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A B S T R A C T

The Tor network is probably one of the most popular online anonymity systems

in the world. It has been built based on the volunteer relays from all around the

world. It has a strong scientific basis which is structured very well to work in

low latency mode that makes it suitable for tasks such as web browsing. Despite

the advantages, the low latency also makes Tor insecure against timing and

traffic analysis attacks, which are the most dominant attacks on Tor network in

recent past years. In this paper, first all kinds of attacks on Tor network will be

classified and then timing and traffic analysis attacks will be described in more

details. Then we present a new circuit scheduling for Tor network in order to

preserve two properties, fairness and randomness. Both properties are trying

to make pattern and timing analysis attacks more difficult and even in some

cases impractical. Our scheduler distorts timing patterns and size of packets

in a random way (randomness) without imposing artificial delays or paddings

(fairness). Finally, by using our new scheduler, one of the most powerful attacks

in this area is debilitated, and by it is shown that analyzing traffic patterns and

size of packets will be more difficult to manage.

© 2014 ISC. All rights reserved.

1 Introduction

T or [1] is a distributed TCP overlay network, which
consists of volunteer routers, so-called Onion

Routers (OR). Its main goal is preparing anonymity
for its users and it is probably the most popular one
in this area. It routes data in equally sized cells which
are packed by Onion Proxy in user side, along circuits
that consist from onion routers. Each router only
can add or remove a slice of encrypted information
on the way of cells through circuit. The network
provides anonymity for its users, Since each router
on a circuit only knows its predecessor and successor,
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which means the last OR (related to destination) is
not aware of first OR (connected to user).

In some low latency applications such as web brows-
ing a trade-off is needed between preventing traffic
analysis on the flow of user’s packets in the network
and delivering them in an operant manner. However,
Tor deliberately chooses performance and working
with low latency versus security. It may make Tor
popular, but it cause problem of timing and traffic
analysis against global adversaries. It means that if an
attacker has the ability to watch all the links between
ORs, he/she may be able to link similar patterns to
uncover users’ activities. Besides the global adversary,
which is out of Tor threat model, there are some other
attacks, which use time and traffic analysis, inside the
model. However, what we present in this paper helps
against both of these categories, but we are only in-

ISeCure



68 Tor Improvement Against Timing and Traffic Analysis Attacks — A. Tavakoly, R. Ebrahimi Atani

terested in the second one and we explain the impact
of our work on some attacks in this group.

Although there are some old efforts to mitigate tim-
ing and pattern analysis in mix systems, but all of-
fered solutions act unfair. As we will see in Section 4
most of these efforts impose additional delays or waste
system bandwidth. Using additional delays, or more
bandwidth for padding the packets may seem unavoid-
able, but we present a solution with approximately
no overall additional delays or paddings. In this pa-
per, we introduce a new circuit scheduling, named fair
randomization and we illustrate it in a simple environ-
ment. The results show that the scheduler can make
non-recurring and unrecoverable patterns of data, and
it can help against timing and pattern based analysis
attacks. The important point is that our scheduler
tries to play as fair as possible between circuits. It does
not bring in any undue delays, and even sometimes in
user’s point of view it work faster.

Another important point worth to mention is the
ability of applying our algorithm at any environment
with multiple queues. The main idea is to disarrange
the turns of queues. Therefore, it is conceivable, for
example in an operating system, for TCP queues or
any other network hardware devices with multiple
queuing. However, implementing this scenario in real
environment needs serious scrutiny and we consider it
as our next step in further and future researches.

The rest of the paper is organized as follows: Sec-
tion 2 describes Tor current circuit scheduling struc-
ture. Section 3 contains explanations of some recent
attacks on Tor, which used timing and traffic analysis.
In Section 4, we review some previous researches to
counteract these group of attacks. In Section 5, we ex-
plain our new algorithm in details. Section 6 describes
the experimental results, and finally the conclusion is
drawn in Section 7.

2 Tor’s Scheduling Structure and
Circuit Management

An Onion Proxy (from computer of users), selects a
subset of Tor ORs (typically three ORs namely entry,
middle, and exit) and exchanges private keys with
them to set up a circuit across them. Then, it encrypts
data with those keys as the number of ORs in the
circuit. Data travels through the circuit with cells of
fixed size (512 bytes). Each OR receives incoming cells,
applies the cryptographic operations to unwrap its
layer and then forwards the cells along the circuit. It is
important to note that TCP connections are common
between all circuits that traverse the same pair of
onion routers.

