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1 Introduction

The aim of image steganalysis is to detect the presence of hidden messages in
stego images. We propose a blind image steganalysis method in Contourlet
domain and then show that the embedding process changes statistics of
Contourlet coefficients. The suspicious image is transformed into Contourlet
space, and then the statistics of Contourlet subbands coefficients are extracted
as features. We use absolute Zernike moments and characteristic function
moments of Contourlet subbands coefficients of the image to distinguish
between the stego and non-stego images. Absolute Zernike moments are used to
examine the randomness in the test image and characteristic function moments
of Contourlet coefficients is used to form our feature set that can catch the
changes made to the histogram of Contourlet coeflicients. These features are
fed to a nonlinear SVM classifier with an RBF kernel to distinguish between
cover and stego images. We show that the embedding process distorts statistics
of Contourlet coefficients, leading to detection of stego images. Experimental
results confirm that the proposed features are highly sensitive to the change
made by the embedding process. These results also reveal advantage of the
proposed method over its counterpart steganalyzers, in cases of five popular
JPEG steganography techniques.

©) 2014 ISC. All rights reserved.

tions [1]. Various types of data may be used for stegano-
graphic communications, where digital images are the

teganography refers to the art and science of covert
S communication through public channels. In fact,
steganography attempts to hide the existence of the
secret message in seemingly normal data communica-
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most popular covers selected by steganographers, par-
ticularly over public networks [2]. Due to JPEG for-
mat to be often used for efficient transmission, several
data embedding tools for images have been designed
for JPEG images. Among JPEG steganographic meth-
ods, Outguess [3], Model-Based (MB) [4, 5], F'5 [6],
PQ [7], and NSF5 [8] have received more attention
for comparative analysis and benchmarking. In addi-
tion, YASS [9] and HUGO [10] steganography schemes
are more recent, powerful works to be mentioned in
the development of steganographic methods. YASS
works completely different from most of the other al-
gorithms, because it does not embed message in DCT
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(Discrete Cosine Transform) coefficients. To disable
the calibration process, data is hidden in randomly
chosen blocks in the image, and then the image is
passed on the public network in JPEG format. A
further study on YASS, with the goal of improving
the embedding rate, was presented in [11]. On the
other hand, HUGO steganography limits its embed-
ding changes to parts of image that are difficult to be
modeled. Subsequently, it approximately preserves a
high-dimensional feature vector [12]. By adaptively
embedding in textured or noisy regions and using syn-
drome coding techniques, it can embed more payloads
with low statistical detectability. Having a suspicious
image, the goal of image steganalysis is to determine
whether the image contains an embedded message or
not. Existing steganalysis methods can basically be
categorized into targeted steganalyzers, designed for
some selected steganography schemes, and blind ste-
ganalyzers, which require no prior information about
the steganographic method applied to the stego image.
Due to many various types of steganography schemes
introduced so far, the blind image steganalysis, that
is also known as universal steganalysis, has attracted
more attention by the researchers in the area of im-
age steganalysis. Steganalysis, as a two-class pattern
classification problem, aims to determine whether a
test image is a cover or a stego one. The basic idea of
blind steganalysis is to extract some features sensitive
to information hiding, and then exploit classifiers for
judging whether a given test image contains a secret
message. In general, blind steganalyzers work based
on learning the differences between statistical proper-
ties of cover and stego images. Blind methods extract
features from the test image, which probably change
after the data embedding. Often, different features
are effectively combined into a feature vector that is
employed to train a classifier to discriminate between
cover and stego images. Generally, using features that
are more sensitive to embedding alterations, results
in higher detection rate in steganalysis. Accordingly,
as a crucial part of blind steganalysis, most methods
are focused on selection of features with a high sensi-
tivity to the expected statistical embedding changes.
One of the first blind steganalysis methods is pro-
posed by Avcibas et al. in 2000 [13]. They use some
image quality metrics as the feature to distinguish be-
tween stego and non-stego images, and then classify
between different embedding techniques. A success-
ful blind steganalysis scheme is presented by Farid et
al. in 2001 [14]. They decompose an image using sep-
arable quadrature mirror filters (QMF) to split the
frequency space into multiple scales and orientations.
Then, higher-order statistics of subband coefficients
and errors in a linear predictor of coefficient magni-
tude are used as features. These features are fed into
a Fisher linear discriminant (FLD) classifier to deter-
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mine whether the image contains an embedded mes-
sage. Experimental results shows that this framework
have a good performance for detecting stego images
generated by Jsteg [15], Ezstego [15] and Outguess
[3]. Later, simulation results reported in [16] showed
that it is possible to detect stego images generated
by LSB (Least Significant Bit) embedding, though at
low accuracy. According to the work in [16], statisti-
cal moments of subbands coefficients magnitudes of
multi-scale, multi-orientation image decompositions,
such as wavelet, are useful for blind image steganaly-
sis. The method is extended in [17] for RGB images,
where SVM (Support Vector Machine) classifier is
used. In [18], image statistics in wavelet domain are
used as features that are extracted from the first four
PDF moments of high frequency subbands coefficients,
their linear prediction error is used as elements of a
feature vector to distinguish between the stego and
non-stego images. A powerful steganalysis method for
detecting JPEG images is proposed by Fridrich, that
uses the concept of calibration to increase the features
sensitivity to the embedding modifications, while sup-
pressing image-to-image variations [19]. Calibration
is a process used to estimate macroscopic properties
of the cover image from the stego image. During the
calibration, the stego image J; is decompressed to the
spatial domain, cropped by 4 pixels in both directions,
and compressed again with the same quantization ma-
trix. The calibrated features are obtained from an L,
norm difference between the features calculated for Jp,
the stego image, and J3, the modified stego image, as:

