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A B S T R A C T

Side-channel Analysis (SCA) attacks are effective methods for extracting

encryption keys, and with deep learning (DL) techniques, much stronger attacks

have been carried out on victim devices. However, carrying out this kind of

attack is much more challenging in cross-device attacks when the profiling

device and target device are similar but not the same, which can cause the

attack to fail. We also reached this conclusion when using only DL-SCA attack

on our cross-devise (Atmega microcontroller devices). Due to different processes

that lead to significant device-to-device variations, the accuracy of the attack

was, on average, only 23%. In this paper, we proposed a method for a real

attack on cross-devices using pre-processing methods based on a combination

of DL-based Autoencoder and Gaussian low-pass filter (GLPF). According to

our analysis results, the accuracy of the attack using only deep learning-based

Autoencoder increased to 70% on average, and it improved up to 82% by

adding the GLPF technique. The results also showed that combining DL-based

autoencoder and GLPF can lead to a successful attack with a maximum of 300

power traces from the victim device.

© 2023 ISC. All rights reserved.

1 Introduction

Side Channel Analysis (SCA) attacks are one of the
most common types of physical attacks on elec-

tronic cryptography devices. During the execution
of cryptographic algorithms on these devices, much
physical information like power consumption [1], exe-
cution time [2], and electromagnetic radiation leaks
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that adversaries can utilize this information to recover
the secret keys of the system [3].

Template Attacks (TA) are one of the strongest
types of SCAs, which are difficult to deal with [4], [5],
especially when deep learning (DL) techniques are
used to reach a more powerful TA [6]. Although the
steps and methods of performing TA are similar to
using DL technique, it is categorized as a separate
attack called DL-based SCA because of the great
power of DL in key extraction.

Generally, DL-based SCA attacks are carried out
in two phases: training and attacking. In the training
phase, the adversary stores a complete set of mea-
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sured inputs, outputs, and leaked data of the profiled
device. Then, this information is processed using DL
techniques to create models and node weights. The
first phase is very time-consuming and requires a
high volume of data processing [7], while in the at-
tack phase, the adversary uses a limited number of
power traces during the execution of the encryption
algorithm on the victim’s device to retrieve the secret
of the design. Then, the attacker can guess the secret
key by matching the victim’s power traces with the
models that have been previously created.

As mentioned, DL-based SCA is one of the
strongest attacks when the trained correctly and the
victim device are the same. However, some concerns
arise when using cross-device attacks in which the
adversary has to use a similar device to the victim
(i.e., not the same device) as the trained device. This
is because he/she may have limited access or insuf-
ficient time to use the victim’s device for training.
Due to differences in the processing of these devices,
transferring the models learned by the deep neural
network (DNN) from the trained device may result in
less accuracy when attacking the victim device, and
the attack may fail [8]. The reason for the differences
in processing may be related to the manufacturer,
the manufacturing process, or any other factors.
Recently, considerable contributions have been pub-
lished attempting to mitigate or reduce the impact
of these differences on attack efficiency using various
methods.

The analysis of electromagnetic signal traces re-
veals their high sensitivity to the probe’s position [9].
Therefore, any changes in the probe position during
the data capture process in the profiling and attack
phases will result in different traces. Similarly, differ-
ences in device manufacturers, the presence of envi-
ronmental noise, various countermeasures [9] in the
attack device, or any minor changes between the pro-
filing and attack devices will result in capturing sets
of tracing data for training and attack. In cryptogra-
phy, a cross-device attack is a type of attack where a
machine learning model is trained on data collected
from one device, and then the same model is used to
attack a different device. This attack aims to use the
knowledge learned from the original device to infer
sensitive information about the target device.