On the one hand, Tor’s original structure of circuit

Figure 1. (a) Tor original circuit scheduling. (b) Max-Min
circuit scheduling

scheduling is illustrated in Figure 1(a) as it has been
in [2]. As the figure shows there is a Round Robin
scheduling mechanism in both sides that distributes
the maximum bandwidth evenly between incoming
and outgoing connections.

After receiving cells from incoming connections,
they rearrange in circuit queues. As the circuits tra-
verse a fixed path, all the cells of each circuit forward
to one outgoing connection buffer. As it is explained
in [2], the mentioned structure is unfair. The unfair-
ness problem is that Tor does not count the number of
attached circuits to connections when it is distribut-
ing shares. Thus, connections with higher number of
circuits get and divide equal part of bandwidth be-
tween more circuits and the other connections, as it is
clear from Figure 1(a), use the rest of the bandwidth
even if they have fewer circuits (like the connection
dependent to circuit4 in Figure 1(a), which has only
one circuit but it receives equal bandwidth as other
connection that is dependent to circuit 1,2 and 3). As
an example, suppose that all present bandwidth is A;
as Figure 1(a), shows circuit 4 receives A/2 of band-
width, and each circuit 1,2, and 3 receive only A/6 of
the whole bandwidth.

On the other hand, part (b) of Figure 1 demon-
strates a fairer scheduling. Both parts of the figure are
almost similar, but there is an important difference.
In part (b), there is only one Round Robin for all cir-
cuits, which is called Max-Min scheduling. It can be
seen simply that the new algorithm has a better fair
behavior in distributing bandwidth. . In Tor Sched-
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Figure 2. Combining Cells in Packets

uler, incoming cells first will be queued in circuits and
then flushed into outgoing connection buffers. Then,
cells pack as TCP packets and leave the network. The
number of cells in each TCP packet can be different.
As it has been illustrated in [3], Figure 2 shows how
Tor combines different number of cells in a packet.
The MTU is 1500 byte, and when size of the available
cells exceeds the MTU, they will be packed in next
ones. It is a very important point to have in mind,
since different packets probably make different delays.

Circuits share TCP connections with each other in
a common path between pair of ORs. Therefore, the
buffers of connections are common too, and when cells
of common queues are waiting in buffers, they can be
complex with each other in TCP packets. It has an
effect on the number and size of packets that leave
the network and as we explain later, it has been used
in some new attacks that we describe some of them
in next section.

3 Traffic Analysis Attacks on Tor

Other than traffic analysis and estimation, Tor net-
work is vulnerable to some other attacks. We mention
a few example of these attacks. There are attacks
based on weakness of Tor protocol’s design. For ex-
ample, there is an attack for Tor authentication pro-
cedure in [4]. However, this protocol works fine when
running only in one instance, but it does not work
properly when it is running in multiple concurrent
instances .Other problem based on weakness of Tor
protocol, threats users for using the network whenever
they want as explained in [5].

Another group of attacks like [6, 7] try to increase
the chance of attacker’s routers to be chosen. After
that, attacker uses selected routers to apply other
kinds of attacks. Next attack category use data mining
techniques to induce information about network and
its users as [8]. It shows Tor network is recognizable
by its data transmission behavior in a network. The
Last category belongs to Denial-of-Service attack such
as [9], that shows the effects of these attacks on Tor’s

anonymity. This group also cooperates with other
ones, almost as prerequisite. It means that, at first
attacker disable a router and then observes its effects
on the network, “did it tear any circuit off?”

The important attacks in the recent past years on
Tor network, belongs to traffic analysis attacks. How-
ever, by growing the extent of the Tor, most of them
are no longer practical today, but there are still a few
practical ones. Traffic and timing analysis is extracting
information about the volumes and timing patterns of
network packets to infer who is connecting to whom or
to where. These attacks categorize in two categories:
passive, and active attacks. On the one hand, in pas-
sive traffic analysis the attacker records incoming and
outgoing traffic of both source and destination parties.
Then he tries to analyze the volumes and timing rela-
tions between data and seeks for repeated and similar
patterns in both sides to infer the correlation between
them. These kind of attacks need a long period of
observation to reach reasonable results.