f=1F() = F(J2)l|L, (1)

where F' denotes a composite function that extracts 23
features from both spatial and DCT domains. The key
idea for using the L; norm to form the DCT features,
is to reduce dimensionality of the feature set. In [20],
the differences between absolute values of neighboring
DCT coefficients are modeled as a Markov process
to develop a statistical model for detecting stego im-
ages. Four difference arrays are calculated along four
directions: horizontal, vertical, diagonal, and minor
diagonal. In [21], PEV-274, the Authors investigate
the use of L1 norm for DCT features, and conclude
that by using the L; norm, some potentially useful
information for steganalysis is lost. By replacing the
Ly norm with a higher-dimensional alternative, more
information can be preserved, and better classifica-
tion results are achieved at the expense of increased
dimensionality of feature set. They extended DCT fea-
tures and combined with calibrated Markov features
to construct 274-D feature set. The steganalysis re-
sults reported in [11] indicate that the 274-D feature
set cannot detect YASS reliably. This is not surprising,
because the key purpose of YASS was to disable the
calibration process. In [22], in addition to discovering
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how calibration works, they conclude that when a non-
calibrated version of the PEV-274 feature set is used,
YASS becomes significantly more detectable. Another
Markov process based JPEG steganalysis is proposed
by Chen in 2008, which uses both the intra-block and
inter-block correlations among JPEG coefficients [23].
Modern steganography schemes such as HUGO limits
its embedding changes in textured or noisy regions
that preserves a very high-dimensional feature vector.
To capture a larger number of dependencies among
image elements, we need to use more complex statis-
tical descriptors and a high-dimensional feature vec-
tor. The Work in [24] proposes an ensemble classifi-
cation scheme with lower complexity, which is shown
to be especially suitable for steganalysis with higher-
dimensional feature sets. If the embedding process
is modeled by additive noise under an independence
assumption, the histogram of the stego is a convolu-
tion of the noise probability mass function and the
original histogram image. In [25], it is shown that the
embedding process resembles lowpass filtering of the
histogram, hence makes it smoother. To catch this
embedding effect, they define and use center of mass
(COM) of histogram characteristic function as fea-
ture. They show that for an embedding scheme with a
non-increasing characteristic function (CF), the COM
decreases or remains the same after embedding the
data. The research in [26] points out that the COM
feature is essentially the first CF moment of the im-
age, and then a steganalysis method based on the
statistical moments of wavelet characteristic function
is proposed. The authors theoretically conclude that
statistical moments of wavelet characteristic function
are more sensitive to embedding changes, and then
show that higher detection accuracy can be achieved
in steganalysis of some typical embedding schemes.
They rely on the fact that embedding noise makes
histogram of image smoother, thus the moments of
the wavelet characteristics function can reflect this
change better than the PDF moments. In [27], the
statistical moments of wavelet characteristics function
from the test image and the prediction-error image for
wavelet subbands are used as features. The main idea
to use the prediction-error image is to erase the image
content, and the prediction algorithm is expressed as
follows:

maz(a,b) ¢ < min(a,b)
min(a,b) ¢ > maz(a,b) (2)
a+ b — c otherwise

where a, b, and ¢ are contents of neighboring pixel
z, and Z is the predicted value of x. Experimental
results shows that prediction-error images could in-
tensify the changes caused by the embedding through
reducing the effect of the diversity of natural images.

