The ISC Int'l Journal of
Information Security

January 2009, Volume 1, Number 1 (pp. 27-34)

http://www.isecure-journal.org

A Collusion Attack on the Fuzzy Vault Scheme

Hoi Ting Poon ®*, Ali Miri?

aSchool of Information Technology and Engineering, University of Ottawa, Canada, 800 King Edward Ave, Ottawa, Ontario,

KIN 6N5, Canada

ARTICLE INFO

ABSTRACT

Article history:

Received: 1 July 2008

Revised: 30 November 2008
Accepted: 20 January 2009
Published Online: 28 January 2009

Keywords:
Biometric Encryption, Fuzzy
Vault, Vulnerability

1 Introduction

The Fuzzy Vault scheme is an encryption scheme, which can tolerate errors in
the keys. This leads to the possibility of enhancing the security in environments
where these errors can be common, such as biometrics storage systems.
Although several researchers have provided implementations, we find that the
scheme is vulnerable to attacks when not properly used. This paper describes
an attack on the Fuzzy Vault scheme where the attacker is assumed to have
access to multiple vaults locked by the same key and where a non-maximal
vault size is used. The attack effectively reduces the vault size by identifying
and removing chaff points. As the vault size decreases, the rate at which chaff
points are identified increases exponentially. Several possible defences against
the attack are also discussed.

(© 2009 ISC. All rights reserved.

key [2].

In 1999, Juel and Wattenberg [1] introduced a crypto-
graphic primitive called Fuzzy Commitment scheme
to address the problem of secure biometric storage.
This conceptually simple scheme makes use of error
correction codes to allow for error tolerance in the key.
In other words, the scheme allows a user to encrypt
a message using a key K and decrypt the message
with a key K’ within a certain distance from K. This
error tolerance capability allows for many interesting
applications such as privacy-protected matching and
the use of biometric features as keys in cryptosystems.
However, the scheme has an important shortcoming.
Geometric distortions such as rotations and transla-
tions are common in biometric readings. Hence, the
key K’ will likely consist of some permutation of the
elements in K. The Fuzzy Commitment scheme does
not tolerate such re-ordering of the symbols in the

* Corresponding author.

Email addresses: hpoon015@site.uottawa.ca (H.T. Poon),
samiri@site.uottawa.ca (A. Miri).

ISSN: 2008-2045 © 2009 ISC. All rights reserved.

To address this problem, Juel and Sudan [2] pro-
posed the Fuzzy Vault scheme. By characterising the
key as a set of symbols instead of a sequence and com-
bining them with the proper error correction code,
the scheme achieves the property of order-invariance.
Recognizing its potential as a replacement for key
release based biometrics systems, several researchers
[3,4] and [5] have already provided implementations
of the Fuzzy Vault scheme. Studies have also emerged
identifying potential flaws in chaff point placements
[6,7] and susceptibility to brute-force attack [3] in fin-
gerprint applications. To improve the security of the
scheme, some have proposed techniques such as key
capsulation [9] and the addition of a password [10].

In this paper, we describe an attack on the Fuzzy
Vault scheme where the attacker is given access to
multiple vaults locked by the same key, and where the
vault size is non-maximal. An example where such
an attack is applicable would be the smartcard-based
Fuzzy Vault system described by Clancy [3]. In this
system, a typical user would carry multiple smart-
cards issued by different organizations, but the em-

1S:0uréd)

A Collusion Attack on the Fuzzy Vault Scheme —H.T. Poon, A. Miri

bedded vaults would all be locked by the same key
(the user’s fingerprint). We also considered the case
where multiple vaults are locked with the same secret
message and found that a collusion attack is possible
even when the vault is maximal. The situation can be
difficult to avoid in many applications. Consider two
of the applications proposed in [2]: privacy-protected
matching and password recovery systems. An exam-
ple of privacy-protected matching would be where a
company has its contact information locked in a fuzzy
vault with a set of product specifications such that
only those who search for similar specifications would
be able to unlock it. It is conceivable that a company
would advertise its products through different com-
panies/websites specialized in matching customers to
sellers to increase exposure to the market. However,
the specifications and contact information would re-
main largely the same. A typical password recovery
system would be one where the user answers a num-
ber of questions such that a certain number of correct
response would allow him to retrieve the password.
Similarly for password recovery systems, users often
maintain dozens of accounts. Many users often use
the same password and many of the questions, and
consequently answers, for password recovery are sim-
ilar or identical, despite from different sites.

