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A B S T R A C T

The growing popularity of the fabless manufacturing model and the resulting

threats have increased the importance of Logic locking as a key-based method

for intellectual property (IP) protection. Recently, machine learning (ML)-based

attacks have broken most existing locks by exploiting structural traces or

undoing optimizations that obfuscate them. A common limitation of these

attacks, however, is their reliance on the correlation between the locked circuit

structure and the correct key value. In this paper, we introduce structural

fuzzing as a simple, nondeterministic, non-optimizing heuristic algorithm

that can obfuscate the lock against learning-based attacks, preventing the

attacker from predicting the key. We proceed to apply structural fuzzing

to multiplexer-based logic locking and propose HyLock, a logic lock with

improved resilience against learning-based attacks. In common benchmarks,

when compared with a state of the art logic lock, there is on average a 17%

decrease in the number of correctly predicted key bits.

© 2023 ISC. All rights reserved.

1 Introduction

Increases in costs of building and maintaining
cutting-edge integrated circuit fabrication facilities

have led most companies to go fabless, exposing
valuable IP to untrusted parties. Logic locking is
a key-based method used for security against an
untrusted foundry in which the design is “locked” by
adding key gates to the original design. The designer
inserts the secret key in a secure on-chip memory;
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the locked design alone is of no use to the attacker.

In response, two main classes of attacks on logic
locking have been proposed: Oracle-less (OL) attacks
which assume that the attacker has obtained the
reverse engineered locked netlist, and oracle-guided
(OG) attacks which assume that the attacker also has
access to a copy of the unlocked circuit, for example
having procured one from the market. In either case,
the designer aims to either recover the correct key
and apply it to illegitimate locked copies of the IC,
or to remove the lock from the netlist and produce
non-locked copies.

As OL attacks make less assumptions, providing a
stronger case, we focus the rest of our discussion on
them. OL attacks try to either discover the correct
key based on structural traces left from the locking
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process or to undo that process and expose the circuit
to further attacks [1]. Defenses against OL attacks
rely on structural changes that conceal the lock. The
security of the existing methods for hiding the lock
has been questioned, especially in cases that rely on
resynthesis as an integral step [2].

In this work, we propose a novel locking method
that provides increased resilience against learning-
based attacks. We discuss why the existing state
of the art defense mechanisms are vulnerable to
learning-based attacks on the circuit structure. We
then provide structural fuzzing, an algorithm for
making nondeterministic, non-optimizing structural
modifications while preserving functionality and
performance, and demonstrate how these properties
lead to increased security. We then use multiplexer-
based locking and structural fuzzing to introduce
HyLock, a Hybrid Lock that outperforms existing
locks in terms of the security and overhead. Hence,
our contributions are as follows:

• Providing structural fuzzing as a method for
making non-optimizing modifications in circuits
and demonstrating how it increases resilience
against learning-based attacks while preserving
other design parameters.

• Introducing HyLock based on defense mecha-
nisms proposed in the state of the art locks and
structural fuzzing.

• Describing an end-to-end design flow that auto-
mates the application of HyLock.

The rest of this paper is organized as follows. Sec-
tion 2 briefly discusses major classes of attacks and
defenses against them and provides justification for
HyLock. In Section 3 we introduce HyLock and dis-
cuss structural fuzzing in detail. In Section 4 we
demonstrate the effectiveness of HyLock in terms of
security and area overhead. Section 5 discusses the
results and concludes the paper.

2 Related Work

In this section we summarize the basics of the cat
and mouse game of attacks and countermeasures in
the literature, focusing on means and metrics used for
provision of security guarantees. We use the observa-
tions in this section as the basis for security analysis
of structural fuzzing and HyLock. Note that in this
work we focus solely on logic locking of combinational
circuits.