n [28], Chen et al. extended the work in [26], and
extracted statistical moments of wavelet characteris-
tics function derived from both image pixel array and
JPEG coefficients array as features. In addition to the
first-order histogram, the second-order histogram is
employed. Gul et al. [29] proposed singular value de-
composition (SVD) based features for the steganalysis
of PQ (perturbed quantization) embedding method
in images introduced in [7]. They showed that the
PQ embedding process distorts linear dependencies of
neighboring pixel values that affect the SVD features,
so they could detect the PQ data hiding scheme. They
counted number of linearly dependent rows or columns
by checking zero values at a certain index for 50%
overlapping windows over a given image. In another
work, Gul et al. [30] introduced a blind steganalysis
method in order to detect spatial domain stegano-
graphic algorithms. Their method uses singular values
calculated over image sub-blocks and employs content
independency provided by a Wiener filtering process.
Another spatial domain steganalysis method for de-
tection of steganographic schemes that embed in the
spatial domain is proposed by Pevny et al. in 2010 [31].
They model differences between adjacent pixels using
first-order and second-order Markov chains. In most
cases of image steganography, the message embedded
in the image is converted to pseudo-random data, so
the embedding process increases randomness of the
image. Hence, a higher detection performance is ex-
pected to achieve by using the statistical moments of
the image in a noise sensitive domain for steganalysis.
Zernike moments are based on the radial polynomials
that have been shown to be ideal for regional repre-
sentation of images through orthogonal, geometrically
invariant statistical characterization [32, 33]. Also,
Zernike moments are sensitive to noise present in the
image [34]. The work reported in [35] examined noise
sensitivity of Zernike moments. They conclude that
these moments are sensitive to noise, where higher
order moments are more sensitive to noise. In [32], for
texture feature extraction, Contourlet transform is
initially applied to the image, and then Zernike mo-
ments are calculated for each subband as the feature
selection process. We take this idea and use noise sensi-
tivity of Zernike moments, and the power of these mo-
ments to capture the image properties. In [36], Zernike
moments of DWT (discrete wavelet transform) sub-
bands coefficients of the suspicious image is used as
features for watermark detection. According to this re-
search, there is a difference between these features for
stego and non-stego images, while they are sensitive
to the embedding changes. This work confirms that
the Zernike moments are sensitive to the embedding
noise. Our investigation, however, shows that these
features are not suitable enough for the use in blind
image steganalysis, when used alone. In [37], the first
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four PDF moments of eight subbands in the third level
of Contourlet transform and the first four moments of
their linear prediction error of these subbands coeffi-
cients are used as features. Then, these 64 values con-
struct a feature vector to distinguish between the stego
and cover images. A blind color image steganalyzer is
proposed in [38], in which the statistical features of
Contourlet coefficients and co-occurrence matrices of
subband images are used as features. To reduce the
number of features, Analysis of Variance (ANOVA)
method is used, and the selected features are fed into a
nonlinear SVM to distinguish between stego and clean
images. Experimental results show high sensitivity of
Contourlet and co-occurrence matrix features to the
embedding noise. The Contourlet transform has the
ability to capture smooth contours of the images and
uses Laplacian pyramid for multiscale decomposition
and the directional filter bank for directional decom-
position [39, 40]. It satisfies the property of anisotropy
and can effectively capture geometrical structures in
the textural images that wavelets fail to capture. The
key advantage of Contourlet transform, as compared
to wavelets, is that a sparser representation is achieved
by Contourlet transform. This means that majority of
the Contourlet coefficients have amplitudes close to
zero, so the moments of Contourlet coefficients could
be more sensitive to the embedding changes [37]. Con-
sidering these Contourlet transform properties and
comparing the results given in [14, 37], we can con-
clude that the Contourlet transform is quite effective
in blind image steganalysis. In this paper, we use the
Contourlet transform and the Zernike moments for
image representation and extract statistical features
from Contourlet coefficients in three paths. First, the
image is decomposed into three levels from finest to
coarsest, and then 12 directional subbands are used for
feature extraction. Next, we compute the Zernike mo-
ments for each subband and construct Zernike energy
vector, from which we compute mean and variance
that form first part of our feature set. For the sec-
ond part of the feature set, as mentioned in [37], the
first three moments of difference between actual and
linear predicted coefficients in third level subbands
are used. Finally, characteristic function moments of
Contourlet coefficients, relating to n derivatives of
the histogram, are used to form our feature set. Sub-
sequently, an SVM classifier is employed to classify
stego and non-stego images. Experimental results con-
firm that the proposed scheme improves performance
of steganalysis over its counterpart steganalysis meth-
ods, proposed in [14, 19, 30, 37], for five typical JPEG
steganography schemes, Outguess [3], MB1 [4], MB2
[5], PQ [7] and NSF5 [8]. The rest of the paper is orga-
nized as follows: Section 2 gives a brief review of the
Contourlet transform and Zernike moments. In Sec-
tion 3, we introduce the proposed feature extraction
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Figure 1. Basic structure of contourlet decomposition.

method and the idea behind it in detail. Experimental
results are reported and discussed in Section 4. Finally
the conclusion is given in Section 5.

2 Image Representation

In this section, we provide a brief review of the Con-
tourlet transform and Zernike moments and explain
why these transforms are useful in blind image ste-
ganalysis.

2.1 Contourlet Transform

Contourlet transform is a simple directional extension
to the wavelet transform using non-separable and di-
rectional filter banks that recently proposed for image
representation and analysis [39]. A simple structure of
Contourlet transform is shown in Figure 1. According
to this figure, the Contourlet transform is made of two
main filter banks by combining the Laplacian pyra-
mid with a directional filter bank. Laplacian pyramid
filter is used to construct a multiscale representation
of an image. Then, the subband images from these
filters are fed into a directional filter bank to give
the directional details at each level. The output val-
ues from the directional filter banks at each level are
known as Contourlet coefficients. The key idea of the
Contourlet transform is to find more directional de-
tails of the image by dividing each highpass subband
of the wavelets into more than two directions [37]. In
Contourlet transform by first applying a multiscale
transform, followed by a local directional transform,
we can obtain a sparser expansion for images. Thus,
as compared to the wavelet analysis, the Contourlet
transform can give a sparser representation of the im-
age, due to a larger number of near-zero coefficients
produced. Comparing wavelet and Contourlet repre-
sentations of an image shown in Figure 2, we can
see how Contourlet transform can effectively repre-
sent a smoother contour with fewer coefficients, and a
sparser representation. Sparsity property of the Con-
tourlet transform, as compared to wavelet, makes it
more sensitive to small changes caused by the data
embedding. Often, edges are used for data embedding
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Wavelet Transform

Contourlet Transform

Figure 2. Comparing representation of smooth contour by
wavelet and Contourlet transform [40].

in some steganography scheme. The Contourlet trans-
form is sensitive to edges, duo to directionality and
anisotropic properties of this transform. Therefore,
the Contourlet transform is more effective for image
steganalysis, as compared to wavelet transform, to
achieve higher performance in terms of detection ac-
curacy. The research in [37] shows that, Contourlet
based steganalysis method can give a better detec-
tion accuracy than the method proposed in [18] in the
wavelet domain. This research also shows that by using
Contourlet transform of an image, instead of wavelet
transform, we expect to improve the performance of
steganalyzers that extract features in wavelet domain.