On the other hand, active attacks are more powerful
and their success rates are higher even with shorter
period of running time. In these attacks, the attacker
makes a particular pattern like a signal in one side, and
then he watches the other side to find the embedded
pattern. Since all traffic patterns of connections of
Tor are not distorted by each Onion Router through
circuits, and also Tor scheduler works in a similar
and repetitive fashion monotonously, both kinds of
mentioned attacks can be apply on Tor. The two
mentioned attributes cause Tor to be predictable and
it is the reason to some practical pattern and timing
analysis attacks.

We categorize these attacks in two groups and men-
tion few recent samples for them. The first group con-
sists attacks like [10–13]. In these attacks, the attacker
tries to estimate and use the RTTs of routers to corre-
late patterns on different links. The most recent one in
this area by [10] is an attack to locate hidden servers
in Tor. They build a particular fingerprint of traffic in
the user side and then apply the estimated delays of
ORs to calculate the output pattern. By watching the
fingerprint in the server side, attacker can locate the
destination server that is responding to user requests.

The second group of attacks like [3, 14, 15], also
imply traffic patterns, but they are more interested
in the size of packets instead of delays to find the
pattern in destination. In [14] attacker assumes control
of both entry and exit router over the victim’s circuit.
Then exit router manipulates the responding cells of a
website to make a particular pattern. To encode 0, the
attacker flushes only one cell in the output buffer and
makes a TCP packet with the cell. To encode 1, the
attacker makes a packet with three cells. After building
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the pattern, the entry router counts the number of
incoming cells to recognize the pattern. Detecting
same sequence at entry router is a confirmation on
the correlation between the user and the website. [3]
is an attack similar to previous one, of course with
making different kind of pattern. It builds pattern on
the web server when it is responding to the user and
then it tries to find the pattern on user’s connection,
for example its wireless network. Thus, it does not
need to control any OR at all. Therefore, it seems
more practical.

Since the attacker does not have control over any
OR, he must choose the amount of leaving data from
web server to exit OR very precisely. Thus, for making
a 0 in the pattern, 498 bytes of data will be sent to
exit router, which will be pack exactly in one cell. A
little delay assures packing the cell in one TCP packet.
Then, for making 1 in the pattern, 2444 bytes of data
will be send to exit router. This amount has been
chosen very carefully, which forces the OR to pack
them in to two TCP packets. The payload part of
the first TCP packet will have 1448 bytes of data and
the payload of the second packet will be 996 bytes.
Making suitable delays assures to receive the exact
pattern in other side of the network, means in user’s
attached network, which shows the relation between
the user and the web server.

The other interesting work that depends on size of
packets is [15]. They considered size of packets and
their results show that Tor makes packets with diag-
nosable sizes with clear patterns for different proto-
cols. Thus, it used to recognize the Tor network and
consequently its users.

Since Tor scheduler acts almost in a clear way, such
analyses and attacks can be practical. However, we
are not categorizing Tor’s attacks in details and the
overall impact of our work on them, but results of our
work in Section 5 indicate how simply it makes them
harder to implement. The important point is that our
work has an overall impact on every attack that uses
timing and traffic analysis on Tor. In Section 5 we
describe how to make non-recurring and unrecogniz-
able patterns with unpredictable size and number of
packets for each circuit.

4 Defenses Against Traffic Analysis
Attacks in Mix-Networks

In this section we explain some related works in defense
against traffic analysis attacks in Mix-Networks, which
are a little old but completely relevant. There are also
some more recent researches like [16, 17] to mitigate
effects of traffic analysis. However, they show the
importance of problem, but none of them has been
designed for Mix-Networks. For example, in [16] they

offered a heuristic traffic reshaping model for wireless
networks that scatters the traffic on multiple virtual
routes.

Since our priority is traffic analysis attacks in Tor
network, it must be mentioned that there is another
group of defenses for Tor network that work with
morphing methods [18–20]. All of these researches
tried to disguise Tor’s data to shape of traffic of other
software, i.e. Skype [21]. The main reason of these
researches is trying to defeat filtering of publicly listed
relays. Tor users build circuits with relays and since
these relays are publicly visible, blocking them is not
so difficult. Consequently, Tor introduced unlisted
entry points in the network, known as bridges.

Tor itself also designed “obfsproxy” [22] for the
same reason. It passes all the traffic through a stream
cipher to reshape it. It helps hiding Tor bridges to sur-
vive Deep Packet Inspection (DPI), which has been
implemented by some countries to defeat Tor [23]. In
the following we explain three old different defenses
against traffic and timing analysis attacks, which de-
signed specifically for Mix-Networks.

