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A B S T R A C T

Nowadays, information plays an important role in organizations. Sensitive

information is often stored in databases. Traditional mechanisms such as

encryption, access control, and authentication cannot provide a high level

of confidence. Therefore, the existence of Intrusion Detection Systems in

databases are necessary. In this paper, we propose an intrusion detection system

for detecting attacks in both database transaction level and inter-transaction

level (user task level). For this purpose, we propose a detection method at

transaction level, which is based on describing the expected transactions

within the database applications. Then at inter-transaction level, we propose

a detection method that is based on anomaly detection and uses data mining

to find dependency and sequence rules. The main advantage of this system, in

comparison with the previous database intrusion detection systems, is that it

can detect malicious behaviors in both transaction and inter-transaction levels.

Also, it gains advantages of a hybrid method, including specification-based

detection and anomaly detection, to minimize both false positive and false

negative alarms. In order to evaluate the accuracy of the proposed system,

some experiments have been done. The experiment results demonstrate that

the true positive rate (recall metric) is higher than 80%, and the false positive

rate is lower than 10% per different data sets and choosing appropriate ranges

for support and confidence thresholds. The experimental evaluation results

show high accuracy and effectiveness of the proposed system.

© 2014 ISC. All rights reserved.

1 Introduction

M any organizations employ DBMS as the main
technology of data management in order to store

and access their data. This information is often con-
sidered as a valuable asset in the organizations. Hence,
the data in the databases must be protected from unau-
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thorized access and changes. Traditional database se-
curity mechanisms such as encryption, access control,
and authentication are not sufficient for protecting
of sensitive information against innovative security
attacks [1]. Intrusion detection systems (IDSs) in the
database can be used for detecting attacks whenever
traditional prevention mechanisms are infeasible or
may be bypassed.

The user task in this paper refers to a set of trans-
actions that are always submitted to the DBMS to-
gether to achieve a certain goal, also the time gap
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between two tasks of one user is much longer than
it between two transactions within a user task. Here,
the database attacks refer to malicious behaviors that
may appear in the requests issued to database systems.
It is possible that all of the transactions in a user task
are legitimate, whereas there exist some anomalies in
relations among transactions. We can divide the de-
tectable attacks by database IDSs into four categories
including SQL query level attack, the transaction level,
inter-transaction level (user task level) as well as SQL
injection attack.

The existing database intrusion detection methods
are often based on anomaly detection approach, and
anomaly-based methods are usually prone to generat-
ing a relatively large number of false alarms. On the
other hand, most of these proposed methods focus
on detecting the database attacks in SQL query or
transaction levels and cannot detect anomalies among
transactions at the user task level.

In this paper, we propose an intrusion detection
system for database in transaction level and user task
level. The proposed system at transaction level uses
a detection method that is based on specifying the
expected transactions within database applications in
the organization. The issued transactions that are dif-
ferent from the existing specifications are considered
as malicious transactions. At the user task level, we
present a type of detection method, which is based on
anomaly detection. This method creates normal be-
havior profile via mining the dependency and sequence
relation rules among transactions. The differences be-
tween new user tasks and existing dependency and
sequence rules are recognized as abnormal events.

The main advantage of our approach is that we use
a hybrid method at transaction and user task levels,
including specification-based detection and anomaly
detection. Thus we gain their both advantages to
minimize false positive and false negative detection
alarms.

The rest of the paper is organized as follows. Sec-
tion 2 describes past efforts related to database IDS.
In Section 3, we explain our proposed approach. Sec-
tion 4 presents the evaluation results of the presented
approach. Section 5 offers conclusions of the paper.

2 RelatedWork

There exist a few research works that concentrate
on database IDSs. These systems are used to detect
malicious behaviors in one of three levels; SQL query,
transaction and user task. Also, SQL injection attacks
are attacks that can be detected by some of these
systems.

One of the early works in this field is a database

misuse detection system called DEMIDS [1]. It uses
a data mining algorithm to capture working scopes
of users. The algorithm extracts frequent itemsets as
working scopes using the notion of distance measures.
The frequent itemsets are stored in user profiles to
describe typical behaviors of users. The techniques
offered in [2, 3] can be used in detecting of query
level attacks. They apply the profiling of normal SQL
query for a database role using a Nave Bayes cluster-
ing approach on the training log file. The anomalous
behaviors of users are identified by comparing SQL
queries submitted by users and normal SQL queries
stored in role profiles.