Researchers have recently tried to improve cross-
device attacks by introducing different DNNs and
applying different pre-processing methods. Thapar
et al. [10] proposed a new method (TranSCA) that
used a transfer-learning strategy to reduce train-
ing data and fewer iterations for fine-tuning an al-
ready trained model with a new dataset. The authors
of [3] introduced MTL-SCA attack to improve the

attack and make the layers changeable by combining
transfer learning and meta-learning. They success-
fully performed the attack for both power consump-
tion and electromagnetic leakage models in cross-
device/domain modes for protected and unprotected
AES on different processors. According to [11], de-
vices can be classified into four categories based on
their relationship. In this classification, homogeneous
and heterogeneous devices are the most challenging to
attack, respectively, due to process variations. They
introduced FL-PA methodology to solve the process
variation problem that was performed in the time
domain and overcame the heterogeneous devices.

Pei Cao et al. [12] introduced an attack strategy
using transfer learning for profiled side-channel analy-
sis (CD-PA) that fine-tunes a pre-trained model with
MMD loss, improving attack performance, even across
devices and countermeasures to address cross-device
attack problems. The authors in [13] used adversarial
learning (AL-PA) to achieve device-invariant features
without needing target-specific pr-eprocessing. Danial
et al. [14] presented a cross-device deep-learning-based
method (EM-SCA) in a low SNR scenario. They ana-
lyzed and compared the effectiveness of PCA, LDA,
FFT, and spectrogram pre-processing techniques and
proposed an algorithm for the optimal selection of
training devices. Their results showed that LDA is
the most efficient approach to achieve maximum accu-
racy.Picek et al. [9] also, investigate how using the DL-
based denoising techniques can improve profiled SCA
on targets protected with countermeasures. They an-
alyze six types of noise and countermeasures, showing
that denoising autoencoder significantly improves at-
tack performance, but complex countermeasures can
still pose challenges. Yu et al. [15] also proposed a
novel denoising approach utilizing the U-Net model
for SCA traces, harnessing the benefits of U-Net’s
deep architecture and inductive transfer learning to
address cross-device issues.

Another approach to improve the cross-device at-
tack is using multi-device training. Golder et al. [16]
have carried out a practical attack with multi-device
training. They improved the accuracy of the attack
and reduced the impact of misaligned traces using the
PCA method. Furthermore, Das et al. [17] presented
a successful cross-device SCA using a deep learning
method, X-DeepSCA. They achieved an average of
99.9% accuracy for all the test devices under attack
with 200K traces for training.
We presented a new method as cross-device SCA
based on a deep learning approach with pre-processing
by autoencoder and Gaussian low-pass filter to im-
prove attack success in cross-device scenarios by re-
ducing the effects of process variations between two
similar devices. We performed the attack by adding
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an effective pre-processing method to achieve this
goal. The steps of the performed attack in this paper
are as follows:

• Training a deep neural network with profiling
device traces and storing the network specifica-
tions.

• Pre-processing of attack device traces using a
low-pass filter and then a convolutional autoen-
coder.

• Attacking the victim device by transferring the
trained network.

The rest of the paper is organized as follows: Sec-
tion 2 describes the background of profiled SCAs and
DNNs. Section 3 introduces our new pre-processing
on traces to apply to DNNs-based SCAs. Section 4 de-
scribes the experiments to examine the performance
of the proposed model. Finally, Section 5 concludes
the paper with the suggested future research scopes.

2 Background

This section introduces power-based SCAs, general
information about deep neural networks and pre-
processing methods, gaussian low pass filter, and
convolutional autoencoder architecture used in the
proposed method.