4.1 Stop-and-Go

First method in [24] as its name implies, tries to stop
packets and then leave them to go. It picks random
intervals as same number of routers in the circuit
that packet must walk through. Then it embeds these
numbers inside the packet. Each router stops the
packet with respect to associated random number.
The method distorts incoming pattern well, but as it
is clear, it imposes additional delays on packets.

4.2 Timing Attacks in Low-Latency
Mix-Based Systems

In [25] additional padding has been utilized for solving
the problem. Their algorithm works in this way:

• First, put additional data as padding, in packets
and then send them out.

• In packet’s way through routers, each router ran-
domly decides to remove part of additional data
or not.

• Finally, last router removes all the remaining
additional data.

This algorithm works as well as previous one in distort-
ing the traffic pattern. But as previous one, it reduces
system’s performance by wasting its bandwidth. How-
ever, the amount of paddings may be inconsiderable,
but when the number of packets in a system increases,
it probably makes a problem.
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4.3 Generalizing Mixes

Probabilistic randomization in [26] is another way to
make patterns undistinguishable for an attacker. This
method works in the following way:

• First, as we explained in Section 2 about Tor’s
scheduling structure, incoming data will be
queued.

• Then for circuits that are common in one TCP
connection, every time router tosses a coin and
decides randomly to send data of the circuit out
or not.

Thus, the outgoing pattern will be completely ran-
dom. But again, like previous method, this one acts
a little bit unfair too. Since for each circuit at every
turn, there is only 50 percent chance to send its data,
and the algorithm never tries to compensate the loss
of the turns, it is not 100 percent fair. However, since
the probability is equal for all circuits, we can op-
timistically assume it plays nearly fair. Besides the
optimistic view, which seems to need long periods, it
seems that the algorithm is not capable of providing
the fairness at least in short periods and with respect
to round-trip-times of cells.

5 Fair Random Circuit Scheduling

In this section, we explain how our algorithm works
and affects transmitting data. Our algorithm contains
two different procedures for two different purposes,
(1) makeing delays unpredictable, and (2) changing
(or manipulating) size of packets.

5.1 Making Delays Unpredictable

Fair schedulers, like FIFO (First In, First Out) or
Round Robin (RR), apply a clear and defined order
and arrangement to all of their queues. If all routers
use these mechanisms in a network like Tor, repetitive
patterns and predictable delays are unavoidable. This
predictable structure helps attackers to apply timing
and traffic analysis attacks. First point in mind is
changing this arrangement to a chaotic and random
shape. In order to make these arrangements to have
the fairness property, we introduce the concept of a fair
random situation, which is a different arrangement of
turns form original state. Let’s describe fair random-
ization with an example. In Figure 3, each box shows
one turn that belongs to a circuit with the same num-
ber. Each vertical row, presents one round of schedul-
ing. Left side of Figure 3 shows how Tor schedules
queues (circuits). As it is clear, three queues in FIFO
manner being scheduled into a Round Robin mecha-
nism. But in the right side of the figure, we change the
arrangement of turns of the queues (circuits) to a fair
random shape. It means in the right side of the figure,

Figure 3. Building a fair random arrangement

we reorder the turns to another arrangement, in exact
three rounds same as left side, but we try to make re-
sult of turn distribution to be nearly same as left side.
As it is clear, first turn of Circuit1 shifted down two
steps and the third turn shifted up same amount to
make an almost equal overall. It also happens for other
queues, of course with other amounts of movements.

There are some important points that worth noting.
First, one should not be confusing turn with cell. It
means the new scheduler reorders turns of circuits,
but it is not important how many cells it is going
to pack for any circuit. In fact, some circuits may
even be empty when they reach to their turns, which
the scheduler simply will leave them and go to next
circuits.

Second, the scheduler only tries to reorder the turns
of circuits and it is not important that they are empty
or not. Finding a new arrangement will be done at the
beginning of each session, which number of circuits is
a specific number in that moment. If the number of
circuits change in middle of a session, for example by
entering a new circuit, the algorithm can rearrange
again. Also if the OR is not very busy and it has small
number of circuits, by picking small round numbers,
the algorithm can wait for session to complete before
rearranging again . The scheduler works fine even
with small round numbers (for more explanation refer
to Section 6). However, both solutions seem unfair,
but the better solution is specifying a larger number,
than the number of available circuits, in beginning
of the session. This way we are reserving places for
circuits, which will arrive after beginning of scheduling
and we can assign empty reserved circuits to them.