We will begin by presenting the Fuzzy Vault
scheme. Then, we’ll describe the collusion attack
algorithms and explore some possible solutions to
these attacks.

2 Fuzzy Vault Scheme

The Fuzzy Vault scheme contains two main algo-
rithms: Lock, Unlock.

Setup For the functionality of Fuzzy Vault, one
must first decide on a field I of order ¢ and the range
of values that the vault size, r, the message size, k,
and locking set size, t, can take on.

Lock The Lock algorithm [2] is analogous to the
encryption algorithm. Given a locking set (e.g. bio-
metric features such as minutiae locations) A =
{a;}!_,, where a; € F, and a message, M = {mi}le,
where m; € T, to be locked, generates a set V4 =
{(xi7yi)}:=1’ where TiyYi € IF:

10: y; := U(F\{Y(x;)}), where U randomly chooses an
element of the field F which is not equal to Y (z;)

11 Va:=VaU{(zi,y)}

12: end for

1: Create two empty sets, V4 and X

2: Set Y(z) := m1 + max +max? + ... mpak!

3: for i :=1to t do

4 X =XU {al}

5. Va:=VaU{(a;,Y(a:))}

6: end for

7: for i :=t+1 tor do

8 z; := U(F\{X}), where U randomly chooses an element

of the field F which is not part of X
9: X :=XU{z;}

ISeCure

The resulting set V4 is called the Fuzzy Vault,
locked under the set A.

As illustrated, the message is mapped to the coef-
ficients of a polynomial, Y (z), of degree k — 1. The
image of the locking set, Y'(A), is computed, produc-
ing a set of points (a;, Y (a;)) which lie on the polyno-
mial Y (x). To secure the message, we then add r — ¢
chaff points which are not part of the locking set and
do not correspond to pairs that can be generated by
Y (x). Hence, any chaff point would not be a valid
point on Y (z) and cannot be confused with a point
in the locking set. Note that g represents the size of
the alphabet, r represents the size of the vault, ¢ is
the size of locking set and k is the minimum set over-
lap to achieve a match, where ¢ > r > t > k. The
vault size is maximal when it is equal to the size of
the key space. The key space is defined here as the
values that the z component can take on in the vault.
In the description of the Fuzzy Vault scheme, the size
of the key space is equal to the field size. However, in
practice, it may be less than the field size. Also, the
key space may be dependent on the locking set such
as in [3], where a minimum distance is used to pro-
vide noise tolerance. Without loss of generality, the
key space will be assumed to be equal to the field size
for the remainder of the paper.

Unlock The Unlock algorithm [2] is analogous to
the decryption algorithm. Given an unlocking set
B = {b}!*,, where b; € F, and a vault, V) =
{(z:,yi)}—,, reproduce the message M = {m;}r_, if
|ANB| > k:

: Generate an empty set Q
: for i:=1 to t, do
if z; = b; then
Q= QU {(x;, 5}
end if
end for
M := Decode(Q)

AN S e

The unlocking set B will contain some correct
points and some chaff points. The Unlock algorithm
identifies and retains the points in the vault where
the x; values match the unlocking set elements. If
the sets A and B overlap significantly, the set Q
will contain mostly the correct points that lie on the
polynomial Y'(z). Decode(Q) is a decoding operation
that reconstructs the polynomial Y (x), based on the
t;, overlapping points. More precisely, to reconstruct
a polynomial of degree k — 1, we need to have at
least k£ points that lie on the polynomial. Hence,
to reconstruct Y(x), |A N B| > k . It is suggested
that Decode(Q) be implemented as a Reed Solomon

January 2009, Volume 1, Number 1 (pp. 27-34)

decoder since the set @ can be considered as a gen-
eralized Reed Solomon codeword [2, 11]. When using
the classic Peterson-Berlekamp-Massey algorithm,
the condition for successful decoding of the message
becomes |[ANB| > (k+1t})/2 [2].