2.2 Zernike Moments

In [41], Zernike moments are introduced based on a
set of complex polynomials over the interior of the
unit circle, i.e., 22 +y? = 1. We denote the set of these
polynomials by V,,,(x,y). The Zernike moments of
order n with repetition m for a digital image function
can be expressed as [42]:

S S f) Vinlp,0), 22497 <1
o 3)

where n is a non-negative integer, m is an integer, and
they must satisfy the following constraints:

n
Anm =

n>0, |m|<n, n—|m|=2k (4)

These complex polynomials are orthogonal, in order to
satisfy the orthogonality constraint, and are defined
as:

Vnm(x,y) = Vnm(pa 9) = an(pv 9)~exp(j~m-9) (5)

where p Length of vector from origin to (x,y) point.
0 Angle between vector p and x axis in clockwise
direction. R, (p) radial polynomial and given by:

—Iml/2
i (n—s)!

s n—2s
R (p) = ; VR
(6)
It is noted that these real value radial polynomials
should satisfy the symmetrical property of index m,
that is:

Rn,fm(p) = Rn,m(p)' (7)

In fact, Zernike moments are the projection of the
image onto these basis functions, where the pixels
mapped on the outside of the unit circle are not used
in the computation. Based on (7) and (7), we can say
Vo —m(p;0) = Vium(p,0), and from (3), we conclude
that:

Anﬁm = AZ,m (8)

which we will use later. As mentioned earlier, Zernike
moments work well for representing an image, and it is
very useful in pattern recognition. The noise sensitivity
of the Zernike moments has been investigated in [35],
and it is shown that these moments are quite sensitive
to noise, which increases at higher orders of moments.
This suggests that the noise in the image can be
reflected effectively by the Zernike moments. Hence,
these moments could be reasonable candidates for
steganalysis as features sensitive to the randomness
brought to the image by the embedding process.

3 Proposed Feature Extraction
Method

Advantage of using statistics of Contourlet coefficients
to extract features sensitive to the embedding of noise-
like data has been investigated in [36, 37]. These works
show that Contourlet based steganalysis method can
give a higher accuracy of detection than the counter-
part methods in the wavelet domain. The key advan-
tage of Contourlet transform, as compared to wavelets,
is that a sparser representation is achieved by Con-
tourlet transform that makes the moments of Con-
tourlet coefficients more sensitive to the embedding
process. Also, the Contourlet transform is sensitive
to edges, as a critical place for data embedding in
many steganography schemes. These fascinating prop-
erties of Contourlet transform persuade us to develop
a steganalyzer based on statistics of Contourlet coeffi-
cients. We choose the coarser subbands due to more
resolutional and directional properties of this trans-
form. In this work, we use eight directions on third
level and four directions on second level Contourlet
transformation. So, we have 12 directional subbands
as sources of the feature extraction process. As shown
in Figure 3, the suspicious image is decomposed by
Contourlet transform, and then the statistical features
are extracted in three paths. First, absolute Zernike
moments of Contourlet subbands coefficients of the
image are used to examine randomness in the test
image. In the second path, linear prediction error of
each Contourlet subband is used to reflect the change
in correlation of neighboring Contourlet coefficients
caused by the embedded noise. Finally, characteristic
function moments of Contourlet coefficients, relating
to n derivatives of the histogram, is used to form our
feature set that can catch the changes made to the his-
togram. Details about each part of our steganalyzer
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Figure 3. Proposed feature extraction method for an input image.

are given in the following.

3.1 Zernike Moments Based Features

We assume that the image steganography is similar
to an additive noise embedding process [25, 43]. In
Contourlet domain, this is expressed as:

X=S+Z 9)

where X is the stego signal, S, is the cover signal, and
7 is the embedded noise. This noise is often assumed
to be iid independent of S. In [37], the first four
PDF moments of eight subbands in the third level
of Contourlet transform are used as features. In the
proposed method, to intensify sensitivity of features
to the embedding change, as discussed earlier, we first
compute the Zernike moments of each subband and
construct the Zernike energy vector, and then we use
statistical moments of these vectors as features. The
Zernike moments of order n with repetition m for each
specific subband can be shown as:

where X,m, Snm, Znm denote the Zernike moments
of order n with repetition m for stego, cover, and the
embedded noise, respectively. We have Z,,,,, defined

as:
J

77 -
i

(11)

Basically, there is no restriction on the order of the
Zernike moments of a given image. Lower order Zernike
moments reflect the gross shape features that are not
often used for data embedding, where higher order
moments capture the fine details of the image. In fact,
high frequency details are presented by higher order
moments that are more sensitive to noise. According to
the work in [35], phase of the Zernike moments are not
useful for the classification purposes. We have checked
statistical moments of the phase values of the Zernike
moments and found out that these features are not
sensitive to the embedding changes. So, in this work,
we use absolute value of the Zernike moments of order
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15, and exclude the first four moments. According to
(6):