Most of the previous researches in this field concen-
trate on modeling the normal behaviors of users at
transaction level to detect malicious activities against
database system. The method used in [4] applies the
same approach existing in [2, 3] (mentioned above)
for detecting attacks at transaction level. Hu et al. [5]
propose an intrusion detection method based on min-
ing the dependencies among data items at transaction
level using static analysis of the application source
code. These dependencies are represented as sets of
reading and writing operations for each data item. An-
other intrusion detection method presented by Hu et
al. [6] uses a sequential pattern mining technique on
the training database log for identifying frequent se-
quences among data items at transaction level. The
transactions that do not comply with the data depen-
dencies are recognized as malicious transactions. The
proposed method [7] is similar to [6] with the differ-
ence that modifies an existing sequential mining algo-
rithm and make it security sensitive sequential mining
by introducing weights for each attribute based on
the sensitivity group. Lee et al. [8] describe an intru-
sion detection method in real-time database systems
using time signatures. In this method the temporal
data objects are tagged with time signatures of update
latency ranges that are unknown to the intruders.

Intrusions at inter-transaction level have been less
considered by existing database IDSs. Hu et al. [9]
present an algorithm for identifying frequent data de-
pendencies among data items at the inter-transaction
level in order to detect user task level attacks. In
this approach, first, transactions existing in the train-
ing database log are clustered into user tasks using a
proposed algorithm. Then, the data dependencies in
user task level are discovered using a proposed algo-
rithm. These dependencies are represented as inter-
transaction dependency rules and inter-transaction
sequence rules for each data item.

There are some other systems that have been spe-
cially presented for detecting SQL injection attacks.
For instance, the technique used by DIDAFIT [10]
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tries to characterize legitimate accesses through fin-
gerprinting their constitutive SQL queries to identify
anomalous accesses to the database system. This tech-
nique also imposed a constraint on the ordering of
SQL queries submitted. The proposed system in [11]
is also a novel framework based on anomaly detection
that creates a fingerprint of an application program
based on SQL queries. Then, it uses association rule
mining techniques on the fingerprints to extract useful
rules that represent the normal behaviors of database
applications.

3 Proposed Approach

Our proposed approach is an intrusion detection mech-
anism that can be employed for detecting the mali-
cious requests issued to a database system by a set
of database applications within an organization, al-
though this mechanism can be used for only one appli-
cation instead of a group of database applications at
organization granularity level. Here, the assumption is
that all the considered applications use a finite set of
transactions for issuing requests to the database sys-
tem and an identifier is assigned to each transaction.
Also, the transactions in a user task can be submitted
from different applications.

For identifying the malicious behaviors at submit-
ted transactions to the database, the proposed IDS
first identifies the existing transactions within orga-
nization applications through analyzing the source
code of applications. Then, the system specifies these
transactions through a formal specification method.
In the detection phase, the new transactions existing
in the current database log are recognized as legiti-
mate if they are matched to the corresponding stored
specifications.

In the training phase, the proposed system discov-
ers the dependency and sequence rules among trans-
actions in the user tasks through a data mining al-
gorithm in order to identify the abnormal relations
among transactions in performing a user task. For this
purpose, the system uses a training database log that
contains the normal database requests of considered
applications during a certain period of time. In the
detection phase, if transactions appear in a new user
task so that the relations among them are matched to
the stored rules, this user task is considered as normal.

3.1 System Architecture

The proposed system acts as a security mechanism
that is independent of the database system operations
and placed beside the DBMS to enhance its security.
For that, in detection phase, the proposed system uses
the current database log file to analyze the requests
submitted from the database applications for detect-

ing the malicious behaviors at transactions and the
relations among them.

The architecture of proposed system consists of two
modules that include the Analysis and Generation
module along with the Detection module. The system
architecture is shown in Figure 1.

The Analysis and Generation module consists of two
sub-modules of Specification Creation and Rule Gen-
eration. The Specification Creation sub-module first
identifies the transactions existing in organization ap-
plications using the Static Analyzer and then the iden-
tified transactions are specified as a type of state ma-
chine specifications at Specification Creator. The Rule
Preprocessor at Rule Generation sub-module clusters
the transactions existing in the training database log
into user tasks and sends them to Rule Generator, and
the Rule Generator generates the dependency and
sequence rules through a data mining algorithm

For every new transaction and new user task in
database log, the Detection Preprocessor extracts
the required information from them and sends ex-
tracted information to Specification Matcher and
Rule Matcher respectively. The new transactions are
matched against the existing specifications based on
their information at Specification Matcher. The Rule
Matcher examines the relations among transactions
in the performed user tasks based on the stored rules.
If existing transactions in a new user task and rela-
tions among them are recognized as legitimate, then
the user task is considered as normal and stored into
Normal UTs storage, otherwise, the system raises an
alarm. The Rule Generator periodically uses exist-
ing user tasks in Normal UTs storage to update the
existing rules.

