Number 2 (pp. 77-101)

Sadmind Ping

Sadmind
Amslverify
Overflow

Sadmind
Ping

Mstream
_Zombie

Figure 4. A hyper-alert correlation graph discovered in LLDOS1.0 by Ning et al. [31].

Sadmind Amslverify Overflow

Mstream Zombie

Figure 5. Attack graph for LLDOS2.0 extracted by Zhu and
Ghorbani [8].

9 Attack Plan Prediction Results

This section describes our experiments to evaluate the
effectiveness of the plan recognition component in the
real world.

Let By = {B.1), Bk,2), Bik,3)s - - - By} be the
k'™ new observation sequence of attacks captured by
IDSs where 3} ; is a super alert of the kth sequence. A

prediction set S includes likely future classes of attacks
Sk = {am,1), 0k2), Ak3) - i) }» Where o)
is an attack class, calculated for each Bj. Now we can
define our prediction performance rate R as:

R number of correctly predicted classes

total number of predictions

To make our results comparable with the research
community, we use the same naming scheme of one
of the recent similar works (Fava et al. [20]). The
performance rates are given in terms of top-n where
n = |Sk| is the prediction set size. Here we use n =
{1,2} meaning that we calculate top-1 and top-2 sets
for each B4 ;). Using top-1, a correct prediction means
that the model has predicted one future symbol (i.e.
the most probable symbol) and the attacker performed
the same action. Similarly, in case of correct prediction
of the type top-2, we mean that the attacker performed
the action that is included in two most likely symbols
determined by the model. In Fava et al. [20], there is
also top-3 set defined and used while we do not include
it here.

Note that the false positive rate is not applicable
here, because false positive rate is only meaningful
when we perform detection; instead we are performing
prediction in which we predict a fact that can be either

1S¢0ured)

94

Alert Correlation and Prediction Using Data Mining and HMM — H. Farhadi, M. AmirHaeri, M. Khansari

Table 15. CCM.

13
o
— I o
Q Y4 > L]
o 9 e 5
> o hat 5
I > "]
— o o o "
o | > - o
51 ~ — Q P
- sl n n =} O
£ o o — g o S o] 0
o] — o — < 5 N o o — o
() —~ Ke) ~ n B e > Q | = =]] n o] —~ A
= » < 5] o 7] 0 © =t g 0o [g e 0 5] 1
o P =1 | |] o > [0 o g~ | O 0 o g
g 15 & — — = A, 0 1 I] e — o I | e
< =1 | P o | | i o o, o R o ~ o, P o o
503 |e |8 8ele|e|E|E|E 28 E|8|E|82) 8
Alert o [fr 5] 55} [[[o) m < n o 5] = m a 25} 0
RIPAdd 0 0 0 0 0 0 0 0 | 025 O 0 0 0 0 0 0 0 0
TelnetTerminaltype 0 0 [02505]|05|05|05[05]| 0 0 | 0.25 0.25 | 0.25| 0.25] O 0 0 0
FTP_Put 0 0.25] 0 0 0 0 0 0 0 0 0 0 |05] O 0 0 0
Email_Almail_Overflow | O 05| 0 0505|0505]05]| 0 0 0 0 0 0 0 0 0 0
Email_Ehlo 0 0 0 05]|05]05|05]05]|05]| 0 | 0.25 0.25 0 0 | 0.25] O 0 0
FTP_User 0 0 0 051025 05|05]05]| 0 0 0 0 0 0 | 0.25] O 0 0
FTP_Pass 0 05| 0 0 |05]05]05]05]| 0 0 0 0 0 0 0 0 0 0
FTP_Syst 0 05| 0 0 |05]05]05]05]| 0 0 0 0 0 0 | 025 0O 0 0
HTTP_Java 0 05| 0 0 | 0.5 | 0.25] 0.25 0.25] 0.5 | 0.25| O 0 0 0 0 0 0 0
HTTP_Shells 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Admind 0 0 051] 0 0 0 0 0 0 0 | 0.5 0.5 0 |05] O 0 0 0
Sadmind_Amslverify_
Overflow 0 0 0 0 0 0 0 0 0 0 | 0.5 0.5 0 05| O 0 0 0
Email_Turn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MStream_Zombie 0 0 05| 0 0 0 0 05| 0 0 0 0 0 |05] O 0 0 0.5
HTTP_Cisco 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0.25] O 0 0
Port_Scan 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EventCollector_Info 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Stream_DoS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

true or false. So, the false positive rate is meaningless
in case of predication. Also, the true positive, true
negative and false negative metrics are not applicable
in our case. These metrics are usable in intrusion
detection, while we do intrusion prediction. In general,
when we predict something, it can be either true or
false. In other words, it is not possible to receive a
false positive from any type of predictor.

