
ISeCure
The ISC Int'l Journal of
Information Security

November 2022, Volume 14, Number 3 (pp. 113–121)

http://www.isecure-journal.org

Presented at the ISCISC’2022 in Rasht, Iran.

SecureKV: Secure Searchable Outsourcing of Key-Value Databases

to the Public Cloud ✩

Maryam Saeedi Sadr 1, and Mohammad Ali Hadavi 1,∗
1Faculty of Electrical and Computer Engineering, Malek Ashtar University of Technology, Tehran, Iran.

A R T I C L E I N F O.

Keywords:

NoSQL, Key-Value Database,

Security, Confidentiality, Data
Outsourcing, Query Processing,

Multi-Cloud

Type:

Research Article

doi:

10.22042/isecure.2022.14.3.12

dor:
20.1001.1.20082045.2022.14.3.

12.6

A B S T R A C T

The use of NoSQL data and its storage in the Cloud is growing rapidly. Due

to the accumulation of data in the Cloud, data security against untrusted

service providers as well as external attackers becomes a more serious problem.

Over the past few years, there are some efforts to secure the outsourcing of

NoSQL data, especially column-based and document-based models. However,

practical solutions for secure outsourcing of key-value databases have not been

identified. This paper attempts to introduce SecureKV as a secure method for

outsourcing key-value databases. This method employs a multi-Cloud storage

scenario to preserve outsourced data confidentiality. Besides security issues,

the proposed method supports executing major key-value queries directly on

outsourced data. A prototype of the Redis database management system has

been implemented to show the efficiency and effectiveness of the proposed

method. The results imply that, besides security issues, it is efficient and

scalable enough in executing key-value-specific queries.

© 2022 ISC. All rights reserved.

1 Introduction

With the growing demand for large dataset pro-
cessing and the advantages of storing data on

the cloud, companies and individuals are increasingly
willing to outsource their data to the cloud. However,
data outsourcing incurs serious security issues such as
data confidentiality and integrity, user privacy, and
enforcing access control policies. These challenges are
mainly due to the lack of trust in the cloud service

∗ Corresponding author.
✩ The ISCISC’2022 program committee effort is highly ac-
knowledged for reviewing this paper.

Email addresses: sadr.s.maryam@mut.ac.ir,
hadavi@mut.ac.ir

ISSN: 2008-2045 © 2022 ISC. All rights reserved.

providers. Over the past several years, much research
has been done on the security of relational data stor-
age in the cloud [1–3]. While relational databases
are designed for structured data, and aspects such
as scalability and data distribution are less impor-
tant in their design, data is changing to big data, i.e.,
semi-structured/unstructured data, which must be
stored and processed in a scalable and distributed
manner. NoSQL databases are designed to store mas-
sive amounts of semi-structured/unstructured data
used in data analysis and decision-making in various
areas such as industry, science, and medicine. Given
the benefits of cloud storage such as cost-saving, on-
demand self-service, rapid elasticity, and scalability,
the desire of organizations and individuals to store
their data on the cloud has increased. There are four
types of NoSQL data models: document-oriented, key-

ISeCure

114 Secure Searchable Outsourcing of KV Databases to the Public Cloud — Saeedi, and Hadavi

value pairs, column-oriented, and graph. There is
some reported research on the security of document
and column-oriented models when data is outsourced
to the cloud [4–6]. However, secure outsourcing of the
key-value data with its considerable advantages of
flexibility, performance, scalability, continuous avail-
ability, and the great potential of high-level support
of rich queries and multiple data models [7], has been
mostly neglected. To the best of our knowledge, there
is no appropriate solution to search on securely out-
sourced key-value pairs. Existing solutions generally
have the following limitations:

• They are not designed to efficiently support
specific key-value queries.

• They often outsourced key-value data by chang-
ing the data model to tabular data.

• They are limitations to support all key-value
data types such as String, List, Hash, Set, and
Sorted set.

• Contrarily to the big data nature, they usually
require a predefined schema before outsourcing.

• They focus on data confidentiality and have
limitations to providing access confidentiality,
as well as pattern confidentiality [8–10].