3.2 Analysis and Generation Module

As mentioned earlier, the Specification Creation sub-
module of the Analysis and Generation module spec-
ifies the identified transactions as state machines.
Whereas, the Rule Generation sub-module discovers
the dependency and sequence rules of relations among
identified transactions and then stores them.

3.2.1 Static Analyzer

The Static Analyzer analyzes the source code of
database applications in the organization and places
extracted information from identifying transactions
into a file named Specification. This analyzer places
derived information in the Specification file as follows:

• The “Tb” expression is inserted at the beginning
of each transaction and “Te” expression is placed
at the end of it with a space character of the
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Figure 1. Architecture of proposed system

previous expression.
• It inserts the transaction identifier (Tr) after “Tb”

expression at the beginning of each transaction.
• The SQL queries existing at transactions are

placed into the file with a “?” symbol between
adjacent SQL queries.

Furthermore, some methods are considered for show-
ing the special statuses such as conditional choosing
among several SQL queries and a loop on the SQL
query sequence.

3.2.2 Extracting Transaction Information

The Specification Preprocessor extracts the required
information from existing SQL queries within the Spec-
ification file and then transfers them to Specification
Creator in the form of tuples. This component con-
siders each SQL query containing the where clause as
two queries. The first query is equivalent to the projec-
tion clause of intended query, which consists of SQL
commands such as Select, Insert, Update, and Delete
on the set of attribute within the database relations.
Also, the second query is equivalent to a Select query
on the relation attributes existing at the where clause.
The reason of this conversion is that the existing at-
tributes at the where clause are read before applying
the equality operator. In addition, the command re-
lated to the where clause is processed at first.

This component creates a tuple for each SQL query
and then puts the derived information from query in it,
which each tuple consists of the following nine fields:

(Beg Tr, Cmd, Count, Att [ ], WC, End Tr, Tr ID,
Additional Fields, Tuple ID)

The Beg Tr is a binary (bit) field that contains 1
when the intended SQL query is at the beginning of
the transaction. The Cmd field shows the involved
SQL command that has values ‘S’, ‘I’, ‘U’, and ‘D’
whenever the SQL command is equal to Select, In-
sert, Update, and Delete respectively. The Count field
corresponds to the number of the database relation
attributes included in the SQL query command. The
Att [ ] vector contains the attributes number included
in the SQL command respectively. The value of WC
binary field is equal to 1 if the SQL command is de-
rived from the where clause. The End Tr is a binary
field that contains 1 when the SQL query is at the end
of the transaction. The Tr ID field corresponds to
the identifier of transaction containing the expected
SQL command. The Additional Fields are fields that
used in the particular cases such as conditional choos-
ing among the SQL commands and a loop of SQL
queries. Furthermore, the sequence number of the tu-
ple is stored in the Tuple ID field. By the way, this
component processes the transactions with the same
identifier only once.

3.2.3 Transaction Specification

As mentioned earlier, the Specification Creator cre-
ates a state machine specification for each expected
transaction, which is based on the information derived
from the SQL queries within the intended transaction.
Here, we use a type of state machine that is called Ex-
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tended Finite State Automata (EFSA) [12]. In general,
an EFSM is a tuple (Σ, Q, s, f, V, D, δ), where:

• Σ corresponds to event alphabet of the EFSA,
where each event is characterized by an event
name along with the event arguments.

• Q is a finite set of states of the EFSA.
• s ∈ Q describes the start state of the EFSA.
• f ∈ Q corresponds to the final state.
• V is a finite tuple (v1, ..., vn) of state variables.
• D indicates a finite tuple (D1, ..., Dn) of domain

values for variables.
• δ : Q × D × Σ→ (Q, D) denotes the transition

relations between states.

The transition relation is characterized as rules of the
form:

event(x1, ..., xn)|condition −→ action

Where, event is an event name, and the variables
x1, ..., xn represent the arguments of this event. The
condition is a condition expression that if satisfied,
the actions defined by the action expression will be
done. An example of single state transition is depicted
in Figure 2.

Figure 2. Example of single state transition

This component creates the state transitions ac-
cording to the incoming tuples from the Preprocessor
that are associated to the expected SQL commands.
The condition expression of each transition examines
the matching between the arguments of issued events
and the values existing at the state variables. Also,
the state variables will be set to expected values of
the next SQL query, in the action expression.