Similar to ASEA experiments, for these experiments,
we also use the sensor alert report using RealSecure
network intrusion detection system version 6.0 on
DARPA 2000 dataset publicly available by the Secure
Open Systems Initiative Laboratory at North Carolina
State University as a part of TIAA project [30].

9.1 Preprocessing

In the aggregation process, we first fused redundant
alerts having the same attributes. Next, using the re-
sults of the first step, we aggregated alerts with the
same attributes but varied on timestamp if they are

18:0ured)

close enough to fall into a predened time window (e.g.
100 seconds). As a result, we had our super alert collec-
tion available for further processing. To increase the
timing precision, we used the timestamp of the latest
alert. This is due to the fact that in practice, attackers
usually stop attacking after the last successful attack.
Thus, using the last timestamp means choosing the
time that is closer to the successful attack in the real
world.

After retrieving super alerts from raw alerts, we
grouped super alerts by their destination IP address
and then sorted each group in time to make a sequence.
Table 17 shows statistics of aggregation and sequence
generation on both LLDDoS versions. Note that for
each dataset, the numbers from the DMZ and the
Inside zone are added together.

We omitted 5 and 10 alerts fired from the “event_
collector_1" sensor with the type of “event_collector_
1” from LLDDoS 1.0 and LLDDoS 2.0.2, respectively.
This is because many fields of these alerts (in log
traces) were nullified by the IDS, and they were not

July 2011, Volume 3, Number 2 (pp. 77-101)

Table 16. Updated CCM.

=
o
— I o
[} sl > “
o Y & 5
> [0 Bl =
P > o |
— o o o o
(o]] > Ra (o]
o — — Q Pl
o i n n g [*]
g [0} (o] =] 5 o o (o] () w0
~ =] —~ o —~ ~ N (8] 5 — o
[} —~ =] ~ n +L > Q | = =]] n — A
[» < =) o 7] 0] o g o [g e 3} o 1
o + =1 [} | n ol > - n ° a - | |&) 0 (&} %
o Q A — —~ =3 [a W wn 1 | =} o4 — () | I +
<< <]] sl s | I] [0 (a9 sl 5 N~ sl ~ Ay + =] ()
Sl | &8 E|le|&a|l&|E|E|B|RE|E|alE| 8| 8]
Alert [[2 & & [[[o] m < n 6 G| = =] A 5} 0
RIPAdd 0 0 0 0 0 0 0 0 |[0.14 0 0 0 0 0 0 0 0 0
TelnetTerminaltype 0 0 [02505]|05|05|05[05]| 0 0 | 0.25 0.25 | 0.25| 0.25] O 0 0 0
FTP_Put 0 | 025 0 0 0 0 0 0 0 0 0 0 [05] O 0 0 0
Email_Almail_Overflow 0 05| 0 05]05|05]05] 0.5 0 0 0 0 0 0 0 0 0 0
Email_Ehlo 0 0 0 |[05]05]|05|05|05]05]| 0 | 0.25 0.25 0 0 | 025 0 0 0
FTP_User 0 0 0 | 0.74| 0.25 0.5 | 0.87| 0.5 | 0.37] O 0 0 0 0 | 025 0 0 0
FTP_Pass 0 | 067 O | 0.26 0.5 | 0.71| 0.5 | 0.5 | 0.16] O 0 0 0 0 0 0 0 0
FTP_Syst 0 | 066/ 0 | 0.26 0.5 | 0.5 |0.72[0.5 | 0.33] 0O 0 0 0 0 | 0.25] O 0 0
HTTP_Java 0 [05] 0 0 | 0.5 | 0.25] 0.25] 0.37| 0.5 | 0.25] O 0 0 0 0 0 0 0
HTTP_Shells 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Admind 0 0 [05] 0 0 0 0 0 0 0 |05 0.5 0 [05] O 0 0 0
Sadmind_Amslverify_
Overflow 0 0 [05] 0 0 0 0 0 0 0 |05 0.5 0 |05] O 0 0 0
Email_Turn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MStream_Zombie 0 0 [05] 0 0 0 0 [05] 0 0 0 0 0 [05] O 0 0 |05
HTTP_Cisco 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 025 0 0 0
Port_Scan 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EventCollector_Info 0 0.15(0O 0.26] O 0 0 0 0 0 0 0 0 0 0 0 0 0
Stream_DoS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9.2.1 Supervised Training

Table 17. Aggregation Statistics

Dataset LLDDoS 1.0 | LLDDoS 2.0.2
Alerts 1813 924

Super Alerts 1630 830

Super Alert

Sequences 66 56

useful for processing. To add more details, we have not
omitted alerts targeted to 255.255.255.255, which will
be filtered by today’s firewalls, though it introduces
some errors in results.