From many available fair random arrangements like
this, choosing one of them randomly in each session of
scheduling makes cell distributing chaotic. However,
we show that our algorithm preserves the overall la-
tency with only some ignorable differences and even
sometimes offers shorter RTTs.

However, our experiment in next section is very
simple, just because of clarity of the concept, but with
huge number of queues and different number of rounds
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Figure 4. Little part of possible arrangements for new schedul-
ing.

in each session, there are many number of fair random
arrangements. The formula below shows the order of
this number:

((No.Rounds1)∗ (No.Circuits−1))(Circuits−1) (1)

Simply the formula states that for all turns of a
circuit except the last turn (“rounds-1”) and for all
circuits except the last circuit (“circuit-1”), we can
decide about the new places. The place of last turn
of each circuit is mandatory to make an equal over-
all. The last circuit also has no choice, only to fill the
blank places. Moreover, for example after finding a
new arrangement for circuit1, other circuits, again ex-
cept the last one, can move between their places (it is
why the exponent is “circuit-1”). We give an example
in Figure 4, which shows a little part of new arrange-
ment. By Comparing both rows of the Figure 4, for
example after placing turns of circuit1 in the situa-
tion of (1.a), (2.a) has no changes for circuit1, but the
places for circuit2 and circuit3 are different (“circuit-1”
in the exponent of the formula).

The whole explanation means in the real world the
maximum amount of scattering and disordering results
from our algorithm is more than what we illustrated
here. It results to more fluctuations in RTTs and thus
it brings more distorted patterns.

The following pseudocode shows how to make fair
random arrangements. Imagine a two dimensional
array[i][j] like Figure 3, for applying the new scheduler.
i is the number of circuits and j is a random integer
as number of rounds for this session. For circuit1,
the algorithm starts with finding a random number
between one and the maximum number of circuits,
and marks that place in the array for circuit1. Then
for next turns, except last one, it puts the turn further
between the last marked place and number of queues
multiply by current number of round (for example

for finding second place the round number is 2). The
last one must be in a place that sum of places in new
arrangement in the array be equal with sum of places
in original arrangement (for real places imagine an
array like left side of Figure 3). The algorithm repeats
this procedure for all circuits until penultimate one.
Last circuit does not need to do anything and it easily
fills all blank places in the array.

We note the point that the algorithm is trying to set
a limitation, which is twice as the number of circuits,
for finding new places in the new arrangement. It is
very important since we are not putting any limitation
on the number of rounds in the algorithm. Since Tor
network is a secure and monitored network, without
this limitation, it is like the one who is using the algo-
rithm, is the one who is making the attack. The attack
that has been chosen for proving the effectiveness of
our algorithm, also does not try to put any unordinary
amount of delays on packets. It is because doing so,
causes suspicious activity, since it simply shows that
there is something wrong with these unordinary de-
lays. Thus, there is not any limitation on the number
of rounds when picking a random number for that at
each session, because the amount of movements and
shifting of turns are under control and limited.

5.2 Making Size of Packets Unpredictable

In the previous section, we reordered arrangement
of turns. We show in next section, it makes random
and different delays for circuits periodically, which
results to different RTTs. Random delays may make
packing of cells into TCP packets a little disordered
(for example if two turns of a circuit join together,
more cells may pack in one TCP packet). It does not
seem enough and we want to be sure that no one can
easily use number and size of packets to infer any
information that breaks anonymity. As we explained
in Section 3, some attacks like [3, 14] use patterns of
traffic to infer information. Since they act very subtle,
we improve our algorithm to make it difficult to apply
these attacks.