Here, the state machine uses two groups of state
variables that the first group with the name of query
variables contains information about the involved SQL
queries. The second group of variables that are called
transaction variables includes information about the
transactions and also about the relations among SQL
queries. Moreover, it applies two types of events with
the names query and abort. The query event consists
of two arguments (q, TrID), where q contains the
information about the issued SQL query, which cor-
responds to the tuple fields created by Preprocessor.
The TrID is string and corresponds to the identifier of
the issued transaction. The abort event consists of the
TrID argument and indicates the occurrence of the
rollback command within the intended transaction.

Moreover, the transaction variables are CurrSt, Cur-
rTr, and NextSt. The CurrTr variable contains the
identifier of the current transaction, which is initial-
ized in the first transition of each state machine. The
CurrSt variable corresponds to the current state num-
ber, also the NextSt variable contains the states num-
bers that are reachable from the current state.

For example, consider the following transaction:

T1 : Select Name, Family, Number from
Employee

Update Table1 set Name = Joe,
Family = “Petre”

Figure 3 shows the state machine for above trans-
action, where the numbers 1, 2, 3, and 4 are assigned
to attributes Name, Family, Number, and Tel, respec-
tively.

3.2.4 Clustering Transactions into User
Tasks

The Rule Preprocessor component uses a training
audit log file to extract information about existing
transactions in database applications. For this pur-
pose, the component first extracts some information
from each transaction, such as start time, end time
and identifier, and stores them into three separate vec-
tors. Then, the three mentioned vectors are used for
clustering the transactions into user tasks using the
clustering method in [9]. As mentioned earlier, a user
task is a set of transactions that are submitted to the
DBMS together to perform a given task of one user.
Generally the time gap between two adjacent tasks
of one user is much bigger than the gap between two
adjacent transactions inside one user task. The men-
tioned clustering algorithm uses this observation for
clustering transactions to different user tasks. After
doing this, the component sends sequence of transac-
tion identifiers separately for each identified user task
to Rule Generator.

3.2.5 Inter-transaction Rules Generation

The Rule Generator is used for discovering the inter-
transaction dependency rules and inter-transaction
sequence rules that are defined as follows.

Definition 1 : An Inter-Transaction Depen-
dency is the set of transactions that are almost rele-
vant to each other so that often issued together in a
database user task, formally is the set of the form {T1 ,
T2 , ..., Tn}, n≥ 2, where T1 , ..., Tn are instance trans-
actions belonging to the set T that consists of the iden-
tifier of all the transactions identified in the database
applications of the organization. Meanwhile, the order
of elements in the inter-transaction dependency is not
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Figure 3. Example of state machine specification for transaction T1

important. The support value for an inter-transaction
dependency is the percentage of the identified user
tasks within the training database log that contain
this dependency among the intended transactions. An
inter-transaction dependency is considered to be a fre-
quent dependency, if calculated support value for this
dependency is above the predefined support threshold.
All the frequent inter-transaction dependencies are
stored in the set ITD to be used for generating the
inter-transaction dependency rules. The general idea
of Appriori algorithm [13] can be used for discovering
the frequent inter-transaction dependencies.

The Algorithm 1 presents the procedure for gen-
erating frequent inter-transaction dependencies. The
input to this algorithm is the sequences of transaction
identifiers existing in the identified user tasks and iden-
tified transactions set T along with support s. Also,
the maximum number of transactions in a user task
is placed as input to this algorithm. In this algorithm,
the symbol ‘‖’ is used for showing the concatenation
operator of two sequences.

Definition 2 : An Inter-Transaction Depen-
dency Rule with support value s and confidence
value c is defined as a rule of the form:

{T1, T2, . . ., Tj} −→ {Tj+1, Tj+2, . . ., Tn} [s, c], n ≥ 2

Where T1, . . ., Tn correspond to the instance trans-
actions belonging to the set T that consists of all
the specified transactions existing in the organization.
This rule represents that if transactions T1, . . ., Tj are
submitted through a user task to the database system,
the transactions Tj+1, . . ., Tn is most probably issued
to the database within this user task. The rules are
generated based on the frequent inter-transaction de-
pendencies that already defined. The support value s
of a rule corresponds to the percentage of the identified
user tasks within the training database log that this
rule is generated based on them. Also, the confidence
value c of a rule is the percentage of the identified
user tasks that contain both the antecedent and conse-
quent of the rule. For generating the inter-transaction

dependency rules, we first extract a set C ITDR of
rules as candidate rules from the discovered frequent
dependencies existing in the set ITD and calculate
the confidence value for each of them. Algorithm 2
contains steps for generating inter-transaction depen-
dency rules. The sequences of transaction identifiers
within identified user tasks and identified transactions
set T are placed as input to the algorithm.