A simple example of the algorithm is as follows: Let
the message to be encrypted be M = (1, 3,2) and Al-
ice’s locking set be A = (2,5,3,1). Then, Y(z) =1+
3z +2x2. We first compute Y (A), producing the set of
points (2,15), (5,66), (3,28), (1,6). Two chaff points
(4,5), (6,50) are then added to construct the vault,
Va = {(17 6),(2,15),(3,28),(4,5), (5,66), (6, 50)}
where Y (4) # 5 and Y (6) # 50. If Bob provides the
unlocking set B = (4,2,3,5) to unlock the vault,
the algorithm would attempt to reconstruct Y (x),
given @ = {(2,15),(3,28),(4,5),(5,66)}, and suc-
ceed because A and B overlap on more than k = 3
points. However, if Bob provides an unlocking set
B =(2,4,3,6,7), he would fail to unlock the message
since the set overlaps on only 2 points [4].

2.1 Security

The security of the Fuzzy Vault scheme relies on the
chaff points’ ability to hide the true points. The effect
of the chaff points is to increase the number of spuri-
ous polynomials. A spurious polynomial is a curve of
degree k or less containing a set of exactly ¢ points in
the vault, which is not the secret polynomial. In the
information theoretic sense, the security can be de-
fined as the number of plaintexts associated with a ci-
phertext. For the Fuzzy Vault scheme, this translates
to the number of valid messages for a particular vault.
Consider a vault V4 locked under the set A, where
there are r sets of points, of which ¢ are real. Then,
there exists at least £¢"~*(%)" spurious polynomials,
with probability at least 1 — u, for > 0 [2]. For ex-
ample, for p = 0.01,r = 300,t = 22,k = 19,9 =
216 we would have at least 108844773 ~ 2267 spuri-
ous polynomials, with probability 0.99 [2]. Assuming
any point is equally likely to be a true point, the at-
tacker would have to consider all these polynomials
to equally likely be the secret polynomial. The sys-
tem can be said to achieve 26-bit security at the 99%
confidence level.

One can easily show that this algorithm is vulner-
able to known plaintext attacks. If an attacker can
gain access to the message of a vault, the locking set,
i.e. the key, can be easily obtained by verifying the
message polynomial on the points in the vault. The
following algorithm illustrates such an attack:

Given a vault V4 locked under the set A = {a;}!_,
with the message M = {m;}%_, | where each vault
contains r points, V4 = {(x;,v:;)}i_; and where
X ={z;}]_, , perform the following:

1: Create an empty set X’
2: Set Y (z) := m1 + mazx + maxz? 4+ .. mpak1
3: for i:=1to r do

4: if y; =Y (z;) then

5: X' =X"U{z;}

6: end if

7: end for

8: X’ is the locking set A

The sets X’ and A are equal because all true points
(z4,y;) lie on the polynomial Y (x) while the chaff
points do not.

Any practical cryptosystem must at least be re-
sistant to ciphertext-only attacks. However, we will
show below that the Fuzzy Vault scheme is vulnera-
ble to these attacks if it is not properly used.

3 Collusion Attack

We first consider the case where the attacker has ac-
cess to multiple vaults locked by the same key and
where the vault size is non-maximal (i.e 7 < ¢). We
found that the attacker can reduce the number of can-
didate polynomials by exploiting the following prop-
erties:

e The keys used to lock the vaults are the same
and ‘visible’ to the attacker

e The chaff points are generated randomly and are
independent of the key

e Since the vault size is non-maximal, the chaff
points vary from vault to vault

In the collusion attack algorithm, the goal of the
attacker is to identify and remove chaff points, thus,
reducing the number of spurious polynomials. The
key can even be revealed when a sufficiently large
number of vaults are available.

3.1 Collusion Attack Algorithm with A, = A

Given n vaults {Va1,Vaz2...Va,} locked under
A, where each vault contains r points, V4 ; =
{(24.905)¥ier and where X; = {a;, }i_, , perform
the following:

1: Create an empty set X’

2: for i :==1to r do

3: if z;1 € X; for all j then

4: X' = X’U{a:iJ}

5: end if

6: end for

7: V,Z,j = {(xi,j,yi,j) €Va,|Xij € X’}, denoted the ;"
effective vault

8: Tog = |Vj{j;| = |X’|, denoted the effective vault size

In other words, the algorithm searches for x values
which appear in all the vaults and retain them as pos-
sible elements in the true sets. Points that do not ap-

ISeCure

A Collusion Attack on the Fuzzy Vault Scheme —H.T. Poon, A. Miri

pear in all vaults are identified as chaff points, and are
removed. The effective vault is the result of this siev-
ing process. As the number of vaults increases, more
chaff points are identified and the set X’ approaches
the set A since the set A must appear in all n vaults
while the randomly generated chaff points may not.
Note that the attack is applicable as long as there are
some common attributes used to produce the locking
sets. It is not required for all elements in the locking
sets to be in common and the use of different fields
among the n available vaults do not protect against
the attack as long as the mapping from the attributes
to the locking sets are known.