9.2 Training

In our experiments we compared the results of both su-
pervised and unsupervised trainings. In the following
we describe our supervised and unsupervised trainings
of the HMM.

In order to train our model, we had to classify and
label super alerts with related categories. By labeled
super alerts, we refer to an instance annotated by
its related class. Labeling process needed a domain
expert as well as a considerable amount of time. We
implemented a simple semi-automatic method with
the help of subject-matter experts to classify examples.
Particularly, we should prepare a mapping scheme
between our attack types in DARPA 2000 dataset and
the 13 attack classes defined in Table 12. DARPA 2000
dataset contains 28 attack types in theRealSecure
terminology. For each type, we defined a simple rule to
map each alert type to an attack class using RealSecure
signature description manual.

One may argue the correctness of our classification.
The output of the system is in terms of attack classes,
and if we do not classify alerts correctly, the output
of the predictor will not be correct. So, wrong attack
classes as the output may mislead the system admin-

1S¢0ured)

istrator(s). Indeed, in our experiments, we evaluated
the ability of the algorithm to capture only the sequen-
tial patterns of attack classes. In order to measure the
effectiveness of the algorithm we evaluated the results
relatively, based on our own mapping (classification).
Hence, it is not important to exactly classify super
alerts and discuss the reason of classifying each type.
Even though it is very important in operational envi-
ronment, here, we only want to compute the proposed
algorithm performance. Thus, we can avoid further
discussion on the topic.

After labeling the super alerts, we randomly chose
50% of each LLDDoS sets for training, and the rest for
testing. We used Jahmm (Francois [32]), a Java imple-
mentation of HMM for experiments. Since we knew
the corresponding sequence of states for each learning
sequence, we could estimate HMM parameters using

():

; bi(k)ziBi(k) ;

N

> Bi(l)

=1
1<i,j<N,1<k<M (5)

where A;; is the counter for transitions from state 4
to state j and B;(k) is the number of emissions of the
k' super alert in the state .

9.2.2 Unsupervised Training

In supervised learning, we classified attacks semanti-
cally and manually. Then, we labeled each super alert
with the related class, and after that, we fed sequences
of such super alerts into the model for learning. In
unsupervised learning, we will run the model to clas-
sify unlabeled super alerts on their own, in order to
measure their effectiveness in classification as well
as prediction. Therefore, after the aggregation of the
data, we fed raw (unlabeled) super alert types into
the model for training.

One of the inputs of HMM learning algorithm is
the number of states. In supervised learning we de-
termined this number using expert knowledge to clas-
sify attack types in an appropriate manner. Unlike
supervised learning, in unsupervised training there
is no predefined number of states for the algorithm.
We used the same number of states as in supervised
mode for unsupervised mode to ease the comparison
of the outputs. We use the same number of distinct
observable symbols in both modes. We followed two
objectives in unsupervised mode: (1) To evaluate how
powerful the HMM is in classifying alerts in compari-
son with manual semantic oriented classification; and
(2) To determine how effective the HMM is in predict-
ing attack classes in comparison with the supervised
mode.

18:0ured)

Alert Correlation and Prediction Using Data Mining and HMM — H. Farhadi, M. AmirHaeri, M. Khansari

9.3 Plan Recognition

As mentioned earlier, the relationship between the
next attacker action and her recent behavior can be
inferred from the correlation of adjacent actions within
the same sequence. Here, we used the first order HMM
meaning that the next symbol is predicted only based
on the one immediate previous symbol.

In the following, we report our investigations on the
effectiveness of our model in plan recognition using a
learned HMM, both in supervised and unsupervised
modes.