Definition 3 : An Inter-Transaction Sequence
consists of the transactions that are often accessed in
sequence within a user task of the database applica-
tion. Formally, an inter-transaction sequence is rep-
resented as < T1, T2, . . ., Tn >, n ≥ 2, where T1, . . .,
Tn correspond to the instance transactions belonging
to the set T that contains the specified transactions.
If support value of an inter-transaction sequence is
above the predefined support threshold, the sequence
is selected as a frequent sequence and stored into the
set ITS to be used for generating the inter-transaction
sequence rules. We can use the sequential pattern min-
ing algorithm AprioriAll in [14] for discovering the
frequent inter-transaction sequences.

Definition 4 : An Inter-Transaction Sequence
Rule is a rule with one of two forms:

< T1, T2, . . . , Tj > −→ < Tj+1, Tj+2, . . . , Tn > [s, c],
n ≥ 2

< T1, T2, . . . , Tj >←− < Tj+1, Tj+2, . . . , Tn > [s, c],
n ≥ 2

Where T1, . . ., Tn are instance transactions belong-
ing to the set T that consists of the identifier of all
the existing transactions in the organization. The first
rule determines that

If transactions T1, . . ., Tj are issued to the database
system with the mentioned order among them within a
user task, the transaction sequence < Tj+1, . . . , Tn >
is accessed within this user task afterward, with sup-
port text s and confidence c. The second rule repre-
sents that if transactions Tj+1, . . . , Tn are submitted
to the database system as a sequence through a user
task, the transactions T1, . . ., Tj are accessed in se-
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Algorithm 1 Inter-Transaction Dependency Generation Algorithm

Input: The set UT s consisting of sequences of transaction identifiers existing in legitimate identified user tasks,
identified transaction set T , support threshold s, maximum number of transactions in user task with input
argument n.
Output: The frequent inter-transaction dependency set ITD.

1: Initialize inter-transaction dependency set ITD, i.e., ITD = {}
2: for j = 1,...,n do
3: Lj = {}, cj = {}
4: end for
5: for each transaction Ti ∈ T do
6: if Support(Ti) > s then
7: L1 = L1 ∪ {Ti}
8: else
9: if Support(Ti)=0 then

10: Delete stored specification for transaction Ti
11: end if
12: end if
13: end for
14: i =2
15: for each itd ∈ Li−1 and frequent transaction ft ∈ L1 do
16: ci = ci ∪ {itd||ft}
17: end for
18: for each itdc ∈ ci do
19: if Support(itdc) > s then
20: Li = Li ∪ {itdc}
21: end if
22: end for
23: if Li 6= {} then
24: i = i+ 1
25: Jump to step 15
26: else
27: for j=2,..., i-1 do
28: for each itd ∈ Lj do
29: ITD = ITD ∪ {itd}
30: end for
31: end for
32: end if

quence before them within this user task, with support
s and confidence c. The inter-transaction sequence
rules are generated using the same approach of gen-
erating the inter-transaction dependency rules with
the difference that the frequent inter-transaction se-
quences are used for generating them. The generated
inter-transaction sequence rules are placed into the
set ITSR.

Algorithm 3 illustrates the algorithm for generating
inter-transaction sequence rules. The input to this
algorithm is the sequences of transaction identifiers
in the identified user tasks and identified transactions
set T along with confidence c. Also, the generated
dependency rules set ITDR is placed as input to this
algorithm to modify based on the generated sequence
rules. In this algorithm, the ITDRT1,T2,...,Tj

is used
for showing the set of inter-transaction dependency

rules that their antecedents consist of transactions
T1, T2, . . . , Tj . Also, the ITSRT1,T2,...,Tj set is a set of
inter-transaction sequence rules that the transaction
sequence < T1, T2, . . . , Tj > are placed as antecedent
of these rules.

3.3 Detection Module

The Detection module identifies the malicious trans-
actions and the abnormal user tasks based on the
existing transaction specifications and existing inter-
transaction rules respectively. For this purpose, the
Detection module examines the SQL queries issued
by database applications in the form of transactions
and user tasks stored in the database log file. In this
module, the Detection Preprocessor immediately after
observing each new issued transaction in the log file,
extracts its information and sends this information to
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Algorithm 2 Inter-Transaction Dependency Rule Generation Algorithm

Input: The set UTs consisting of the sequences of transaction identifiers in legitimate identified user tasks,
identified transactions set T, confidence threshold c.
Output: Inter-transaction dependency rules set ITDR.