There is also another problem, which is extensive
amount of delays. It happens sometimes specially
for primary packets of each circuit and it can make
unpleasant experiences for users. If a circuit waits for
N turns more than its real turn and the number of
all circuits in the router is M , simply the additional
amount of delay is (N/M) portion of router’s delay.
Therefore, we add new cell distribution structure to
our scheduler to solve both problems. This procedure
only applies to circuits that are common in outgoing
TCP connections. Thus, the complete structure of our
scheduler acts this way:

• First, we use fair randomization algorithm. Num-
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Algorithm 1 Euclid’s algorithm

1: Random randomNumbers = new Random(); {/*pick a random number for rounds*/}
2: int numberOfRounds = randomNumbers.nextInt();
3: int N = numberOfCircuits;
4: int A[ ][ ] = new int[numberOfCircuits][numberOfRounds];
5: for ( int i from circuit 1 to N-1 ) do
6: lastPlace = 0;
7: int temp= randomNumbers.nextInt(); {/*start of first round for each circuit*/} {/*Find a random place

from 0 to numberOfCircuits */ }
8: jTemp = j;
9: temp % = numberOfCircuits; {/* put i in the temp place*/}

10: A[temp][j] = i;
11: lastPlace += temp; {/*end of first round for each circuit*/} {/*start of the period of second round to

penultimate round for each circuit*/}
12: for ( numberOfRounds - 2 ) do
13: int temp= randomNumbers.nextInt(); {/*Find a random place from lastPlace to last-

Place+(numberOfCircuits* current j ). If it grows more than number of circuits, it means its position
will be one step further in horizontal direction*/}

14: temp %= (( j * numberOfCircuits) - lastPlace);
15: if (temp > numberOfCircuits) then
16: jTemp = j+1;
17: end if
18: A[temp][jTemp] = i;
19: lastPlace += temp;
20: end for{/*end of the period of second round to penultimate round for each circuit*/} {/*start of last

round for each circuit*/} {/*Find a place that sum of new places be equal with old ones*/}
21: Temp2 = (sumOfRealPlaces - sumOfNewPlaces) % numberOfRounds;
22: if (Temp2 == 0) then
23: Temp3 = (sumOfRealPlaces-sumOfNewPlaces) / numberOfRounds;
24: else
25: Temp3 =( (sumOfRealPlaces-sumOfNewPlaces) / numberOfRounds) +1;
26: end if
27: A[((sumOfRealPlaces-sumOfNewPlaces) % numberOfCircuits)-1][ Temp3 ]= i; {/*end of last round for

each circuit*/ }
28: end for{/*start of last circuit */}
{/*Fill all empty places for last circuit*/}

29: for (int i to number of circuits) do
30: for (int j to number of rounds) do
31: if (A[i][j] == 0) then
32: A[i][j]= last circuit number;
33: end if
34: end for
35: end for{/*end of last circuit */}

ber of circuits in the real world depends on the
OR, but number of rounds for making new ar-
rangement must be random at each session.

• Then we put Round Robin as Figure 1(b).
• Henceforward each circuit shares its turn with

other circuits, which are common in the same
TCP connection. In this situation, a particular
cell managing behavior happens. In this way, the
scheduler puts one cell from each circuit up-to-
down, and it continues this action until last circuit.
Then it reverses the direction from down-to-up.

At this time other involved circuits to this sharing
behavior, whenever reach to their turns, act same
way.

Figure 5 illustrates above explanations. This proce-
dure makes a gap between cells of each circuit inside
TCP packets. Assuming that the number of common
circuits of TCP connection is n, the cell interval be-
tween first and second cell of present circuit would
be 2(n− 1). It is important to note that in each turn,
this maximum amount of gap only applies to the cir-
cuit that is the owner of the turn and not to the other
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Figure 5. new cell distributing structure

common circuits. For common circuits in next places
with respect to owner of the turn, the amount of gap
will be different and in a decreasing trend. Since each
circuit will have their own turns, thus beside other
additional gap that will be provide for them in differ-
ent places, they will have the maximum available gap
at least in their own turns. This way we try to make
maximum distance between cells to seclude them from
being in same TCP packet. It increases the probabil-
ity of unequal delays for different TCP packets, and
therefore it helps against traffic analysis with respect
to number of cells in each packet.

After these steps, the scheduler is on its 100 percent
performance and capability, only when multiple cir-
cuits are sharing one TCP connection. With respect
to calculations has been done in [27] with data gath-
ered in year 2010 about number of ORs and reported
bandwidth, by increasing number of users and loads
on ORs, there is vast amount of hope on sharing con-
nections between circuits in all ORs. Moreover, our
results show for distorting a circuit’s pattern, it is
enough only when the circuit shares a connection with
other circuit(s) only in one OR in his path from entry
to exit.

Other important point is that there can be any other
constraints or criterion in bandwidth distributing.
We suppose and offer, it may be better to give some
priority to web users against bulk downloaders in
number of turns or in number of cells to flush into
TCP connection buffers, as in [27].