2.1 Profiled Side-Channel Analysis

Profiled side-channel attacks are considered a power-
ful type of SCAs. In these attacks, it is assumed that
an adversary has access to an open clone device whose
keys can either be chosen by the adversary or are al-
ready known. Template attack (TA) is one commonly
used type of profiled side-channel attack. Unlike non-
profiled attacks, TA can use the system’s noise with
an accurate model using the Gaussian noise model
to analyze the system. The attack proceeds in two
phases; the first phase involves creating a profile (pro-
filing phase), which is used to calculate the param-
eters of the multivariate normal distribution using
a device similar to the victim’s device. The second
phase is the attack phase, which uses the parameters
obtained in the previous step to encrypt the target
device’s secret keys. This type of attack assumes that
the profile device and the attack device are equal.
The phases of this attack in detail are as follows [18]:

• Profiling Phase: In this phase, the attacker
collects many power traces from a device. It
is assumed that he has full control over the
device and creates templates based on the power
traces. Usually, the S-Box output of the first
round of the AES algorithm is selected as the
intermediate leakage value [4]. The S-box output
byte is calculated according to Equation 1.

Subbyte = SBOX(P ⊕K) (1)

where P is a byte of input data and K is a byte
of the key. Each sample point in the captured
power trace is composed of two parts: signal and
noise. The mean (µ) and variance (σ) are two
characteristics of the signal. If the signal has
a Gaussian probability density function, these
two characteristics describe the signal well [5].

If we use the model of 256 identifiers for the
keys, then each trace is mapped to one of the
256 templates depending on the output of the
S-box function. Each template has a mean vec-
tor (µ) and a covariance matrix (C). The vari-
ance and covariance components determine the
distribution of noise for each template. The co-
variance matrix of the ith template is calculated
as Equation 3.

Ci =

∑ni

j=1(ti,j − µi)
−1 × (ti,j − µi)

ni − 1
,∀i ∈ 0...8

(2)
where µi is the mean vector of the traces, ti.j

is the jth power trace vector, and ni is the num-
ber of traces in the ith template.
Finally, the attacker will have several templates
that can construct a multivariate Gaussian dis-
tribution function using the mean vector and co-
variance matrix of each template, as follows [19]:

fi,j

(
ti,j ; (µi.Ci)

)
=

exp

(
ti,j − µi)

T .(Ci)
−1.(ti,j − µi)

)
√

(2π)n.|Ci|
(3)

• Attacking Phase: In this phase, the attacker
focuses on recovering the secret key using the
collected power traces from the target device.
As mentioned earlier, the attack requires a small
number of power traces at this phase to recover
the secret key.The attacker calculates the Proba-
bility Density Function (PDG) for each guessed
key and input and stores it in a matrix [20].
Finally, he has a vector with 256 elements by
summing the columns of the matrix, where each
element corresponds to a possible key. The key
with the highest probability sum will be the
best guess for the secret key.

In profiled attacks, point of interest (POI) selection
is so important, which are the points that show the
maximum correlation between the modeled power
and the actual power consumption. Using POIs may
reduce the number of power trace vectors, which leads
to lower computations in the profiling phase. Sum Of
Squared Differences (SOSD) and PCA are common
methods for finding POIs [21].
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2.2 Deep Neural Networks

An artificial neural network is a mathematical model
that simulates the structure and functions of biologi-
cal neural networks. Each neural network consists of
at least three layers, including the input layer, hid-
den layer(s), and output layer. Each layer includes a
set of nodes that vary based on the input and output
dimensions and the nature of the problem.

The operation of a deep neural network (DNN)
involves assigning weights to each layer that repre-
sents the features of that layer. During the training
phase, the network adjusts these weights to find val-
ues that enable it to correctly map input data to
its corresponding output [22]. Also, a loss function
is measured to determine the distance between the
output and the expected output. The feedback from
the loss function is then used to update the weights
to minimize the loss function.

Convolutional neural networks (CNNs) are a widely
used type of deep neural network that is commonly
used in SCA and have shown promising results in
this field [23]. CNNs use convolutional layers that
extract features from the input data using a small
set of learned filters. This technique makes CNNs
particularly well-suited for analyzing data with spatial
or temporal relationships, such as images or time-
series data.