1: Initialize inter-transaction dependency set ITD, i.e., ITD = {}
2: Initialize inter-transaction dependency rules set ITDR, i.e., ITDR = {}
3: Generate frequent inter-transaction dependencies using the frequent itemsets mining algorithm Apriori [13]

from the set UTs and store them into the set ITD.
4: for each frequent inter-transaction dependency itd ∈ ITD do
5: for each set d ⊆ itd do

6: if
Support(itd)

Support(d)
> c then

7: ITDR = ITDR ∪ {d −→ itd − d}
8: end if
9: end for

10: end for
11: for each rule r ∈ ITDR do
12: if there exists a rule r∗ ∈ ITDR that its antecedent is equal to r,s antecedent and r,s consequence is the

subset of its consequence then
13: ITDR = ITDR − {r}
14: end if
15: end for

the Specification Matcher through the tuples of the
form introduced in Specification Preprocessor compo-
nent (Section 3.2.2). Also after identifying any user
task consisting of legitimate transactions, the compo-
nent forwards sequence of transaction identifiers to
the Rule Matcher.

The Specification Matcher is used for matching the
new transactions against the existing specifications
corresponding to them. To do so, the component uses
the transaction information received from the Pre-
processor as tuples and the stored specification as a
state machine corresponding to the transaction iden-
tifier. For each SQL query within the transaction, a
state transition must be done in the intended state
machine. The transaction is considered as a legitimate
user transaction if at the end of matching operation,
the state machine is in its final state.

The Rule Matcher matches the user tasks against
the existing inter-transaction rules. For that, this com-
ponent uses sequence of transaction identifiers within
new user tasks. In order to perform the matching oper-
ation, the component first selects the rules that their
antecedent have been appeared in the user task. Then,
the selected rules are grouped into the sets based on
their antecedent so that each set contains the rules
with the same antecedent. If the user task sequence
satisfies at least one rule from each set, the user task
is considered to be a normal user task.

Generally, detection process consists of three follow-
ing steps:

• Step 1 : the Detection Preprocessor performs

following actions respectively:
◦ Extract transaction information after observ-

ing each new issued transaction in the current
log file.
◦ Send this information to the Specification
Matcher.
◦ Forward sequence of transaction identifiers to

the Rule Matcher after identifying any user
task consisting of legitimate transactions.

• Step 2 : the Specification Matcher matches each
new issued transaction against corresponding
specification and raises an alarm after observing
incoherence.

• Step 3 : the RuleMatcher matches the user tasks
against the existing inter-transaction rules.

The algorithm for detecting malicious behaviors at
user task level is shown in Algorithm 4. The sequence
of transaction identifiers in each new user task is
placed as input to the algorithm.

4 Evaluations and Results

We analyze our proposed method in terms of qualita-
tive and experimental. At the first part, we present
the results of several experiments that have been
conducted to evaluate the accuracy rate of proposed
method. At the second part, we compare our method
with the previous methods in qualitative terms.

4.1 Experimental Evaluation

Several experiments have been conducted for evaluat-
ing the effectiveness of the proposed database intru-
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Algorithm 3 Inter-transaction Sequence Rule Generation Algorithm

Input: The set UT s consisting of sequences of transaction identifiers existing in the legitimate user tasks,
generated inter-transaction dependency rules set ITDR, identified transaction set T , confidence threshold c.
Output: Inter-transaction sequences set ITSR, modified inter-transaction dependency rules ITDR.

1: Initialize frequent inter-transaction sequences set ITS, i.e., ITS = {}
2: Initialize inter-transaction sequence rule set ITSR, i.e., ITSR = {}
3: Generate frequent inter-transaction sequences using sequential pattern mining algorithm AprioriAll [14] from

the set UT s and store them into the set ITS.
4: for each sequence its = 〈T1, T2, . . . , Tn〉 ∈ ITS do
5: for j =1,..., n-1 do
6: for each two subsequences A = 〈T1, T2, . . . , Tj〉, B = 〈Tj+1, Tj+2, . . . , Tn〉 do
7: if (Support(〈 A,B 〉) /Support(A)) > c then
8: ITSR = ITSR ∪ {A→ B}
9: end if

10: if (Support(〈 A,B 〉) /Support(B)) > c then
11: ITSR = ITSR ∪ {A← B}
12: end if
13: end for
14: end for
15: end for
16: for each rule r ∈ ITDR do
17: if there exists a rule r∗ ∈ ITSR that its antecedent and its consequence are equal to r’s antecedent and

r’s consequence respectively then
18: ITDR = ITDR− {r}
19: end if
20: end for
21: for each rule r ∈ ITSR do
22: if there exists a rule r∗ ∈ ITSR that its antecedent equal to r’s antecedent and r’s subsequence of its

consequence then
23: ITSR = ITSR− {r}
24: end if
25: end for
26: for each rule r = 〈T1, T2, . . . , Tj〉 → 〈Tj+1, Tj+2, . . . , Tn〉 ∈ ITSR or rule r = 〈T1, T2, . . . , Tj〉 ←
〈Tj+1, Tj+2, . . . , Tn〉 ∈ ITSR do