3.2 Collusion Attack Algorithm with A4; = A
and M; = M

If the attacker can obtain two or more vaults locked
with the same key and with the same secret message,
the key can be revealed even more easily using similar
ideas as the previous algorithm.

Given n vaults {Va1,Vaz2...Va,} locked under
the same set A = {a;}/_, with the same message
M = {mi}f:1 , where each vault contains r points,
Va,; = {(ij,vi;)}i_, » perform the following:

: Create an empty set Vg
: for i :=1tor do
if (4,1,¥:,1) € Va,; for all j then
Vegr = Ve U{(24,1,9i,1) }
end if
end for
M’ := Decode (Vcﬁ)
: Vg is the effective vault

© XD TR W

: Tefp i= |Veg| is the effective vault size
Since x; ; and y; ; are related by a common poly-
nomial Y (z) = my + max + maz? + .. .mpaFL,

these points must be identical across all vaults. If the
chaff points are generated randomly, the probability
of two chaff points from different vaults being identi-
cal is very low, assuming a reasonably large field size.
Hence, the attacker will likely be able to identify A
even in the case where n = 2. Note that, unlike the
previous case, the attacker would succeed even when
the vault size is maximal. When the maximum vault
size is used, the chaff points in all the vaults contain
the same z; values, but the y; values they are matched
with are randomized while the true points have fixed
x; and y;. Hence, an attacker can exploit this prop-
erty to identify chaff points.

Both algorithms assume that all n vaults are locked
by the very same key. However, when using Fuzzy
Vault for biometric applications, the keys used to lock
the vaults are not likely to be identical; rather they
overlap significantly. In this case, the algorithms can
be modified such that z; ; or (z; ;,y; ;) appearing in

ISeCure

the majority of the vaults are retained. In Clancy’s
smart-card implementation [3], a minimum distance
is also used to avoid confusion between neighbouring
2;,5. Then, we simply adapt by considering z; ; and
x; j+ to be the same if they are within the minimum
distance from each other.

3.3 Collusion Attack Algorithm with M, = M

Finally, we consider the case where the attacker is
given n vaults locking the same message, but with dif-
ferent keys. If the probability distribution of the lock-
ing sets is well defined, then the probability of a par-
ticular point being a true point is fixed. We define the
probability of a point z being in the locking set as p;.
Then, with probability p, the point (x,Y (z)) would
appear in the vault. When z is not in the locking set,
the probability of it being chosen as a chaff point is
Pchaff = ¢/s, where c is the number of chaff points to
be added and s is the number of possible values for
a chaff point. Then, with probability (1 — p)pchag
we would have (z,y’) in the vault, where ¢y is uni-
formly distributed over F\ {Y (z)}. For clarity, we will
assume the vault is maximal, i.e. pcrqy = 1. Hence,
P(z,y =y) = (1 —pt)/(q — 1), where y is a value
other than Y (z). For p; > 1/q, we can see that p; >
(1 = pt)/(q — 1). The analysis follows similarly when

pchaff 7é 1.

Assuming there are N >> k points where p; > 1/g,
a collusion attack would proceed as follows:

Given n vaults {V1,V5...V,,} with the same mes-
sage M = {m;}¥_, , where each vault contains r
points, V; = {(zi,;,vi;)};_,, perform the following:

1: Create a g by ¢ table Count(z,y) and initialize all values
to 0.
: for j:=1 ton do
for i :=1 to r do
Count (x; 5, vi,5) := Count (z;5,v:,5) + 1
end for
: end for
: Count(z,y) contains the distribution of data over the n
vaults
8: Create an empty set V4
9: for all a € F do
10: Find the mean uq of Count(a,y)
11: The estimated true point is (a,b) where b := y’ where
|Count (a,y’) — uq| is maximal
122 Vi =V U{(a,b)}
13: Q(a) :=|Count(a,b) — uq|
14: end for
15: V4 is the estimated true vault, which contains the points
most likely to lie on the message polynomial.
16: Q (a) is a measure of the quality of the point retained.
17: Veg := m pairs of (a,b) with the highest Q (a)
18: M’ := Decode (Veﬁ)

If the probability of a point being true is high, it
will be consistently paired with a particular y value.