9.3.1 Supervised Mode

We did not have enough sequences in our test data
sets. Therefore, in order to increase the accuracy of
our testing we performed several tests per sequence.
Specifically, in the case of LLDDoS 1.0, the average
length of each sequence in our test set was 23.6 super
alerts. Therefore, we divided them into sets of four
super alerts so that we have about six subsets of
testing in each sequence. Subsets having less than four
members were discarded. Then, given the first three
members of each subset to the model, it first found the
most probable matching states and then predicted the
last symbol. In the case of LLDDoS 2.0.2, we kept the
same approach but we chose three subsets per super
alert observation sequence because we had shorter
(i.e. an average of 15.2 super alerts) sequences in this
dataset.

For each subset, we first computed the most prob-
able state sequence and prediction set using Viterbi
algorithm and Algorithm 3, respectively. Results pre-
sented for top-2 prediction sets retrieved using a mod-
ified version of Algorithm 3 that outputs a prediction
set with two members (regarding top-2 results) rather
than one. Note that, we set the probability threshold
to zero in Algorithm 3. This is because (1) It strongly
depends on the environmental variables such as the
criticality of the target systems, the required sensi-
tivity to attacks, and the average number of attacks
received by the targets; (2) Setting this threshold to
zero allows predictions with low probability, result-
ing in a decrease in the true prediction rates. That
is, to show the effectiveness of the system even with
low thresholds, we accepted this error and included it
in all results presented here: and (3) If we used some
thresholds, we would need to change our performance
metric to a three-variable metric like true prediction,
false prediction, and no prediction rather than the cur-
rent binary true and false rates. This change would
make comparing our results to those of the research
community more difficult; since some people may be-
lieve that no prediction means false prediction, and
some may reject any similarity among them.

July 2011, Volume 3, Number 2 (pp. 77-101)

Table 18 shows the prediction accuracy for both
datasets in the cases of top-1 and top-2 prediction
sets. The model achieved the rate of above 90% in
predicting the next attack class. The result shows
that, keeping off the low level (i.e. alert type level
prediction) granularity in prediction, keeps off the
model from over-fitting and performs accurately.

Table 18. Supervised Mode Prediction Rates

Dataset LLDDoS 1.0 | LLDDoS 2.0.2
Top-1 Rate 81.33% 82.6%
Top-2 Rate 98.1% 93.3%

To the best of our knowledge, this is the first unsu-
pervised method that aims to predict the attacker’s
next action. Thus, it is difficult to compare our results
with related works. For instance, we cannot compare
our results with Qin and Lee [17] since its predic-
tion rate is highly dependent on the attack library,
while in our case, there is no such library; making
the two methods incomparable. Another example is
Yu and Frincke [33], where the authors used prereq-
uisites and consequences of an attack for predication,
and achieved 100% of correct prediction; while in our
method we have not used any prior knowledge to pre-
dict future attacks. Moreover, there are some works
that only used supervised methods to predict the next
attacker action.

Re-aggregation. We can prune the HMM graph in
different ways to increase the performance of the pre-
diction. As an example, we can set a threshold in the
learning phase and neglect edges whose labels are be-
low some threshold probability. This can reduce the
number of comparisons in Algorithm 3. Another way is
to prune loop edges from the model. For instance, con-
sider the attack sequence targeted to 172.016.113.204
in DMZ section of LLDDoS 1.0 that contains the fol-
lowing sequence of attack classes:

{10,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}.

The sequence means, an attack from Class 10 has
been launched following by 17 (distinct) attacks that
all belong to Class 4. If the predictor works correctly,
it will alarm the administrator repeatedly stating the
same class is going to happen, which may be over-
whelming and useless; because the main objective of
attack plan recognition is to arm the management
with information supporting timely decision making
and incident responding. Therefore, restating the same
fact by the predictor will not solve any problem. We
assume that, the administrator has made appropri-
ate response to the predicted class; hence, redundant
alarming does not support decision-making. In con-
clusion, redundant classes destined to the same IP

address can be re-aggregated. That is, all 17 class
numbers will be fused together reducing the sequence
to {10,4}. In this case, we changed the length of the
sequence from 18 to 2, which is equivalent to 88% of
reduction in length.

Re-aggregation avoids forming loop edges in the
HMM graph in the learning phase. Moreover, it pro-
vides a finer granularity of prediction (i.e. in testing
phase). The finer grained models are subject to under-
fitting phenomena. But our results indicate almost
the same rate as nonre-aggregated data, particularly
in top-2 mode of prediction. However, we have some
natural growth in top-1 false prediction rate. Table 19
contains average prediction rates using re-aggregation
technique on LLDDoS 1.0.