In its simplest form, logic locking takes place by
X(N)ORing a random subset of circuit nets with key
inputs. The SAT attack can break this lock by itera-
tively ruling out wrong keys. Removal attacks try to
disable the lock by detecting and fixing the point(s)
of the circuit modified during the lock. The clas-

Figure 1. Typical SAT - and removal - resilient lock

sic SAT- and removal- resistant structure provided
in the literature is shown in Figure 1, with corrup-
tion and restoration modules meant to mitigate for
these classes of attacks respectively. Different locks
have been proposed based on this principle, including
SFLL that corrupts inputs that have a certain Ham-
ming distance from a number of chosen values [3] and
CAS lock that utilizes structures based on AND-OR
cascades to generate the flip logic [4]. These locks
have proven to be effective as defense against most
oracle-guided attacks.

The common drawback is that the countermeasures
discussed thus far generally rely on synthesis and
optimization steps to obfuscate the lock design and
protect it. Hence, they are safe so long as the synthesis
and optimization steps cannot be reversed by the
attacker. But if the attacker can distinguish parts
of the circuit as not being modified during the lock
process, they can harvest training data from those
portions and use them to train a machine learning
model that would then proceed to de-obfuscate and
expose the lock, as is the case for attacks such as
SAIL [5] and OMLA [6]. As most learning-based
attacks rely solely on circuit structure and do not
need any oracle, they fall into the oracle-less category.

In response to the success of oracle-less attacks
on existing logic locks, novel defenses have been pro-
posed. UNSAIL is a learning-based defense against a
learning-based attack that gets a locked netlist as in-
put and tries to re-lock it with additional key inputs
in a way that the resulting circuit would evade attack-
ers, emulating the attack logic on the defender’s side.
In practice, the resulting lock acts on subcircuits [7].
Another approach is to lock circuit paths instead of
nets or subcircuits, which has been used to great effect
in MUX-based locks such as DMUX [2]. Yet another
approach is to shift left the locking step in the design
process, as used in ASSURE [8], by locking the design
at register transfer level (RTL) instead of gate level.
Despite the success of these locks in resisting existing
attacks, novel attacks such as MuxLink [9] continue to
challenge them. Also of concern is the inherent limits
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to these approaches. Current approaches for enhanc-
ing security using machine learning such as UNSAIL
tend to target specific approaches towards feature
extraction, leading to questionable resilience against
other learning-based attacks. Despite the security of
RTL locks, the gate level approach is still relevant
as it needs to cover a substantially smaller variety of
structures and also enables unhampered structural
optimization of the design before the locking step. In
line with these observations, in the next section we
introduce a novel lock that uses multiplexer-based
locking and non-deterministic modifications to pro-
vide superior security compared to state of the art.

3 Proposed Method

In this paper we propose HyLock, a novel hybrid
logic locking method. It gets a gate-level netlist as
the input and provides a locked with K key input
bits. HyLock is realized in two main steps:

(1) Multiplexer-based locking of circuit paths
(2) Nondeterministic, non-optimizing modifications

to conceal the lock gates

In the rest of this section, we describe each HyLock
step.

3.1 MUX-Based Locking

HyLock uses a very simple multiplexer-based lock-
ing algorithm meant to facilitate its use as a tool for
demonstrating the utility of structural fuzzing. Basi-
cally, nets that can be intertwined using multiplexers
without creating loops in the circuit are randomly cho-
sen and locked, with more weight given to net pairs
that would have less adverse effect on circuit timing.

First, static timing analysis (STA) is done for all
nets. Then (len(key))⁄2 pairs of nets are randomly
chosen so that the difference between the delays for
the nets in each pair is below an acceptable threshold.
The nets are also selected so that no two nets in a pair
are in the cone of influence of each other. Candidate
net pairs for the sample circuit in Figure 2 are (w1,
w2), (w1, w3), (w2, w3), (w4, w5).

The chosen net pairs are then randomly scrambled
by adding two multiplexers, as shown in Figure 3.

Figure 2. Sample circuit for demonstrating the MUX-based

lock step; red digits show net delays

Multiplexers are added in pairs, because the resulting
symmetry in the lock structure would decrease the
information that can be later inferred by the attacker,
increasing lock security [2].