27: ITSRT1,T2,...,Tj
= ITSRT1,T2,...,Tj

∪ {r}
28: end for
29: for each rule r = 〈T1, T2, . . . , Tj〉 → 〈Tj+1, Tj+2, . . . , Tn〉 ∈ ITDR do
30: ITDRT1,T2,...,Tj

= ITDRT1,T2,...,Tj
∪ {r}

31: end for
32: for each set s = ITSRT1,T2,...,Tn

⊆ ITSR do
33: Assign an identifier to the set s
34: end for
35: for each set s = ITDRT1,T2,...,Tn ⊆ ITDR do
36: Assign an identifier to the set s
37: end for
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Algorithm 4 Detection Algorithm at User Task Level

Input: The set UT consisting of the sequence of transaction identifiers in new user task ut, inter-transaction
sequence rules set ITSR and identifiers assigned to the subsets of ITSR set, inter-transaction dependency rules
set ITDR and identifiers assigned to the subsets of ITDR set.
Output: Status of user task ut (“user task ut is normal” or “user task ut is abnormal”).

1: Initialize candidate rules set C R, i.e., C R = {}
2: for each set ITDRT1,T2,...,Ti

⊆ ITDR with the identifier k do
3: if the transactions T1, T2, . . ., Ti appear in the transaction sequence of user task ut then
4: C R = C R ∪ {k}
5: end if
6: end for
7: for each set ITSRT1,T2,...,Ti ⊆ ITSR with the identifier k do
8: if the transaction sequence < T1, T2, . . . , Ti > appears in the transaction sequence of user task ut then
9: C R = C R ∪ {k}

10: end if
11: end for
12: for each set R ⊆ ITDR or set R ⊆ ITSR with the identifier k ∈ C R do
13: if there exists a rule r ∈ R that is not satisfied by ut then
14: Consider ut as an abnormal user task and raise an alarm
15: else
16: Consider ut as a normal user task and store ut into normal UTs storage
17: end if
18: end for

sion detection system. We used the programming lan-
guage C# from .NET Framework 4.5 for preliminary
implementation of proposed system. Also, a training
database log file, 106 normal user tasks with average
5 legitimate transactions per user tasks, was used in
the Analysis and Generation module. For generating
this database log, we considered an instance organiza-
tion with 6 database applications. The programming
languages of these applications were C# from .NET
Framework and Java. Also, these applications were
connected to the database systems of Microsoft SQL
Server 2012. The database applications contained 45
different types of user tasks and 10 different types of
transactions. The transactions are issued by different
applications in the form of user tasks (at least 4 trans-
actions per user tasks) so that the same transactions
have the same transaction identifier. Also, the existing
user tasks at this log were generated randomly based
on the certain real scenarios among the database ap-
plications in instance organization. In addition, we
used four different test data sets as instance database
logs in Detection module. These data sets consist of
a number of normal user tasks along with the sev-
eral user tasks were treated as malicious user tasks
that contained either malicious transactions or abnor-
mal relations among transactions. The number of user
tasks existing in these data sets were 500, 1000, 104

and 105 respectively, and the percentage of anomalous
user tasks in data sets were 5%, 10%, 15%, and 20%.
Meanwhile, the malicious user tasks in these data sets
were very near to the normal user tasks so that there

was only one anomalous relation among transactions
in a malicious user task, therefore, the conducted eval-
uations represent the accuracy rate of the proposed
system in the worst case.

For evaluating the system, we analyze the results of
experiments using the standard measures of True Pos-
itive Rate (Recall), False Positive Rate, and Precision.
These statistics are defined as follows:

True Positive Rate = #TruePositive
#TruePositive + #FalseNegative

False Positive Rate =
#FalsePositive

#FalsePositive + #TrueNegative

Precision = #TruePositive
#TruePositive + #FalsePositive

Where, #True Positive corresponds to the number
of intended attacks that the proposed system is able
to detect them, and #True Negative is defined as the
number of genuine events that the proposed system
considers them as genuine. Also, #False Positive and
#False Negative are the number of false alarms raised
by the system and the number of malicious events
identified as genuine, respectively.

In the considered experiments, first, the support
threshold was set to 0.1 and the values of true/false
positive rate and precision were calculated by setting
the confidence threshold to the values from 0.5 to 1.
Then, the confidence threshold was considered equal
to 0.9 and the values of true/false positive rate and
precision were calculated per the various values of the
support from 0.05 to 0.5.