[An,—m| = [Anml (12)
We use absolute value of the Zernike moments, thus
only the cases that m > 0 needs to be considered. We
define the Zernike energy vector by these moments
for subbband i as:

Ai = [|A3’1|27 |A3,3|27 oy | Aiss

], i=1,2,...,12

(13)
Here, we use the mean and variance of the Zernike vec-
tor for each subband as feature. Therefore, we obtain
2 x 12 = 24, features. It is to be noted that the design
parameter of Zernike based features requires choosing
the order of Zernike moments participated in Zernike
energy vector. Due to the stochastic nature of this
problem, giving a theoretical analysis to compute the
best order of Zernike moments to reach the highest
detection performance could be quite sophisticated, if
not infeasible. However, as mentioned earlier, lower
order Zernike moments reflect the gross shape fea-
tures that are not suitable for feature extraction, while
computing higher order moments is time consuming.
To investigate the problem and finding a reasonable
range of n, we conducted experiments to evaluate the
detection performance of the features using Zernike
moments for different values of n. We found that us-
ing moments up to order n, where 9 < n < 18, could
better balance between the performance and the com-
putational complexity. We used 1400 different images
and their stego version with F'5 steganography at the
embedding rate of 10%. We randomly selected 1000
images from each set for training and 400 remaining
images for test. In Table 1, we report detection rate of
Zernike based features when using the absolute value
of Zernike moments of order n, excluding the first four
moments. As seen in this Table, it is appropriate to
choose the Zernike moments of order 15 and exclude
the first four moments. By expanding our condition
and other steganography schemes, the order 15 could
be a reasonable choice.
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Table 1. Comparison of detection accuracy versus the order
of Zernike moments against F5 steganography.

Order Number of Detection

moments accuracy
10 32 59.4
11 38 57.1
12 45 61.3
13 52 68.9
14 60 75.2
15 68 76.8
16 7 75.9
17 86 76.5

3.2 Prediction Error Subband

According to [40], the subband coefficients are corre-
lated to their spatial orientation and scale neighbors.
Therefore, the second set of statistics collected from
Contourlet transform are based on the errors in an
optimal linear predictor of coefficient magnitude that
is used to reflect the change made to correlation of
neighboring Contourlet coefficients due to the embed-
ded noise. This idea initially proposed by Farid et al.
n [14]. We can denote the low-frequency subband,
vertical subband, horizontal subband, and diagonal
subband at scalei = 1,--- ,n as A;, V;, H; and D;,
respectively. Take the prediction subband of H; as an
example, then its linear predictor for the magnitude
subband in a subset of all possible neighbors can be
given as [14]:

I:Ii(xa y) = lel(z - lay) + U)QHZ(I' + 13 y)
+wsH;(z,y — 1) + waH;(z,y + 1)
+wsHiy1(x/2,y/2) + weDi(x,y)
+ w7Di+1(x/2, y/2)

where wy, denotes scalar weighting values. This lin-
ear relationship may be expressed more compactly in

(14)

= QTJ, where the column vector
consists of the scalar weighting

matrix form as:
W = (wy,...,wr
values, the vector ﬁ contains the coefficient magni-
tudes of H;(z,y), and the columns of the matrix Q
contains the neighboring coefficient magnitudes. The
coefficients that minimize the squared error of the
estimator are given as:

m _ (QTQ)—lQTH
Thus the log error of the linear predictor can be ex-
pressed as:

)T

(15)

ﬁzlogﬁ—log@ﬁzlog%

We call the subbands, whose coefficients are the error
of prediction, as the prediction error subbands. This

(16)

idea exploited for feature extraction in Contourlet
domain by Sajedi and Jamzad [37], and experimental
result revealed the superiority of the prediction error of
Contourlet subbands over the prediction error wavelet
subbands. We employ the first three moments of linear
prediction error with linear prediction coefficients
for eight subbands at the third level of Contourlet
transform and use these 24 values as features for
steganalysis.

3.3 Absolute Characteristic Function
Moments

By modeling the embedding process as additive noise,
under an independence assumption, the histogram of
the stego is obtained by a convolution of the noise
probability mass function and the original histogram
image. The work in [26] pointed out that the moments
of the wavelet characteristic function could reflect the
embedding alterations better than the PDF moments,
due to the smoothing effects of the random data em-
bedding. In [43], the authors showed that by using
a Generalized Gaussian Distribution (GGD) model
for wavelet coefficients, the absolute CF moments of
wavelet coefficients outperform the PDF moments for
blind image steganalysis. Also, in [44], it is proved via
four theorems, that if the feature extraction sources
approximately follow the Gaussian distribution before
and after data embedding, the CF moments outper-
form PDF moments for steganalysis. In general, coef-
ficients of multiresolution transforms, such as wavelet
and Contourlet coefficients, do not exhibit Gaussian
distribution. It is shown in [45] that the Contourlet
transform in detail subband coefficients can be mod-
eled using a zero-mean GGD. A GGD is given as:

B
Pays(s) = 2ar'(3)

|s]

exp{—( )ﬁ}, a>0,>0,seR

@

(17)
where I'(.) is the Gamma function, « is the scale pa-
rameter, and 3 is the shape parameter. The Gaussian
and Laplacian PDFs are special cases of GGD with
B = 2 and 1, respectively. Figure 4 shows histogram of
one of the 2"¢ scale subbands of image and its stego ob-
tained from PQ steganography at the embedding rate
of 10%. As shown, the embedding noise reduces the
peakiness of the histogram of Contourlet coefficients.
As mentioned earlier, it is proved in [43] that the CF
moments of the coefficients subbands outperform the
PDF moments for steganalysis, if the coefficients of
the transform follow Gaussian or generalized Gaus-
sian distributions. In fact, the amount of peakiness
of the histogram of Contourlet coefficients is reduced
by the embedding process. We use this idea in the
Contourlet domain and exploit the CF moments of
the Contourlet coefficients as features for blind image
steganalysis. Characteristics function for a random se-
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Figure 4. Distribution of Contourlet coefficients: (a) his-
togram of the subbands in 2% scale coefficients of image. (b)
histogram of its stego of the same subbands obtained from PQ
steganography at 10% embedding rate.

quence X = (x1,xa," -, zy), with probability density
function Px (), defined as:

+oo
By (w) = B{e™7} — /_ px(@)e“mdz (18)

The n*™ moment of the characteristic function can be
obtained from:

+oo
M, = E(a") = / dx (w)w™dw (19)
The absolute CF moments can be given as:
+oo
= [ ox@lelds @0

In order to calculate the empirical absolute CF mo-
ments, we estimate the PDF, Px(x), by an M-bin
histogram h(m)|}Z+. We denote variable number of

histogram in the horizontal axis by K = 2[log2 M1
then The K-point CF, can be computed from [44]:
M-1 I
ox(k) =Y h(m)e"®",  k=0,1,... K1
m=0
(21)

In fact, ¢ x (k) is the discrete form of ¢ x (w), which can
be obtained from FFT computation. According to[43],
using normalized CF moments reduces the overlap
between the range of CF moments of the cover and
stego image, which improves the discrimination power
of features. The n** absolute normalized moment of
discrete CF can be defined as [26]:

K
jiA = Yo lpx ()lk” 22
Yo ox (k)|
A key concern for improving the performance of our
steganalyzer is the number of moments that partici-
pate in the analysis. In [43], via extensive experiments
and using the Bhattacharyya distance, it is concluded
that using just the first three moments is enough and
it is not necessary to increase the number of moments

18:0ured)

for improving the detection accuracy of steganalyzer.
Here, we use the first three absolute moments of char-
acteristics function for 12 directional subbands of Con-
tourlet transform, thus we obtain 3 x 12 = 36 features
for steganalysis. We merge these features with the
Zernike based features and the first three moments
of linear prediction error with linear prediction coeffi-
cients in the third level of Contourlet subbands, and
then use these 84 values as features for steganalysis.
These features are fed to a nonlinear SVM classifier
with a Radial Basis Function (RBF) kernel to distin-
guish between cover and stego images.

4 Experiments and Discussion

To evaluate the proposed steganalysis method, we used
1400 different color images including different kinds
of images taken from CorelDraw image database [48].
All the images were converted to gray level images of
the size 512 x 512 and saved in JPEG format with
quality factor of 80. All the experiments were done
using Matlab R2010a. To construct stego images, ran-
dom data are embedded into images using Outguess
[3], MB1 [4], MB2 [5], PQ [7] and NSF5 [8] steganogra-
phy methods. For evaluating the embedding methods,
three stego image sets at different embedding rates
are generated. We embed random messages at rates
10%, 20%, and 40% for each steganography methods
in our experiments. It is to be noted that, due to the
limited capacity of the Outguess algorithm [3], the em-
bedding rate is set to 5%, 10%, and 20% to make the
stego image sets. If, for a given image, the bpc (Bits
Per non-zero AC DCT Coefficients) rate is greater
than the maximal bpc rate bpc,,az, We take bpcpaz
as the embedding rate. In case of PQ steganography,
because of the nature of the method, recompressed
image without data embedding is used as cover image
to minimize the effect of the JPEG recompression. In
[46], detection accuracy of the PQ is investigated in
two cases, with a single-compressed image as cover
and a double-compressed as cover image. In the first
case, detection of PQ is possible, while in the second
case, the detection rates of PQ method are in a range
of random guess. Also, for each steganography scheme
a mixed stego database by combining different em-
bedding rates is used. We report the detection rate
of each case based on averaging the results obtained
from five runs of the test. We randomly select 1000
images from each set for training and 400 images for
test, and extract the ROC (receiver operating char-
acteristic) curves of steganalyzers. We use the SVM
classifier with RBF kernel to evaluate performance
of the proposed steganalysis method, which is imple-
mented using LibSVM toolbox [47]. According to the
research in [46], Wavelet-based steganalyzer (WBS)
[18] and Feature-based steganalyzer (FBS) [19] are
two powerful blind steganalysis methods. For compar-
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ison, the methods given in [14, 19, 30, 37|, denoted as
WBS, FBS, SVBS and CBS, respectively, are also im-
plemented. The first four PDF moments of nine high
frequency wavelet subbands magnitude and phase
statistics and their linear prediction error are used as
features in [14], 23 calibrated features of spatial and
DCT domains are used as features in [19], singular
value decomposition based features are used as fea-
tures in [30], and the first four PDF moments of the
Contourlet subbands coefficients, plus statistical mo-
ments of log prediction error subband coefficients of
the Contourlet transform are used in [37], to create
features set of this steganalyzer. Also, the methods
given in [20, 23, 31] are implemented. We list results
of our experiments with the proposed method and
the methods given in [14, 19, 20, 23, 30, 31, 37] for
Outguess, MB1, MB2, PQ and NSF5 steganography
methods in tables 2-6. The performance of the stegan-
alyzers are given by TP and FP, which stand for true
positive rate and false positive rate of the steganalyz-
ers, respectively.