The simplicity of the multiplexer-based locking ap-
proach used in HyLock helps us compare the effect of
randomness introduced into circuit structure through
structural fuzzing versus sophisticated locking algo-
rithms such as DMUX [2]. In some sense, this algo-
rithm is the simplest implementation of a lock that
utilizes structural fuzzing.

(a) (b)

Figure 3. (a) A pair of candidate nets before scrambling using
multiplexers, (b) The same pair with lock multiplexers added;
K0 and K1 denote the key input nets

Algorithm 1 Structural fuzzing.

1: function Fuzz(netlist, candidates, Bmax)
2: breadth← 0
3: while size(candidates) ¿ 0 do
4: gate← candidates.pop()
5: breadth← breadth− 1
6: type(gate) = dual(type(gate))
7: if gate is X(N)OR then
8: nets←{a random gate input}
9: else

10: nets←set of all gate inputs
11: end if
12: for net ∈ nets do
13: netlist.add(new net = NOT(net))
14: if net is non-MUX gate output then
15: if breadth < Bmax then
16: candidates.push(driver(net))
17: breadth← breadth+ 1
18: end if
19: end if
20: end for
21: end while
22: //Cleanup
23: for gate, gate′ ∈ netlist do
24: Merge gate and gate′ if equivalent
25: if gate is BUF or NOT then
26: Merge gate in its parent if possible
27: end if
28: end for
29: return netlist
30: end function
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(a) (b)

(c) (d)

(e) (f)

Figure 4. A sample of structural fuzzing, (a) & (b) Candidate
gates are shown in red, (c) The cleanup step, (d) Fuzzed circuit

3.2 Structural Fuzzing

The structural fuzzing procedure is described in Al-
gorithm 1. It comprises a modification phase (lines
2-21) and a cleanup phase (lines 23-28). Breadth (line
2) is defined as the number of simultaneous new can-
didates in the queue in the current step. By setting
the maximum breadth parameter, the user can limit
the run time and memory requirement. In each mod-
ification step, a gate is popped from the front of the
candidates queue (line 4) and replaced by its dual
gate based on the DeMorgan’s laws or its inverted
form if it is an X(N)OR (line 6). The inputs are in-
verted as well to preserve the function of the circuit,
becoming new candidates at the queue (lines 12-20).
When the candidates reach the primary inputs, the
modification phase terminates. During the cleanup
phase, all parallel buffers with the same logic func-
tion are merged (line 24), and all buffers that can
be merged into their previous non-buffer gates are
merged (lines 25-27).

Figure 4 illustrates structural fuzzing through an
example. Figure 4a, Figure 4b, Figure 4c and Fig-
ure 4d show the modification steps. Figure 4e high-
lights the buffers merged during cleanup. Figure 4f
shows the final result. Comparing Figure 4a and Fig-
ure 4f, one can see how small modifications alter the
structure beyond what is captured in structural mod-
eling of the circuit. Structural fuzzing harnesses this
observation to improve lock security, corrupting the
training data used for the attack machine learning
model.

All learning-based attacks require training data

based on functional, baseline circuits. The trainset is
harvested either from parts of the circuit expected
to be left unchanged by the lock [5, 6, 9] or from the
available benchmarks [10]. By decreasing the corre-
lation between the structure and the function, the
training data would become unreliable for predicting
the changes in structure, hampering key prediction
accuracy in the inference phase.