Table 19. Prediction Rates Using Re-aggregation

Dataset LLDDoS 1.0
Top-1 Rate (%) 7
Top-2 Rate (%) 98.3

Figure 6(b) compares results from models learned
using re-aggregated and aggregated (i.e. nonre-
aggregated) sequences. We can see a decrease in
top-1 prediction and a roughly equal rate for top-2
prediction. This indicates the potential ability of the
re-aggregation process. As mentioned, the main aim
of re-aggregation is performance enhancement, while
keeping the same level of accuracy in prediction.

Figure 6(c) shows the number of symbols per se-
quence of one sample of our testing data. It shows that
the re-aggregation method caused considerable alle-
viation in the lengths of the sequences. The average
length of original sequences was 24.78, while the re-
aggregation drops two third of the average length to
achieve 8.06 symbols per sequence. In other words, we
can reduce the processing time using re-aggregation
technique. First, because it removes redundant sym-
bols from the input for the purpose of removing loop
edges from the model in the learning phase. Second,
in testing phase, it shortens the sequences in size, re-
sulting in less processing.

9.3.2 Unsupervised Mode

Table 20 shows the prediction accuracy for LLDDoS
1.0 dataset in the cases of top-1 and top-2 prediction
sets. The results are impressive; unsupervised learning
of the model reached almost the same prediction rate
as supervised mode, even though we ran the model
to classify alert types itself, without any labeling aid.
Figure 6(a) compares the results from models learned
in supervised versus unsupervised modes. The classifi-
cation made by the HMM in unsupervised mode was

1S¢0ured)

Alert Correlation and Prediction Using Data Mining and HMM — H. Farhadi, M. AmirHaeri, M. Khansari

100
90 =
80
70— R — —

Detection Rate

IS
S

@Re-aggregated

W Top-1
W Top-2
Supervised Unsupervised
Detection Mode
(a)
100
90 ——
80 +— ————— ——
70 +—— R — —
]
©
4
c
2
=]
E wTop-1
a W Top-2
Aggregated Re-aggregated
Preprocessing Type
(b)
90
80]
70
] 60
£
E
& 50
3
2 BAggregated
2
€
a
*

w
S

N
S]

i
o

o

1 11 21 31 41 51 61
Sequence Number

(c)

Figure 6. (a) Prediction Rates Using Supervised Mode vs.
Unsupervised Mode, (b) Prediction Rates Using Aggregation
vs. Re-aggregation, (c) Number of Symbols per Sequence.

slightly different from the one made manually. But, the
feature that made it capable of accurate prediction is
the ability to capturing frequent symbols and putting
them in different classes. In the LLDDoS 1.0 dataset,
we have a minority of alert types that happened with
high frequency in time. The HMM captured these
effective elements and separated them in different
classes. For example, FTP_Syst alert type is one of

ISeGur@

the frequent alert types which semantically belongs to
Service Probe attack class, and TelnetTerminaltype
is another frequent alert type which is a part of Active
Communication Remote class. The model correctly
separated these two kinds of effective alert types in
different classes. Similarly, two alert types of Email_
Almail _Overflow and Email_Ehlo, both originally
(semantically) members of Service Compromise class,
grouped correctly under the same class during unsuper-
vised learning. Consequently, unsupervised learning is
able to capture effective symbols in prediction and un-
derstand underlying semantic relationships based on
sequential patterns. Although not all decisions made
by the model are completely correct, the classification
was not erroneous. That is why we had near equal
prediction rates in both modes.

Table 20. Unsupervised Prediction Rates

Dataset LLDDoS 1.0
Top-1 Rate (%) 81.16
Top-2 Rate (%) 98

Figure 7(a) shows alert type occurrences in one of
our testing sets from LLDDoS 1.0 (i.e. 50% of the alerts
included in LLDDoS 1.0). We can see very different
occurrence statistics for various alert types.

Interestingly, as illustrated, alert type occurrence
statistics follow the principle of factor sparsity (also
known as the 80-20 or Pareto Rule). Put another
way, about 90% of the total number of alert type
occurrences caused by only 21% of alert types. These
alert types have high efficacy in unsupervised alert
type classification and thus in prediction.

Figure 7(b) shows the number of alert type occur-
rences within each class. We chose four sample classes
to put in the figure, since more than four curves are
not easily distinguishable in a single chart. We can see
large variances of alert type frequencies within a class.
Effective alert types in prediction are local maximum
points in each curve. These alert types are the most
effective ones within each class that affect prediction
more than other types. Note that each point in the
horizontal axis represents more than one alert type
(particularly four types in this case). As instance, a
single point in horizontal axis shared between curves
related to Class 8 and Class 4 may represent alert type
21in class 3 and alert type 2 in class 4, respectively;
where the former type is Active Communication Re-
mote and the latter type is Root or Administrator Ac-
cess. All in all, Figure 7(b) demonstrates the varying
alert type occurrences within each class determined
by unsupervised training.