ISeCure



July 2014, Volume 6, Number 2 (pp. 155–167) 165

Figure 4 illustrates the relationship between the
confidence threshold of rules and true positive rate of
the proposed system against the four test data sets,
and Figure 5 illustrates the relationship between the
confidence threshold of rules and false positive rate.
Also, Figure 6 shows the ratio of precision measure to
confidence threshold of rules. From Figure 4, 5, and 6
it can be seen that the false positive rate and precision
are very sensitive to the variations of confidence, while
the true positive rate is not very susceptible to these
variations.

Figure 7 illustrates the relationship between the
support threshold of rules and true positive rate of the
proposed system against the four data sets, and Fig-
ure 8 illustrates the relationship between the support
threshold of rules and false positive rate. Also, Fig-
ure 9 shows the ratio of precision measure to support
threshold of rules. From Figure 7, 8, and 9, it can be
observed that the true positive rate and precision are
very susceptible to the changes of support, whereas
the false positive rate is not very sensitive to these
changes.

By observing the Figure 4, 5, 7, and 8 it is taken
that the true positive rate graph at all points has
a higher value than the corresponding points in the
false positive rate graph; That means the proposed
system raises the true alarms much more than the
false alarms in all the cases. This implies that the
proposed system has high accuracy and effectiveness
in detecting database malicious behaviors at both
transaction and user task levels.

From the viewable results in Figure 4 to Figure 9 it
can be taken the ideal range of confidence threshold
corresponds to [0.83, 1] and the desired range of sup-
port threshold includes the values from 0.05 to 0.115.

4.2 Qualitative Analysis

We consider the methods [1, 2, 6, 9, 10] in the case of
database IDS with the most citations and different
approaches to compare them with our method in
qualitative terms.

We can divide profile granularity levels to four lev-
els; user, role, application, and organization. Hu et
al. [6, 9] keep profiles at the level of organization,
whereas Chung et al. [1] and Bertino et al. [2] represent
their profiles in the granularity level of user and role re-
spectively. Also, the normal profiles of method [10] are
captured in application level. Unlike these methods,
our proposed method can be used in both granularity
levels of application and organization and also can be
easily extended to apply at the granularity level of
user or role. It is important that the profile granularity
level can be chosen according to the type of organiza-

Figure 4. Relation between true positive rate and confi-
dence threshold of rules for four data sets

Figure 5. Relation between false positive rate and confi-

dence threshold of rules for four data sets

tion. However, our method is scalable enough to use in
different levels according to the type of organization.

Our proposed method is capable to identify ma-
licious database behaviors at transaction and inter-
transaction levels as well as many types of SQL in-
jection attacks, whereas previous methods are mostly
used for identifying attacks only at one of the men-
tioned levels. For instance, Chung et al. [1], Bertino et
al. [2] and Lee et al. [10] propose some methods to
identify attacks in SQL query level. Also, Hu et al. [6]
concentrate on transaction level attacks, whereas the
proposed method by Hu et al. [9] only deals with
anomalous behaviors in relations among transactions.

Furthermore, as mentioned earlier, our method is
based on the specification in the levels of query and
transaction so that specifies transactional features
in a formal manner and precisely. This causes that
our method produces false alarms less than other
methods that use frequent attribute set (Chung et
al. [1]), tuple (Bertino et al. [2]), attribute dependency
(Hu et al. [6, 9]), and query fingerprint (Lee et al. [10])
to represent a transaction.
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Figure 6. Relation between precision and confidence thresh-
old of rules for four data sets

Figure 7. Relation between true positive rate and support

threshold of rules for four data sets

5 Conclusions

In this paper, we proposed a novel IDS to detect
malicious behaviors at both transaction and inter-
transaction (user task) levels in database systems. For
this purpose, first, a specification-based method has
been offered at the transaction level by which the ex-
pected transactions in existing database applications
in the organization are detected. These specifications
are used to detect malicious transactions, since the
malicious transactions cannot be matched to any of
the specifications. Then in user task level, an anomaly-
based method is presented, which uses a data mining
method to discover dependency and sequence rules of
the relations among the identified transactions. The
discovered rules are used to detect malicious relations
among new transactions at the user task level.

The advantage of the proposed system is that it can
detect malicious behaviors in both transaction and
inter-transaction levels. This system utilizes a hybrid
method (specification-based detection and anomaly
detection) to decrease both false positive and false
negative alarms. In addition, it can be employed at
both granularity levels of application and organization.
The results of experimental evaluations demonstrate
the system operations to be highly accurate at the
desired confidence and support levels.

Figure 8. Relation between false positive rate and support
threshold of rules for four data sets

Figure 9. Relation between precision and support threshold

of rules for four data sets
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