4 Experimental Results

To illustrate the effectiveness and scalability of Hy-
Lock, we used it to lock several circuits from ISCAS
85 [11], ISCAS 89 [12] and ITC 99 [13] with 32, 64,
96 and 128-bit keys using both DMUX and HyLock.
A brief explanation of the benchmark circuits used in
the experiments is shown in Table 1. We compared its
security and area overhead with DMUX [2], a state-
of-the-art, learning-resilient locking scheme. We used
MuxLink [9] to compare security, which uses graph
neural networks to predict the correct key in circuits
locked using multiplexers and has shown promising
results in breaking MUX-based locks. As the meth-
ods being investigated are designed for combinational
circuits, we consider all the sequential circuits in a
single time frame, therefore removing the flip flops
and converting their inputs and outputs to primary
outputs and primary inputs of the circuit, respec-
tively. In DMUX experiments, we used the same im-
plementation provided in the MuxLink codebase [9].
In the case of HyLock, we used our locking script to
lock the designs, then used a custom feature extrac-
tion script to derive the necessary features needed
for the MuxLink attack. Finally, we ran the attack
on all the test examples. For each key bit, MuxLink
either 1) predicts the correct value, 2) predicts the
wrong value, or 3) fails to predict any value with ac-
ceptable certainty. Here we compare the number of

Table 1. A brief introduction of the circuits used in experi-
ments from ISCAS 85 [11], ISCAS 89 [12] and ITC 99 [13]

Family Benchmark Gates Description

ISCAS85

c1908 161 Error detector and corrector

c5315 603 ALU and selector

c7552 735 ALU and control

ISCAS89

s1196 267
Combinational circuit with random

flip-flops, redundant flip-flops
removed from the scan chain

s1423 295 Not available

s1494 317 Controller

s5378 559 Not available

s9234 762 Real design, partial scan chain

s13207 1190 Real design, partial scan chain

s15850 1550 Real design, partial scan chain

s38417 4688 Real design, partial scan chain

ITC99

b11 266 Scramble string with variable cipher

b12 506 1-player game (guess a sequence)

b14 2264 Viper processor (subset)

b15 3583 80386 processor (subset)

ISeCure



November 2023, Volume 15, Number 3 (pp. 109–115) 113

Table 2. HyLock security compared to DMUX, in terms of MuxLink attack resilience [9]

Benchmark
32-bit key 64-bit key 96-bit key 128-bit key Average

improvement
(%)DMUX HyLock DMUX HyLock DMUX HyLock DMUX HyLock

c1908 29 24 56 40 87 46 116 74 29.04

b11 32 28 59 48 87 70 114 104 13.80

s1196 18 16 45 26 66 60 72 74 10.16

s1423 28 28 54 44 85 74 112 70 14.98

s1494 15 18 41 32 58 52 79 62 6.06

b12 27 30 59 48 84 88 117 120 0.33

s5378 28 16 56 40 84 80 111 84 21.94

c5315 31 30 61 54 94 80 122 96 12.24

c7552 32 28 62 50 96 68 127 106 19.21

s9234 31 20 60 46 91 68 117 98 23.77

s13207 25 20 55 32 89 56 113 74 29.11

s15850 28 20 56 48 89 78 108 100 13.80

b14 32 26 64 50 94 66 126 102 22.14

b15 31 28 64 58 94 78 122 116 10.02

s38417 32 22 63 40 90 58 126 70 36.08

Average 17.51

Table 3. HyLock area overhead relative to pure DMUX, expressed in number of gates after synthesis [2]. Flipflops are unfold before
locking, therefore they are not included in the statistics for the locked circuits. Difference is calculated as the increase in overhead
for HyLock Compared to DMUX in percents, on average showing a minor improvement