In practice, our objective is to alarm system admin-
istrator(s) about possible future attack classes. In the

July 2011, Volume 3, Number 2 (pp. 77-101)

300
«
Q
o
$ 200
5
3
o
[
Qo
>
2
£ 100
<
*

0
Alert Types
(a)

350 / \

300
@
8 250
c
g
3 200 mClass 4
%3
3 Class 3
o
2 150 M Class 2
£
g 100 M Class 1
*

50 - —

0 A
Alert Types
(b)

Figure 7. (a) Number of Alert Types Occurrences in a Training
Sample, (b) Number of Alert Type Occurrences within each
Class.

learning phase of unsupervised mode, the HMM classi-
fied the alerts on its own. We assigned names to those
classes based on the most frequent alert types of each
class (i.e. effective alert types). As explained, highly
frequent (and thus effective in prediction) elements
in semantic classes (i.e. classes retrieved via manual
classification) grouped almost correctly using unsuper-
vised learning. Hence, we see similar prediction rates
in supervised and unsupervised modes. We needed be
aware of these elements and then name classes based
on them. In this manner, we had almost the same per-
formance in prediction as supervised mode. That is
how we calculated prediction rates in unsupervised
mode.

However, the proposed solution has its own limita-
tions. Underlying IDSs play an important role in the
system. Attacks missed by sensors would have some
negative effects on prediction system.

Moreover, the model does not adapt to new pat-
terns of attacks; but as it is operating in high levels
of abstraction, we do not face the change of attack
patterns in this level in an on-going manner. In con-
trast, if we consider attack type patterns, we can see
ever-changing patterns of newly introduced attacks

in time.

10 Conclusion

In this paper, we presented a system to correlate in-
trusion alerts and extract attack scenarios as well as
to predict the next attacker action. We reduced the
problem of finding multistage attacks to sequence min-
ing and the problem of finding next attacker action to
sequence modeling and prediction. We used DARPA
2000 to evaluate system performance and accuracy.
The results show that the system can efficiently ex-
tract the attack scenarios and predict the attacker’s
next action. Particularly, the proposed system has the
following advantages:

(1) The ASEA is able to operate in real-time envi-
ronments,

(2) The simplicity of ASEA results in low memory
consumption and computational overhead,

(3) In contrast to previous approaches, the ASEA
combines both prior knowledge as well as statis-
tical relationships to detect causal relationships,

(4) The prediction component proposes an unsu-
pervised method to predict the next attacker
action,

(5) The prediction component does not require any
knowledge of the network topology, system vul-
nerabilities, and system configurations. Unlike
Bayesian based methods that usually rely on a
predefined attack plan library, HMM can per-
form in the absence of such information

(6) The prediction component performs high-level
prediction; hence the model is more robust
against over-fitting. In contrast, other plan
recognition methods try to predict exactly the
attacker’s next action.

As the next step, we can exploit data mining to
correlate alert types rather than using prior knowledge.
We can even combine both to increase the proficiency
of the method. In addition, preparing a public dataset
appropriate to evaluate alert correlation algorithms is
advantageous.

References

[1] F. Valeur, G. Vigna, C. Kruegel, and R.A. Kem-
merer. A Comprehensive Approach to Intrusion
Detection Alert Correlation. IEEE Transactions
on Dependable and Secure Computing, 1(3):146—
169, 2004.

[2] T. Pietraszek. Using Adaptive Alert Classifica-
tion to Reduce False Positives in Intrusion Detec-
tion. In Recent Advances in Intrusion Detection,

pages 102—-124, 2004.
@D
[SeCure

100

Alert Correlation and Prediction Using Data Mining and HMM — H. Farhadi, M. AmirHaeri, M. Khansari

3]

[10]

[11]

R. Smith, N. Japkowicz, M. Dondo, and P. Mason.
Using Unsupervised Learning for Network Alert
Correlation. In Advances in Artificial Intelligence,
pages 308-319, 2008.

B. Morin, L. Mé, H. Debar, and M. Ducassé.
M2D2: A Formal Data Model for IDS Alert Cor-
relation. In Proceedings of the 5th International
Symposium on Recent Advances in Intrusion De-
tection, RAID 02, pages 115-137, 2002.