January 2009, Volume 1, Number 1 (pp. 27-34)

The algorithm exploits this property to identify a set
of candidate true points. When there are a large num-
ber of vaults available, the points where p; < 1/q may
also be useful as they will appear not to be ever paired
with a particular y value. To identify which estimated
true points are most likely to be correct, we simply
note that the frequency of the ones which appear
much greater or much less than its peers. For exam-
ple, if we see (1,5),(1,5),(1,7),(1,5),(1,5) across
five vaults, it would be highly probable that (1,5) is a
true point. If we see (5,3),(5,4),(5,8),(5,8),(5,2)
across five vaults, the point (5, 8) only appears slightly
more often than its peers and, thus, is a less reliable
candidate for a true point.

In both cases where M; = M, the situation be-
comes more complex when the field differs from vault
to vault. Although a direct comparison may not be
possible, the question of whether it is possible to nar-
row down the candidate true points remains open.

3.4 Security

In the algorithms from sections 3.1 and 3.2, the goal
is to identify and remove chaff points to produce a
smaller vault, Vg, which still contains all the true
points. Hence, we can think of the security of the sys-
tem, when n vaults are used to be equivalent to that
of asingle vault Vg . Recall from the security analysis
in section 2.1 that there are at least %qk_t (%)t spu-
rious polynomials in a vault, with probability 1 — pu.
When generating Vg, the only parameter that was
changed in favour of the attacker is the vault size,

t
Tefr- The incurred security loss is, thus, (#) .

To better understand the degree at which the se-
curity deteriorates, we need to examine the rate at
which r.gz decreases with respect to the number of
vaults available, n, and the vault size, r.

Availability of two vaults locked with the same key
is the most likely situation to occur in practice, where
the key may, for example, be a person’s fingerprint.
If we have two vaults locked with the same key and
different messages with ¢ true points and r —¢ random
chaff points, all the true points must appear in both
vaults while the probability that = chaff points match
between the vaults is given by:

() (5%)
() (1)

where s=q—t, ci=ri—t, co=1r9—1t

P(z) =

Here, s represents the chaff space, and ¢; and ¢y
are the number of chaff points in the first and second
vault. If we are given ¢ + 1 vaults with the same pa-
rameters, the probability that ;1 chaff points match

in all these vaults is given by the following iterative

function:
x;=1 Zq

lzy=c
where P(z1) =
0 else

The expected effective vault size of i + 1 with the
parameter set (r,¢,q) is thus the sum of the number
of true points and the expected number of matches
across the vaults:

E{reg} =t+ > zip1P(win) (3)

Tip1=1

The variance of r.g can be used as a measure of
the accuracy of the mean value.

When s —cis small and s is large, the rate at which
E{rey} decreases with respect to n is almost linear,
approximately (s — ¢)/vault. This is intuitive since
two sets containing almost the entirety of the universe
will surely overlap significantly. The missing elements
from either set will contain a small portion of the uni-
verse and, when chosen randomly, will almost surely
be different. However, when s — ¢ is large, E {rey}
decreases exponentially with respect to n. From the
equation, we can see that the term (Ilb_;;l) = 0 for
all x; — x;41 > s — c¢. Hence, the effective vault size
can at most decrease by s — c¢. In short, the parame-
ters s and c allow us to control the rate at which the
effective vault size decreases.

Table 1 shows the deterioration of security in terms
of the number of spurious polynomials, Ns,, given
n vaults with the same locking set for the following
parameters: ¢ = 28,¢ = 20,k = 16, = 0.01. The
two cases shown, ¢ = 200 and ¢ = 180, highlight
the effect of the number of chaff points on the rate
at which security decreases. It can be verified that
P(|lreg — E{reg}l < 8) > 90% for n < 10 in both
cases.