2.3 Autoencoder-based Deep Neural
Networks

Commonly, we face the challenge of reconciling the
differences between the device profile and the attack
when working with power consumption traces cap-
tured from a real device. An autoencoder based on
DL is used to reduce this variation in device traces.
This method is particularly useful when the exact
shape and behavior of the unknown noise cannot be
determined.

To train the autoencoder, the attacker’s device
traces should be provided as input and the victim’s
device traces as output to the network. Then, the
network is trained to transform the input traces into
the desired output traces. In other words, the network
learns to detect and reduce the differences between
the input and output traces to achieve its desired
output, allowing the automatic encoder to reduce
the data’s dimensions and act as a noise reduction
method.

Overall, the autoencoder based on DL is a powerful
tool for reducing the variation between device profiles
and attacks, particularly when dealing with unknown
noise. The method’s ability to learn and reduce dif-
ferences between input and output traces makes it a

valuable feature and noise reduction technique [9].

2.4 Low Pass Filter

A low-pass filter (LPF) operates based on the PDF
of the signal samples. The LPF is a well-established
and widely used method for noise reduction in images
and signals. This method works by convolving the
input signal with a function that reduces the effect
of high-frequency components [9].

Gaussian filters are linear filters defined based on
the Gaussian probability distribution function as:

f(x) = e
−x2

2σ2 (4)

where σ is the standard deviation. Gaussian Low
Pass Filters (GLPF) work similarly to the neighbor-
hood averaging method. Intuitively, if we consider
an image as input to this filter, decreasing the stan-
dard deviation of the image makes it more apparent,
while increasing it makes the image more blurred. Us-
ing a GLPF with a convolution mask can reduce the
high-frequency components of the power consumption
traces captured from the devices. So, GLPF is known
as a powerful noise reduction technique in various
applications, including images and signals.

As the presence of noise in the captured traces is
one of the reasons for the variation between the traces
of similar devices [9], using the GLPF for deducting
the noise, in particular, is effective in reducing the
variation between the devices and improving the ac-
curacy of cross-device side-channel attacks.

2.5 Transfer Learning

In recent years, transfer learning has led to significant
advances in machine learning. Transfer learning is gen-
erally used when labeled training data is insufficient
for a given task. In this case, a pre-trained model can
be utilized that has been trained on a large volume
of data for a similar task. Transfer learning can also
be used when some tasks share similar input data.

One of the advantages of transfer learning is that it
allows us to use the pre-trained model in its entirety
or only a few specific layers, depending on our needs
and the task at hand. This flexibility can significantly
reduce the time and resources required for training a
model from scratch.

Moreover, transfer learning can also improve the
performance of a model by leveraging the knowledge
learned from the pre-trained model. The pre-trained
model has already learned valuable features from a
large volume of data, which can be fine-tuned for the
specific task. Doing so can improve performance with
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less labeled data and training time [10].

3 The Proposed Methodology

In this section, we describe our proposed approach for
enhancing the DL-based SCA to tackle the problem
of cross-device variations. Firstly, we demonstrate
the source of dissimilarities between two similar de-
vices and quantify these differences. For this purpose,
the Pearson product-moment correlation coefficient
(PPMCC) was proposed in [3] as a statistical mea-
sure that quantifies the degree of linear relationship
between two variables. In the context of SCA, these
variables are typically the power consumption traces
of two similar devices. According to equation (5), the
PPMCC is calculated separately for each device us-
ing n pairs of data (Xi, Yi), where Xi and Yi are the
power consumption trace of profiled and attack de-
vices, respectively, for the same operation.

We used the dataset in [17] that includes traces
captured from 6 separate devices, D1 to D6, with an
Atmega microprocessor. All the traces were obtained
under the same conditions and during the execution
of the AES 128-bit encryption algorithm using the
Chipwhisperer platform. The result of the PPMCC
test between our devices for the cross-device attack
using the proposed method is shown in Figure 1.