F. Cuppens and A. Miege. Alert Correlation in
a Cooperative Intrusion Detection Framework.
In Proceedings of the 2002 IEEE Symposium on
Security and Privacy, 2002.

X. Peng, Y. Zhang, S. Xiao, Z. Wu, J. Cui,
L. Chen, and D. Xiao. An Alert Correlation
Method Based on Improved Cluster Algorithm.
In Proceedings of Computational Intelligence and
Industrial Application, PACIIA ’08, pages 342—
347, 2008.

W. Li, L. Zhi-tang, L. Jie, and L. Yao. A Novel
Algorithm SF for Mining Attack Scenarios Model.
In Proceedings of IEEE International Conference
on e-Business Engineering, ICEBE 06, pages 55—
61, 2006.

B. Zhu and A.A. Ghorbani. Alert Correlation
for Extracting Attack Strategies. International
Journal of Network Security, 3(3):244258, 2006.
S.0. Al-Mamory and H. Zhang. IDS Alerts Corre-
lation Using Grammar-based Approach. Journal
in Computer Virology, 2008.

S.J. Templeton and K. Levitt. A Re-
quires/Provides Model for Computer Attacks. In
Proceedings of New Security Paradigms Work-
shop, 2000.

M.S. Shin and K.J. Jeong. An Alert Data Mining
Framework for Network-Based Intrusion Detec-
tion System. In Proceedings of the 6th Interna-
tional Workshop Information Security Applica-
tions, pages 38-53, 2006.

O. De Vel, N. Liu, T. Caelli, and T.S. Caetano.
An Embedded Bayesian Network Hidden Markov
Model for Digital Forensics. In Proceedings of the
International Conference on Intelligence and Se-
curity Informatics, ISI 06, pages 459-465, 2006.
D. Ourston, S. Matzner, W. Stump, and B. Hop-
kins. Applications of Hidden Markov Models to
Detecting Multi-Stage Network Attacks. In Pro-
ceedings of the 36th Annual Hawaii International
Conference on System Sciences, HICSS ’03, 2003.
D. Lee, D. Kim, and J. Jung. Multi-Stage In-
trusion Detection System Using Hidden Markov
Model Algorithm. In Proceedings of the Inter-
national Conference on Information Science and
Security, ICISS *08, pages 72-77, 2008.

Y. Zhai, P. Ning, P. Iyer, and D.S. Reeves. Reason-
ing About Complementary Intrusion Evidence.

burkd)

[16]

[17]

[18]

[19]

23]

[24]

[25]

[29]

[30]

In Proceedings of the 20th Annual Computer Secu-
rity Applications Conference, ACSAC ’04, pages
39-48, 2004.

A. Ehrenfeucht and J. Mycielski. A Pseudoran-
dom Sequence—How Random Is It? The Ameri-
can Mathematical Monthly, 99:373-375, 1992.
X. Qin and W. Lee. Attack Plan Recognition
and Prediction Using Causal Networks. In Pro-
ceedings of the 20th Annual Computer Security
Applications Conference, ACSAC 04, pages 370—
379, 2004.

W. Lee and X. Qin. Statistical Causality Analysis
of Infosec Alert Data. In Proceedings of the 6th
International Symposium on Recent Advances
in Intrusion Detection, RAID ’03, pages 73-93,
2003.

Z. Ning and J. Gong. An Intrusion Plan Recog-
nition Algorithm Based on Max-1-Connected
Causal Networks. In Proceedings of the Tth In-
ternational Conference Computational Science,
I1CCS ’07, 2007.

D.S. Fava, S.R. Byers, and S.J. Yang. Pro-
jecting Cyberattacks Through Variable-Length
Markov Models. IEEE Transactions on Informa-
tion Forensics and Security, 3:359-369, 2008.

H. Farhady, R. Jalili, and M. Khansari. Attack
Plan Recognition Using Markov Model. In Pro-
ceedings of the Tth International ISC Conference
on Information Security and Cryptology, 2010.
P. Bahreini, M. AmirHaeri, and R. Jalili. A Prob-
abilistic Approach to Intrusion Alert Correlation.
In Proceedings of 5th International ISC Confer-
ence on Information Security & Cryptology, 2008.
A. Valdes and K. Skinner. Probabilistic Alert
Correlation. In Proceedings of the 4th Interna-
tional Symposium on Recent Advances in Intru-
ston Detection, 2001.