If two vaults contain the same message and are
locked with the same key, the situation becomes more
alarming. Since the true points are guaranteed to ap-
pear in both vaults, we cannot mistake a true point
as a chaff point. The only source of error would be in
identifying a chaff point as a true point, which would
occur when the randomly generated x and y values
match. The probability of a match in the y values for
two chaff points is 1/(¢ — 1). Thus, using the previ-
ous equation for P(z) to evaluate the probability of
matching z values, we find that the probability of k
chaff points matching between two vaults is

ISeCure

A Collusion Attack on the Fuzzy Vault Scheme —H.T. Poon, A. Miri

Table 1. Expected effective vault size and corresponding security given n vaults with the same locking set

c =200 c =180
n E{r.} Ny, Bits of security n E{r.} N, Bits of security
1 220 5.22 x 108 28.96 1 200 7.76 % 107 26.21
2 189 2.50 * 107 24.58 2 157 6.13 % 10° 19.23
3 164 1.47 % 106 20.48 3 125 6420 12.65
4 142 82241 16.33 4 100 74 6.2
) 123 4650 12.18 5 81 1 0
6 107 286 8.16 6 66 0 -
7 94 21 4.42 7 95 0 -
8 83 2 1 8 47 0 -
9 73 0 - 9 40 0 -
Pk) = XC: P(z) <1)k <1 B 1>z_k 3.5 Example of Collusion Attack
a=k ¢—1 ¢—1 Uludag [4] implemented the Fuzzy Vault scheme using

NERD IO

For g large and k > 0, (q%l)k is very small and (1—
27)"7F ~ 1. Thus, P(k) = (;13)" 3 P(x). Hence,
with very high probability, we would have no matches
(k = 0) between the two vaults.

The algorithm described in section 3.3 exploits the
possibility that the locking set is distributed such that
a true point would appear more frequently than a
chaff point. Note that the condition allowing the iden-
tification of the true points, p; > 1/¢, is not difficult
to satisfy since a large field size is often used and the
required k points is much less than the points avail-
able in a vault. The distribution of biometric features
would certainly satisfy this condition. In fingerprints,
minutiae locations are most prominent near the core
and rarely at the edges. The question of how many
vaults would be needed to compromise the scheme
depends on various factors, particularly the distribu-
tion of the locking sets and the degree of the message
polynomial. However, if ¢ is large, it is unlikely that
the two chaff points will have matching y value. The
probability of identifying a true point given n vaults
can then be approximated by the probability that x
is a true point in at least two vaults: 1 — (1 — p)"™ —
np¢(1 —py)" L. The number of vaults needed to iden-
tify a true (z,y) pair is then approximately 2/p;.

1Seburéd)

fingerprints. To produce the locking set, the minutiae
coordinates of each fingerprint image are first quan-
tized such that they lie in a square tessellation of 7
pixels width. The coordinates are then expressed in
8-bit values such that the range of x or y would be
[0,255]. The locking set is then defined to be the set
A = {a;}'_, where a; = z;|y;, over the field GF(2'9).
The number of true points, ¢, is selected to be 18 and
the number of added chaff points is 200.

Assuming that an attacker has access to two vaults
from the same user, we can estimate the effective vault
size using the previously found equations, where s =
216 _ 18, ¢ = 200. With almost 90% probability, the
two vaults would have at most one chaff point in com-
mon. Thus, the key and the message will probably be
revealed immediately.

Actually, the number of chaff points per vault is also
optimistic. The size of the fingerprint images from the
database is approximately 300 % 400. With a block
size of 7-pixel width, this translates to at most 43
58 possible minutiae coordinates. Hence, out of the
216 = 65536 possible values for x|y, only 43 * 58 =
2494(~ 4%) are valid. Since the chaff points were
drawn randomly from GF(q), only 8 chaff points on
average would be valid minutiae coordinates. Then,
a simple brute force attack would be able to identify
the key and the message. Hence, one must be careful
and generate chaff points from the key space and not
from the field when the size of the key space is less
than that of the field.