PPMCC =

∑ni

j=1(Xi − X̄)(Yi − Ȳ )√∑ni

j=1(Xi − X̄).
√∑ni

j=1(Yi − Ȳ )

(5)

Figure 1 shows that the coefficient is higher for
certain cross-device cases, specifically between devices
(1 with 5), (2 with 4), and (3 with 6), indicating
that these devices are more similar and are more
vulnerable to attack. Conversely, the coefficient is
lower for the other cross-device cases, making them
more challenging to attack.

Figure 1. Similarity between devices based on the PPMCC

criterion

To improve the portability of the attack, it is nec-
essary to eliminate the differences between the de-

vices. Since the differences between similar devices
are entirely random, it can be considered as a Gaus-
sian noise [9], which naturally exists in the devices
and causes variations between them. Therefore, we
propose a noise reduction technique to reduce these
differences. As it is not feasible to eliminate the dif-
ferences in practice, we aim to reduce them as much
as possible using available techniques.

3.1 Deep Neural Network Architecture

We utilize the DNN architecture [21] to enhance cross-
device attacks using DL technique. While the method
proposed in [17] employed multi-device training in
the profiling phase, we aim to use only single-device
training to minimize cost and time. Our DNN net-
work contains an input layer with 150 neurons, equal
to the number of input points. The first layer is fully-
connected (FC) with 100 neurons. A batch normal-
ization layer is used to regulate and normalize the
data, and a random dropout layer with a rate of 0.1
is used to prevent the network from overfitting the
data. Moreover, the Rectified Linear Unit (ReLU)
activation function is used in this method to learn
non-linear mappings from input to output. The sec-
ond layer is FC, with a dropout rate of 0.05, followed
by another batch normalization layer. Finally, the
output layer has 256 neurons and the function is used
to predict the probability of the correctness of each
256 key bytes with a predicted power trace.

The loss function used was categorical cross-
entropy with a learning rate 0.01 and optimized
with the Adam algorithm. The experimental results
show that increasing the random dropout rate for
the first and second layers, each beyond 0.1 and 0.05,
respectively, can result in underfitting. Conversely,
selecting smaller dropout values can preserve the fea-
tures learned by the network but may not generalize
well for unseen samples during evaluation. However,
we observe that these values can be changed at a
very low rate of about 4%, which is attributed to the
noise present in the power traces. This noise allows
the network to be generalized to some extent. The
network is trained for 50 epochs and 15% of the
training data is used for evaluation. The batch size is
selected between 16 and 512 with a step size of 32 to
find the optimal batch size. On average, a batch size
of 80 leads to the best accuracy during the training
process.

3.2 Pre-processing with Autoencoder

In the proposed method, firstly, the DNN is trained
using power traces captured from the profiled device
(i.e., the trained device); after that, the convolutional
autoencoder is trained by the power traces and the
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average of every five power traces as the training sets.

Once the training process is finished, the trained
model can pre-process the power traces obtained from
the victim device. These pre-processed power traces
are fed as the input to the DNN. The transfer learn-
ing technique is utilized to optimize the time and use
a lower number of traces for the attack. In this ap-
proach, the weights and models of the DNN created
during the training phase are transferred to the DNN
of the attack phase. However, for fine-tuning the net-
work, the weights of the last two layers are updated
according to the traces of the victim device. This
technique allows the network to fine-tune with the
transferred weights, saving time to reach the optimal
model.

Figure 2 shows the autoencoder network architec-
ture used in this paper. It consists of 11 layers com-
prising 4 convolutional layers, each with 128 and 64
filters, respectively, to detect the differences between
two devices and remove the input differences to ob-
tain the output. Then, 2 FC layers with 32 filters are
used to transfer the obtained features. Furthermore,
4 deconvolution layers, each with 64 and 128 filters,
are used to reconstruct the traces using the trans-
ferred features and create a general representation.
Finally, a convolutional layer with one output neuron
is added as an output layer. Moreover, Selu activa-
tion function is used for all 10 autoencoder layers
and Sigmoid activation function for the output layer.
The RMSprop optimizer and binary cross-entropy
loss function are utilized for this network. This net-
work’s optimal number of epochs and batch size are
estimated as 50 and 100, respectively. Among all the
training power traces, 23% is used for evaluation and
the remaining is used for training.
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Figure 2. Convolutional autoencoder network architecture