Benchmark
32-bit key 64-bit key 96-bit key 128-bit key Average

improvement
(%)DMUX HyLock DMUX HyLock DMUX HyLock DMUX HyLock

c1908 291 253 366 324 443 410 536 443 31.99

b11 349 364 401 438 491 473 573 568 -2.73

s1196 333 334 376 405 452 459 501 518 -5.06

s1423 362 345 411 392 466 454 519 494 6.19

s1494 378 372 430 417 499 495 564 567 1.58

b12 579 579 646 677 721 720 790 779 -0.93

s5378 647 635 708 687 799 782 852 819 3.71

c5315 727 720 823 818 920 902 947 1001 -1.00

c7552 831 813 1008 862 1080 955 1180 1033 14.83

s9234 873 829 971 914 1043 993 1099 1109 4.63

s13207 1251 1266 1305 1311 1437 1444 1522 1510 -0.34

s15850 1660 1641 1730 1660 1744 1794 1839 1886 -0.13

b14 2561 2390 2879 2480 3066 2539 3155 2612 18.11

b15 3658 3685 3789 3786 3866 3939 4012 4067 -1.07

s38417 4715 4791 4823 4855 4890 4876 4892 5012 -1.14

Average 5.02

correct values for benchmarks locked using HyLock
and the same circuits locked using DMUX. In our
experiments, the number of uncertain key bits was
generally small (less than 2% of key length) and did
not affect the results, so we only report the correct
bits here. The results are shown in Table 2. Black and
grey bars represent circuits locked with DMUX and
HyLock, respectively. As different key lengths were
investigated for each circuit, the percentage of cor-
rectly predicted key bits has been used as a measure
of security. It can be observed that on average, the
number of correctly predicted keys has been reduced
by above 17%, equivalent to 22 less correct bits for a
128-bit key.

We investigated some examples more thoroughly
to understand how the circuit structure predicts the

effectiveness of structural fuzzing in protecting it
against learning-based attacks. For each circuit net,
we defined “depth” as the shortest path between a pri-
mary input and that net. We conjectured that higher
depths correlate with more modifications in the path
and therefore, higher security. We evaluated this con-
jecture by calculating the average depth for output
nets. For s1494, s5378 and s13207, the result is 4.08,
7.00 and 9.39, respectively, supporting the hypothesis.
As shown in Figure 5, when average depth is rela-
tively high (above 4), it is positively correlated with
improvement in security due to structural fuzzing. For
lower values, the effect of other parameters becomes
so significant that a single parameter is not sufficient
for predicting the outcome. Here, improvement in se-
curity is the decrease, in percentage points, of the
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Figure 5. When average output depth is higher than about 4,

it is correlated with improvement in security

number of key bits correctly predicted by MuxLink
attack on the circuit, when locking it using HyLock
instead of DMUX. Another observation is that struc-
tural fuzzing tends to be more effective in larger cir-
cuits, as they contain longer MUX-free paths that
can be modified effectively, also resulting in higher
average output depths.

Another vital characteristic of a logic lock is the
area overhead introduced to the design. Table 3 lists
the area in HyLock-protected designs compared to
the same designs locked using DMUX. The numbers
listed in the table show the number of gates needed
to synthesize the design for the Skywater 130nm HD
process node [14] using Yosys [15]. The “Difference”
column shows the difference in number of gates be-
tween HyLock and DMUX locked gates, with negative
numbers pointing to a decrease in the used resources
and positive numbers showing an increase. Overall,
from the very small improvement in overhead, it can
be inferred that HyLock has almost the same impact
on circuit area as DMUX.

In closer inspection, the changes in attack accuracy
and area overhead can be explained by the random
nature of structural fuzzing. Making random changes
to circuit structure increases the difficulty of find-
ing the “correct” choice of multiplexer select bits. At
the same time, the exact order and nature of opti-
mizations done during synthesis changes at random,
which may result in an increase or a decrease in the
total number of gates after synthesis. As shown in Ta-
ble 3, there is on average a slight decrease in over-
head, which is due to the cleanup phase of structural
fuzzing (Algorithm 1, lines 23 – 28), as it generally
results in a decrease in the number of circuit gates.

5 Conclusion

In this work we proposed HyLock, a hybrid lock de-
rived from a combination of multiplexer-based and
SAT-resilient locking and non-deterministic heuris-
tics. We provided a simple automated design process
for HyLock. We then demonstrated how, despite its
simplicity and acceptable overhead, it measurably in-
creases security against novel machine learning-based

attacks. We completely based our work on open-
source flows, as HyLock is designed to allow low-cost
locking of smaller designs with minimum time invest-
ment from the designer. The designer can then readily
explore the tradeoff between overhead and security
by tuning a few global parameters. We also plan to
further optimize the lock algorithm and package it as
a plugin for Yosys [15] for ease of use.
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