January 2009, Volume 1, Number 1 (pp. 27-34)

4 Modifications to the Scheme

There are several possibilities in modifying the
scheme to defend against a collusion attack. We con-
centrate on the case when the same locking set is used
to produce multiple vaults and briefly investigate
three possible modifications pertaining to each of the
exploitable properties discussed at the beginning of
section 3: a) ‘visibility’ of key elements, b) Variabil-
ity of chaff points across vaults and c¢) non-maximal
vault size.

4.1 One-Way Transform of the Locking Set

The collusion attack is possible partly because the
true points don’t change and they are immediately ac-
cessible as x; values. Thus, one way to protect against
the attack is to generate different sets of x; values
for different vaults even when the locking sets are
the same. Obviously, we must also not allow the at-
tacker to retrieve the locking set elements from x; as
he would then simply reverse the operation and carry
out the attack.

The idea is similar to that of cancellable biomet-
rics [12] or password salting. We apply a keyed one-
way transform on the locking set for each vault. If
the attacker cannot reverse the one-way transform,
he cannot retrieve x;. In other words, we compute
a; = F(a;,S) for all a; € A, where F(z) is a one-
way function such as a cryptographic hash function,
and S is the salt consisting of a random bit string.
Then, we proceed with the Fuzzy Vault scheme with
a; € A'. Since a different S is used for different vaults,
the true sets will vary and, thus, the collusion attack
would fail.

When the key space is large, one can simply store
S along with the vault since it does not help the at-
tacker in retrieving the set A. By using this technique,
the security achieved is thus that of the difficulty of
computing the preimage set of F(a;,S), and of iden-
tifying the correct polynomial in a vault of size r.g,
provided that it’s less than the security of a single
vault.

When the key space is small, a brute force attack
would easily provide a complete mapping for all pos-
sible a;. Unfortunately, the entropy of most biomet-
ric features tends to be small. A one-way transform
of these feature points would provide minimal secu-
rity enhancement. One possible solution is to use S
as part of the key (e.g. PIN number). In other words,
we increase the key space via the use of a consistent
password. The security gained is simply the number
of bits in S.

4.2 Deterministic Chaff Point Generation

Rather than varying the true points in different
vaults, we can also fix the chaff points so that dif-
ferent vaults locked by the same key would have the
same set of x; values. In other words, we generate
the chaff points dependent on the locking set A. To
do so, we need to produce a consistent bit string
from the locking set A. The bit string is then used
to initialize a pseudo-random generator, resulting
in a consistent set of chaff points. We note that the
problem of producing a consistent bit string from
A is similar to that of retrieving the message from
a potentially corrupt codeword. Hence, we propose
the use of error correction codes. The locking set
A can be considered a codeword with some symbol
errors. By choosing the appropriate parameters, we
can perform Decode’(A) to generate a consistent A’.
We then initialize a pseudo-random generator to A’
and generate the chaff points accordingly.

Note that the size of A’ will necessarily be smaller
than A. If the size of A is not large enough or if it re-
quires a significant amount of error tolerance, the size
of A’ may become small enough to allow an attacker
to perform a brute force attack. By running through
all the possibilities for A’, he would be able to match
a set of chaff points to a set A = Encode’(A’). Since a
vault consists almost entirely of chaff points, he would
then be able to deduce the locking set A.

4.3 Maximal Vault Size

By using the maximal vault size, the vault will contain
all the possible x; values regardless of the locking set.
Hence, the chaff points do not vary. As long as the
same message is not used twice with the same locking
set, we can ensure that a collusion attack would not
succeed.

5 Conclusion

We demonstrated an attack on the Fuzzy Vault
scheme when an attacker can gain access to multiple
vaults locked with the same key, where the vault size
is non-maximal. Our analysis showed that, as the
vault size decreases, a collusion attack could quickly
reduce the security of the scheme. Some possible de-
fences against the attack were suggested, but they
are highly dependent on the property of the locking
set. Due to the low entropy of biometrics, it may be
ideal to always use the maximal vault size.

References

[1] Ari Juels and Martin Wattenberg. A Fuzzy Commitment
Scheme. In Proceedings of the 6th ACM Conference on

ISeCure

A Collusion Attack on the Fuzzy Vault Scheme —H.T. Poon, A. Miri

Computer and Communications Security (CCS’99), pages
28-36, Kent Ridge Digital Labs, Singapore, 1999. ACM
Press.