We apply a low-pass Gaussian filter technique on
raw power traces of the attack device before the
autoencoder process to improve the accuracy in the
attack phase. For this purpose, a one-dimensional
filter is constructed using the “fspecial” function with
three parameters (i.e., a Gaussian filter with filter
size = 5 × 1 and standard deviation = 5.0) shown
in Figure 3. By passing the traces through the filter,

each trace point is convolved with the constructed
Gaussian filter to reduce the noise [24]. After all, the
output traces are fed into the autoencoder network.

Figure 3. Gaussian low pass filter

4 Experimental Results

In this section, we present the experimental results
for evaluating the efficiency of our proposed method.
The traces used in this research are captured from 6
Atmega 8-bit microcontrollers (NAE 308T XMEGA)
devices while executing the 128-bit AES encryption
algorithm using the Chipwhisperer platform under
the same conditions [17]. An essential feature of these
traces is their synchronous timing.

The Deep Neural Network model is implemented us-
ing Python and the Keras library with Tensorflow
as the backend [19]. As mentioned before, we use
the leakage model in SCA to train the DNN. There-
fore, the network output has 256 classes, and all
experiments are performed with 10,000 traces from
each device, approximately 40 traces for each class
with the same inputs. The number of points that
Chipwhisperer stores is 3000, and by finding the
most important points, the complexity of the network
is reduced. Therefore, the first 150 points are given as
input to the network, in which the CPA attack [20]
is successfully performed on this range.

We trained the DNN using traces from one of the
six devices and selected the others as the attack de-
vices. The number of traces is reduced from 1000 to
300 to decrease the minimum number of traces to
disclosure (MTD). By selecting appropriate hyperpa-
rameters and achieving similar accuracy for testing
and training, overfitting or underfitting is avoided.
The average attack accuracy at this stage is, on av-
erage, 20% due to process variations, which leads to
an unsuccessful attack. We used our defined autoen-
coder to reduce the variations between profile and
attack devices and improve the attack accuracy. This
technique increases the attack accuracy on average to
73%, which is a significant improvement. We applied
a Gaussian low-pass filter to the attack traces before
executing the autoencoder for further improvement.
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This technique increases the accuracy to 82%, re-
sulting in a successful attack. For example, Figure 4
shows the results of using Device 1 as a training de-
vice and Devices 2 to 6 as attack devices. As shown
in Figure 4 to Figure 9 similar results can be derived
for all permutations of the devices used as training
and attack devices.

Figure 4. Accuracy comparing diagram with training on De-

vice 1

Figure 5. Accuracy comparing diagram with training on De-

vice 2

Figure 6. Accuracy comparing diagram with training on De-

vice 3

Figure 7. Accuracy comparing diagram with training on De-
vice 4

Figure 8. Accuracy comparing diagram with training on De-

vice 5

Figure 9. Accuracy comparing diagram with training on De-
vice 6

The comparison to related works is presented in
Table 1. All six studies are based on deep learning
techniques differing in their methods for improve-
ment. Consequently, the required power traces from
the trained device differ for each technique. Using a
combination of CAE and GLPF methods in our study
significantly reduces noise and variation between the
training and victim devices. Considering the time-
consuming nature of the training phase, the results of
our method demonstrate that a successful attack can
be achieved with fewer traces. We reach successful
attacks with the desired accuracy in all our tests by
using only 10,000 traces from a single device for train-
ing and 300 traces from the victim device to fine-tune
the network. This outcome highlights the positive
impact of this method in cross-device attacks.