The arithmetic average of Tp and Ty are listed in
these tables as the detection accuracy. According

Table 2. Comparison of detection rates of steganalyzers in
case of outguess steganography(%).

%ﬁ?:gg‘;i?)g 005 01 02 ]gjn:lri:}ggier?g
rate
WBS 69.4 75.2 81.7 77.3
FBS 76.5 81.6 88.5 73.2
SVBS 58.9 61.1 63.4 61.7
CBS 71.3 77.9 82 78.9
[20] 84.5 87.3 91.1 85.6
[23] 87.7 90.2 96.8 90.5
[31] 56.4 64.7 70.1 62.8
Proposed 79 83.7 85.3 82.1

to the Table 2-6, we can see that in most cases, the
proposed method outperforms the methods given
in [14, 19, 30, 31, 37]. It is clear that our proposed
scheme outperforms WBS, CBS, SVBS methods by a
significant margin and is better than FBS steganalysis
by a smaller margin, except for the Outguess steganog-
raphy scheme that FBS works better than the pro-
posed method. By using this steganalysis scheme, at
least 5%, 2%, 8% and 6% improvements is achieved
in detection accuracy, as compared to the results of
WBS, FBS, SVBS, and CBS methods, respectively.
We figure out that the Zernike moments statistics
are more sensitive to the embedding, as compared to
wavelet and Contourlet coefficients. In other words,
the embedding changes make significant changes to

Table 3. Comparison of detection rates of steganalyzers in
case of MB1 steganography(%).

Elgtb:&fggg 0.1 02 04 E()Jn(ig:ebc‘llgffg
rate
WBS 58.8 67.1 71.5 66.5
FBS 56.7 74.5 83.6 76.8
SVBS 54.9 63.5 70.1 62.2
CBS 59.6 66.7 74.9 68.3
[20] 85.9 90.6 95 92.3
23] 87.1 925 974 93.5
[31] 52.3 61.7 65.3 60.1
Proposed 74.2 79.6 81.1 78.3

Table 4. Comparison of detection rates of steganalyzers in
case of MB2 steganography(%).

E}{n;:’:&?gg 0.1 02 04 ]Srzg;z:ilf:g
rate
WBS 58.5 68.7 72.1 67.3
FBS 58.4 67.3 74.5 69.1
SVBS 56.1 62.9 68.4 65
CBS 61.8 71.5 77.6 70.9
[20] 84.3 88.5 93.1 89.6
[23] 85.6 90.9 96.8 91.5
[31] 52.2 597 64.9 61.5
Proposed 64.9 70.8 79.3 73.7

Table 5. Comparison of detection rates of steganalyzers in
case of PQ steganography(%).

%2?:&?33 0.1 02 04 lgmo}lizilgie:g
rate
WBS 512 541  65.2 58.9
FBS 536 559 674 60.3
SVBS 69.7 736  79.1 72.1
CBS 584 609 705 63.8
[20] 701 747 763 73.6
(23] 69.5 765  77.8 75
[31] 55.2 628  63.6 60.5
Proposed 725 771 805 76.9

Zernike moments that effectively enable the classifier
to distinguish between stego and cover images. How-
ever, the methods given in [20, 23], that are the most
powerful steganalyzers for detecting JPEG images,
outperform our method in case of MB1, MB2, and
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Table 6. Comparison of detection rates of steganalyzers in
case of NSF5 steganography(%).

Elitb:&iigg 0.1 0.2 04 E()Jn(ﬁ;:e]illgffg
rate
WBS 49.8 52.3 55.6 55.2
FBS 55.4 59.8 65.1 61.4
SVBS 55.1 57.4 60.1 57.9
CBS 53.9 55.6 57.5 57.1
[20] 48.5 53.6 53.8 52.8
23] 521 545 564 53.7
[31] 48.3 51.9 54.2 52.5
Proposed 58.6 63.1 64.9 62.3

Outguess steganography schemes. Due to the sparsity
property of the Contourlet coefficients, and noise sen-
sitivity of the Zernike moments, the proposed features
effectively reflect the statistical changes after embed-
ding. According to Table 5, the average accuracy of
our scheme against PQ steganography methods is rela-
tively satisfactory even for low embedding rates, where
the average accuracy is about 76.9%. As seen in Ta-
ble 5, the best detection rate against PQ steganogra-
phy can be achieved by the proposed method, and the
second best for detecting the PQ is the method given
n [23]. The third best, is the method given in [20],
followed by the SVBS as the fourth steganalyzer for
detecting the PQ. The other four methods are weak
in detecting the PQ steganography. These results con-
firm superiority of our method over its counterpart
steganalyzers for the PQ steganography scheme. By
comparing results of the tests with WBS and CBS
methods, we can conclude that the Contourlet trans-
form is more effective in blind image steganalysis, due
to higher sensitivity of Contourlet coefficients to sta-
tistical alterations made by the embedding process.
We see that SVBS is a powerful method for detect-
ing the PQ steganography, but does not work quite
well in case of other steganography schemes. Another
conclusion from these results is that, FBS is a good
steganlyzer for detecting Outguess, MB1, and MB2,
especially at high embedding rates, but this method is
unable to detect PQ and NSF5 at low embedding rates.
Also, the methods given in [20, 23], which are the most
powerful steganalyzers for detecting MB1, MB2, and
Outguess steganography, are not strong enough to de-
tect PQ and NSF5 at low embedding rates. In case
of NSF5 method, the proposed features are not more
effective. This indicates that in NSF5 method, noise
caused by the embedding has little effect on statistics
of Contourlet coefficients, so the Zernike moments
and other statistics of Contourlet subbands are not
helpful. In fact, the Zernike moments and other statis-