S. K. Harms and J. S. Deogun. Sequential Asso-
ciation Rule Mining with Time Lags. Journal of
Intelligent Information Systems, 2004.

L.R. Rabiner. A Tutorial on Hidden Markov Mod-
els and Selected Applications in Speech Recogni-
tion. Readings in Speech Recognition, 53:267—-296,
1990.

P.R. Cohen, C.R. Perrault, and J.F. Allen. Be-
yond Question-Answering. Bolt Branek and New-
man Inc., 1981.

T.C. Bell. Text Compression. Prentice Hall PTR,
1990.

M. Roesch. Snort-Lightweight Intrusion Detec-
tion for Networks. In Proceedings of the 13th
USENIX Conference on System Administration,
1999.

MIT Lincoln Laboratory. 2000 DARPA Intrusion
Detection Scenario Specific Data Sets, 2000.
North Carolina State University Cyber Defense

July 2011, Volume 3, Number 2 (pp. 77-101)

Laboratory. TIAA: A Toolkit for Intrusion
Alert Analysis, Accessed May 24, 2009. Avail-
able from: http://discovery.csc.ncsu.edu/
software/correlator/verl.0/.

[31] P. Ning, Y. Cui, and D. Reeves. Analyzing In-
tensive Intrusion Alerts Via Correlation. In Pro-
ceedings of the 5th International Symposium on
Recent Advances in Intrusion Detection, RAID
'02, pages 74-94, 2002.

[32] J.M. Frangois. Jahmm v0. 6.1, 2006. http://
jahmm.googlecode. com.

[33] D. Yu and D. Frincke. Improving the Quality of
Alerts and Predicting Intruder’s Next Goal with
Hidden Colored Petri-Net. Computer Networks,
51:632—654, 2007.

Hamid Farhadi received his BSc and MSc
degrees from Shahid Beheshti University
and Sharif University of Technology, Inter-
national Campus, in 2007 and 2010 respec-
tively. He is now student at Graduate School
of Interdisciplinary Information Studies, De-
partment of Applied Computer Science, The
University of Tokyo, Japan. His research
interests are cloud computing, infrastructure as a service, net-

work virtualization, and network security.

Maryam AmirHaeri received her BSc and MSc degrees
from Sharif University of Technology, Iran, in 2007 and 2009 re-
spectively. She is now PhD student at Amirkabir University of
Technology, Iran. Her research focuses on artificial intelligence,
evolutionary computation, data mining, and machine learning.

Mohammad Khansari received his B.S,
M.S and PhD degrees in Computer Engineer-
ing all from Sharif University of Technology,
Tehran, Iran, in 1996, 1998 and 2008 respec-
tively. He was the former faculty member at
School of Science and Engineering, Sharif
International Campus located in Kish Island
for two years. Moreover, he was the head of
Information Technology faculty and faculty member of Iran
Telecommunication Research Center. Currently, he is the fac-
ulty member and assistant professor at faculty of new sciences
and technologies, university of Tehran. He had a short-time
research fellowship from DAAD, Germany and has given more
than fifty invited talks on Free/Open Source Software (FOSS)
in Iran and International conferences and summits. He is the
co-author of four books in Free/Open Source Software topics
and has more than thirty-five papers in international confer-
ences and journals. His main research interests are pattern
recognition, multimedia sensor networks, multimedia delivery
over peer-to-peer networks, and free/open source software.

101

http://discovery.csc.ncsu.edu/software/correlator/ver1.0/
http://discovery.csc.ncsu.edu/software/correlator/ver1.0/
http://jahmm.googlecode.com
http://jahmm.googlecode.com

	1 Introduction
	1.1 The Reference Architecture

	2 Related Work
	2.1 Intrusion Detection
	2.2 Attack Plan Recognition

	3 System Architecture
	3.1 Alert Normalization
	3.2 Alert Pre-Processing

	4 ASEA
	4.1 Data Mining Terminology
	4.2 A Formal Description of the Model
	4.3 Algorithm Outline
	4.4 Exemplifying the Algorithm

	5 Updating CCM
	5.1 Exemplifying the Algorithm

	6 Hidden Markov Model
	7 Attack Plan Recognition
	7.1 Basic Principles
	7.2 Sequence Modeling
	7.3 Sequence Prediction (Plan Recognition)

	8 Attack Scenario Extraction Experiments
	8.1 LLDDOS1.0
	8.2 LLDDOS2.0

	9 Attack Plan Prediction Results
	9.1 Preprocessing
	9.2 Training
	9.3 Plan Recognition

	10 Conclusion