Table 1. A comparison to related works with their techniques
and results

Method Improving Techniqe
Train

traces

Fine tune

traces
Result

CD-PA [12]
Transfer Learning +

Regularization
25000 100 GE = 0

AL-PA [13] Adversarial Learning 25000 x GE = 0

U-Net-SCA [15]
Supervised U-shaped

Network
20000 × GE = 0

MTL-SCA [3]
Transfer Learning +

Meta Learning
20000 800 GE = 0

X-DeepSCA [17] Multi device training 4 ∗ 10000 × Accuracy = 90%

This Work
Transfer Learning +

GLPF + CAE
10000 300 Accuracy = 82%
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4.1 Adding Cross-Device Variations

To demonstrate the effectiveness of the proposed
method in the presence of more significant process
variations between devices, we artificially added ran-
dom Gaussian noise at intervals of (0 to 0.04), (0 to
0.08), and (0 to 0.12) voltage to the traces of the
test devices respectively. We performed the attacks
on the test devices with and without pre-processing
methods.

Figures 10, 11, and 12 show the attack accuracy
on Device 1 to 6 for the DNN trained on Device 1,
2, and 3, respectively, while increasing the variation
between the devices. The graph trend indicates that
with an increase in the variation between the devices
from 0.01 to 0.12 volts, the accuracy decreases from
about 80% to about 60%. Furthermore, we observe
the impact of correlation (Figure 1) between the train-
ing and victim devices up to 0.05 volts of variation
between the devices. As indicated in Figure 1, the
correlation between Device 1 and 5 is higher than the
others. Furthermore, in Figure 10, we observe that
Device 5 exhibits more accuracy than the other de-
vices. Similarly, in Figure 11, due to the elevated cor-
relation between Device 2 and Device 4, it becomes
evident that Device 4 possesses higher accuracy and
in Figure 12, Device 6 demonstrates a more signifi-
cant correlation with Device 3, leading to a higher
accuracy outcome for Device 6. The overall results
for the permutations of the six devices show that this
correlation effect diminishes in the voltage range of
0.5 to 0.8 volts and beyond this range, the effect of
the initial correlation between the devices disappears.

The results in Figure 13 show that by increasing
variation from 0 to 0.12 voltage, the average accuracy
without pre-processing methods decreased from 23%
to 6%. It is obvious that by using only the autoencoder
method, the accuracy will be decreased from 70% to
59%. However, after executing our proposed attack
method, the accuracy changes from 82% to 70%.

Figure 10. Accuracy trending for the proposed attack to De-

vice 1 to 6, in considering different variations between devices
with the trained DNN on Device 1

Figure 11. Accuracy trending for the proposed attack to De-
vice 1 to 6, in considering different variations between devices

with the trained DNN on Device 2

Figure 12. Accuracy trending for the proposed attack to De-
vice 1 to 6, in considering different variations between devices

with the trained DNN on Device 3

Figure 13. Average accuracy comparing diagram on cross-de-
vice attack

5 Conclusion

In this article, we presented a cross-device SCA based
on deep learning algorithm with pre-processing by
autoencoder and Gaussian low-pass filter. As the
first step, raw attack traces are used and get an
average of 23% accuracy; then using the proposed
autoencoder, we achieved an average accuracy of 70%
for the attack. Finally, we pre-processed the attack
device’s power traces with a combination of Gaussian
low-pass filter and our autoencoder and achieved an
average accuracy of 82% with a maximum of 300
power traces. This is a desirable result, and for every
six sets of power traces provided to the network, the
correct key is calculated accurately by eight tries.

Regarding future work, one of the goals is to achieve
high accuracy with multi-device training of a net-
work and increase the likelihood of a successful at-
tack, which would also increase the success rate for
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cross-device attacks with more significant variations
between devices.

For the future work, we can do the proposed
method for multi-device training to reach better
accuracy and also apply pre-processing methods on
the training device to get more accurate models in
the training phase.
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