6 Experimental Results

To prove effectiveness of our algorithm, we try to coun-
terfeit the attack in [14]. we chose this one, because it
has two conditions: 1) it uses two ORs, entry and exit,
in a circuit to apply the attack, thus it is a powerful
and well-established attack, and 2) there is only one
point in the circuit to break the attack, which is the
middle router. However, this attack is not practical,
since it needs two ORs in user’s circuit, which tak-
ing control of both entry and exit at the same time
is very difficult to do. If assumption of this attack for
controlling both ORs happen in the real world, break-

Figure 6. Time-hopping technique [14]

ing anonymity will be an easy task to do. Thus, since
the only helpful position to stop the attack is middle
router, which is out of attacker’s control, this attack is
one of the hardest to break. We show even in this sit-
uation, we can stop and unsettle the attack. We only
apply our algorithm in one router, middle router, and
results prove that the attack no longer is easily appli-
cable. It must also be reminded that if applying the
new algorithm to only one router can stop this easy
setup attack, it certainly can defeat others, too. Most
of other attacks use only one OR, or even they only
intercept data between ORs, which the common and
most useful places includes OP to entry OR and exit
OR to destination. Since, in the mentioned attacks
there are more than one position to apply the new
algorithm, and also they implemented in very harder
situation, the probability of breaking the attacks is
even more than what we show here.

The evaluation platform is planetLab deployment,
which uses real Tor relays. The platform is very sim-
ple and it consists of an entry router, an exit router
and only one modified OR (middle router) which is
equipped with the new scheduler. It must be men-
tioned that before using the modified version, we use
a normal OR as middle router to compare the results.
The flow of packets of data is sent towards the entry
OR with a particular pattern from three OP (making
three circuits in all of ORs) with exact timing for each
circuit. The pattern is built as exactly as the attack
that has been chosen for the testing. All circuits share
one outgoing connection. The periods are picked very
precisely and not too long, exactly as time-hopping
technique that has been explained in [14] (and in Fig-
ure 6). It is just for the attack invisibility and can
reduce the probability of being recognized as an attack
by an OR. It uses a small amount of random intervals
between signal bits. These intervals like coding will
be used at other side of network to recover the origi-
nal signals. After applying these requirements in both
sides, we observe the results on the other side of the
network (exit OR). The only difference between the
chosen attack and our experiment is the direction of
the procedure, as we move from entry to exit but they
did reversely.

We consider the results on the outgoing connection
of the exit OR and analyze them to find out the
practicality of the attack with respect to estimation
of delays and size of packets. We first consider the
attack with Tor’s original circuit scheduler in this
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Figure 7. Tor circuit scheduler. (a) Size of packets, (b) Pattern of delays

Figure 8. Fair random scheduler. (a) Size of packets, (b) Pattern of delays

environment and then we consider our scheduler with
the same input data. Results of our experiment show
that the original Tor scheduler preserves the pattern by
making predictable delays continuously in an almost
fixed range. It also shows that attacker can estimate
number of cells per packet easily. Both of the these
results are available in Figure 7, which shows only a
small part of the flow of data.

However, the second step of the experiment with new
scheduler shows different results. As Figure 8(a) shows,
on outgoing connection of exit router, the number of
cells per packet has considerable fluctuations. It also
happens to amount of delays for each packet. As we
hoped, it helps to break monotony and predictability
and therefore, it makes creating recognizable patterns
difficult. When delay of cells changes, the RTTs of
them changes, too. This causes an irregular timing
for circuits and it makes timing analysis difficult. We
applied our scheduler only in one OR on the route of
packets from entry to exit router. Passing data from
more ORs equipped with new scheduler, can make
estimation harder and even impossible.

7 Conclusions

In this paper, we first explained the structure of Tor’s
circuit scheduler. Then we described some attacks,
which use traffic pattern based analysis. Then we pre-
sented a new circuit scheduler for Tor with a new
mixing strategy. The aim of the scheduler was making
different amount of delays for circuits to eventuate un-
recognizable patterns of data. It also produces packets
with disparate number of cells for each circuit. Both

actions help against timing and pattern based anal-
ysis attacks. Finally, we tested the new scheduler in
a simple environment and results show our new algo-
rithm makes these attacks more difficult. Since the
new scheduler makes unpredictable patterns, it makes
most of the timing and traffic analysis attacks of Tor
network more difficult and in some cases unpractical.
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