18:0ured)
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Figure 5. Roc curves of steganalyzers for PQ steganography
at embedding rate of 20%.

tical moments of Contourlet transform are effective
features, when the Contourlet coefficients can reflect
the embedding noise effectively and, in this case, us-
ing the Zernike moments could make it possible to
get better classification rates, when comparing to case
that features are extracted directly by the statistical
moments of the Contourlet subbands. We remind that
NSF5 embedding is currently one of the most secure
algorithms for JPEG image steganography that uses
the wet paper codes to minimize the change made to
the image statistics. By comparing results of experi-
ments using the proposed method, and the method
given in [37], we conclude that we can improve per-
formance of this steganalyzer using statistics of the
Zernike vector instead of the statistical moments of
Contourlet subbands directly. Another investigation

Table 7. Comparison of time evalution of steganalysis methods
(seconds).

Steganalysis Average
method time(seconds)
WBS 1.8
FBS 5.2
SVBS 6.35
CBS 1.45
Proposed 4.85

is to get an overall estimate of the computational com-
plexity of each steganalysis method. Table 7 shows
the run time evaluation of the proposed method and
other steganalyzers, where the average values of the
run time are obtained from steganalysis of 250 sample
images. As a result, we can see that the CBS (Con-
tourlet Based Steganalysis) method is less time con-
suming than others, and our proposed method is the
third best and better than SVBS and FBS methods.
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Figure 6. Roc curves of steganalyzers for MB1 steganography
at embedding rate of 20%.

The ROC curves of the proposed steganalysis method
and the counterpart schemes for PQ steganography
are shown in Figure 5. The results indicate that our
method comes with a higher performance for detecting
the PQ steganography, as compared to the methods
given in [14, 19, 20, 23, 30, 31, 37], especially at lower
embedding rates. The average detection accuracy of
our method for detecting the PQ steganography is
about 77.1% for the embedding rate of 20%, where at
least a 3.5% improvement in detection is achieved us-
ing the proposed method, as compared to its counter-
parts. A similar comparison between the performance
of our method and that of its counterparts for MB1
steganography at embedding rates of 20% is presented
in Figure 6. This figure demonstrates superiority of
our scheme, for MB1 steganography, over the steganal-
ysis methods given [14, 19, 30, 37]. We also conducted
another experiment to make an overall comparison be-
tween the selected well-known steganalyzers and the
proposed method. In this experiment, we constructed
stego image sets by combining 1400 stego images from
Outguess, MB1, MB2, PQ, and NSF5 steganography
methods. The results of this experiment are given
in Table 8, which shows that our method is superior
to the methods given in [14, 19, 30, 31, 37], while in-
ferior to the methods given in [20, 23]. As mentioned
earlier, the two latter methods are the most powerful
steganalyzers for detecting stego JPEG images. How-
ever, as shown in Table 5, our method outperforms
these two methods in case of the PQ steganography,
though by a small margin.

5 Conclusions

A blind image steganalysis scheme, based on statis-
tical moments of Contourlet transform and Zernike
moments, has been presented in this paper. The
suspicious image is decomposed by Contourlet trans-
form, and then the statistics features are extracted
from three paths. First, absolute Zernike moments
of Contourlet subbands coefficients of the image
are used to examine randomness in the test image

Table 8. Comparison of detection rates of steganalyzers in
case of combined steganography images.

?ﬁf:&?ff 005 01 02
WBS 552 587 655
FBS 579 623 69.6
SVBS 585 59 654
CBS 61.3 662 75.1
[20] 485 536  53.8

23] 69.4 789  84.7

[31] 567  56.8  64.9

Proposed 65.5 71.4 79

that affects the reflection of changes caused by the
embedding process. We shape the Zernike energy
vector by higher order moments and use mean and
variance of these vectors in each subband as features.
In the second path, linear prediction error of each
Contourlet subband is used to reflect the correla-
tion changing of neighboring Contourlet coefficients
caused by the embedded noise. Finally, characteristic
function moments of Contourlet coefficients, relating
to n derivatives of the histogram, are used to form our
feature set that can catch the changes made to the his-
togram. Contourlet, as a multi-resolution transform
with sparsity property, and the Zernike moments for
getting a higher sensitivity to noise are used. We have
compared the proposed steganalyzer to the methods
introduced in [14, 19, 30, 37]. Experimental results for
five well-known types of JPEG image steganography
have confirmed that the proposed features are more
effective in blind image steganalysis and improve the
detection accuracy of steganalysis, as compared to
four well-known steganalyzers given in [14, 19, 30, 37].
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