[2] Ari Juels and Madhu Sudan. A Fuzzy Vault Scheme.
In Proceedings of the IEEE International Symposium on
Information Theory (ISIT), page 408, 2002.

[3] T. Charles Clancy, Negar Kiyavash, and Dennis J. Lin.
Secure Smartcard-Based Fingerprint Authentication. In
Proceedings of the ACM SIGMM Workshop on Biometrics
Methods and Applications (WBMA’03), pages 45-52,
Berkley, California, 2003. ACM.

[4] Umut Uludag, Sharath Pankanti, and Anil K. Jain.
Fuzzy Vault for Fingerprints. In Proceedings of the
Audio- and Video-based Biometric Person Authentication
(AVBPA’05), pages 310-319, Hilton Rye Town, NY, USA,
2005.

[6] S. Yang and I. Verbauwhede. Automatic Secure
Fingerprint Verification System Based on Fuzzy Vault
Scheme. In Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing
(ICASSP’05), pages 609-612, Philadelphia, PA, USA,
2005.

[6] Ee-Chien Chang, Ren Shen, and Francis Weijian Teo.
Finding the Original Point Set Hidden among Chaff.
In Proceedings of the ACM Symposium on Information,
Computer and Communications Security (ASIACCS’06),
pages 182—188, Taipei, Taiwan, 2006. ACM.

[7] Ee-Chien Chang and Qiming Li. Hiding Secret Points
Amidst Chaff. In Proceedings of the 24th Annual
International Conference on the Theory and Applications
of Cryptographic Techniques (Advances in Cryptology
- EUROCRYPT’06), volume 4004 of Lecture Notes in
Computer Science (LNCS), pages 59-72, Petersburg,
Russia, 2006. Springer.

[8] Preda Mihailescu.
The Fuzzy Vault for Fingerprints is Vulnerable to Brute
Force Attack. http://arxiv.org/abs/0708.2974v1.

[9] W.L.W. AlTarawneh and W.L Woo. Biometric Key
Capsulation Technique Based on Fingerprint Vault:
Anatomy and Attack. In Proceedings of the International
Conference on Information and Communication
Technologies: From Theory to Applications (ICTTA’08),
pages 1-5, Damascus, Syria, 2008.

[10] Karthik Nandakumar, Abhishek Nagar, and Anil K.
Jain. Hardening Fingerprint Fuzzy Vault Using Password.
In Proceedings of the International Conference on
Biometrics (ICB’07), volume 4642 of Lecture Notes in
Computer Science (LNCS), pages 927-937, Seoul, Korea,
2007. Springer.

[11] S. Reed and G. Solomon. Polynomial Codes Over
Certain Finite Fields. International Journal of Applied
Mathematics, 8(2):300-304, 1960.

[12] N. Ratha, J. Connell, and R. Bolle. Enhancing Security
and Privacy in Biometrics-Based Authentication Systems.
IBM System Journal, 40(3):614-634, 2001.

Hoi Ting Poon received his BSc and
MSc in Electrical Engineering from
the University of Ottawa in 2005 and
2007 respectively, where he is currently
a PhD candidate. His research inter-
ests include information security, sys-
tem security, cryptography, biometric

encryption and authentication systems.

1SeGurtd)

Ali Miri received his BSc and MSc in

Mathematics from the University of Toronto,

Canada, and his PhD in Electrical and Com-

puter Engineering from the University of Wa-

terloo, Canada. Since 2001, he has been with

| the School of Information Technology and

' LU‘ Engineering (SITE) at the University of Ot-

tawa, Canada, where he is also the director

of the Computational Laboratory in Coding

and Cryptography (CLiCC). His research interests include dig-

ital communication, and applied security. He is a member of

Professional Engineers Ontario, ACM and a senior member of
IEEE.

	1 Introduction
	2 Fuzzy Vault Scheme
	2.1 Security

	3 Collusion Attack
	3.1 Collusion Attack Algorithm with Ai = A
	3.2 Collusion Attack Algorithm with Ai = A and Mi = M
	3.3 Collusion Attack Algorithm with Mi = M
	3.4 Security
	3.5 Example of Collusion Attack

	4 Modifications to the Scheme
	4.1 One-Way Transform of the Locking Set
	4.2 Deterministic Chaff Point Generation
	4.3 Maximal Vault Size

	5 Conclusion