Considering the above limitations, we propose
SecureKV, a multi-cloud-centric key-value store

with rich queries and supporting key-value data types.
SecureKV uses the idea of intrinsic separation be-
tween keys and values. The SecureKV suggests that
keys and values are stored in separate servers. Se-
cureKV efficiently supports a variety of key-value-
specific queries. In this method, the data owner can
choose the encryption algorithm and the number of
cloud servers, which store data values, to trade off
between performance, availability, and security. Con-
sidering the popularity of Redis as a key-value DBMS,
we develop a prototype of our method on Redis and
experiment with executing its major queries on the
string data type. The proposed solution can be easily
extended to support other key-value DBMSs. Paper
organization: Section 2 provides an overview of the
related work. Section 3 introduces the system archi-
tecture and elaborates on the processing of key-value
queries. The implementation and performance evalu-
ation results are given in Section 4. Finally, Section 5
summarizes the paper.

2 Related Work

This section briefly reviews recent studies on the se-
curity of relational and NoSQL database outsourcing.
Security in relational data outsourcing: Encryp-
tion and fragmentation are two main approaches to
achieving data confidentiality in the cloud [2]. There
are also some solutions with the simultaneous use
of several encryption algorithms to support different

queries on encrypted outsourced data [1]. Crypto-
graphic techniques can also provide data integrity by
detecting data tampering [2]. While encryption can
be effective in many environments, it brings several
complications in scenarios where fine-grained data re-
trieval needs to be supported. Instead, data fragmen-
tation is used when associations among data values
are confidential, rather than the values themselves [2].
Secret sharing has also been used in several studies
to preserve privacy in database outsourcing. Agrawal
et al. [11] use Shamir’s secret sharing scheme to pre-
serve outsourced data confidentiality. Hadavi et al.
[3] introduce a new approach that enables clients to
efficiently search among shared secrets. Attasena et
al. [12] survey secret sharing schemes for database
outsourcing and categorize existing approaches into
several groups, each of them appropriate in differ-
ent situations concerning security and performance
requirements. Some researchers use the multi-cloud
scenario for data security. In these approaches, data
is partitioned and distributed among different clouds
[13, 14]. Multi-cloud data storage improves availabil-
ity and security following the idea of “don’t put all
your eggs in one basket”. It can also provide paral-
lel computing capability to reduce query response
time. Security in NoSQL data outsourcing: Pre-
vious approaches focus on securely outsourcing rela-
tional data. They cannot be used for NoSQL data
due to differences in data models and supported
queries. Moreover, they have efficiency and scalabil-
ity limitations when applied to big data. Poddar et
al. [15] propose “Arx”, a practical and functionally
rich database system for the document-based data
model. This approach used SQL to execute queries.
Suntaxi et al. [16] addresses the NoSQL database se-
curity problem for graph-structured data. They pro-
pose an approach based on bucketization. Shih et al.
[8] introduce the “Crypt-NoSQL” system, inspired by
CryptDB [1], for column-oriented NoSQL databases.
It supports Cassandra query language (CQL) over
encrypted data. Raza et al. [17] propose an approach
for document-oriented data models. They recommend
splitting the database into two parts. One part con-
tains data attributes used to search the data. Another
part contains the search results. They also claim that
the database decomposition into two sub-databases
improves data confidentiality. All of the mentioned
works assume a data model except the key-value
model. Some other works transform other data mod-
els into the key-value model to preserve data confi-
dentiality. Yuan et al. [18] use the key-value model to
provide data security. They first store data in a struc-
tured table. The table is then converted to key-value
pairs, where each key-value pair consists of a key and
an encrypted value like “⟨P (ka,R||C), Enc(kv, V)⟩”
(R is the row number and C is the column name).

ISeCure

November 2022, Volume 14, Number 3 (pp. 113–121) 115

This approach uses searchable encryption to execute
queries. The basic idea in their work is to convert data
into tables. While it seems that the method is suit-
able for column-oriented databases, it has limitations
to support other data models and their data types.
Yuan et al. [19] proposed a new approach, which is
similar to [18]. They generate some tokens consisting
of a column name, row number, and query condition.
The tokens are used to execute queries on encrypted
data. However, in key-value databases, queries can-
not be executed without keys. Also, in almost all
queries, the condition is executed on the keys. There-
fore, their approach is not suitable for securing key-
value databases. Zhang et al. [20] proposed a new
encrypted key-value storage structure based on the
concept of horizontal-vertical division. They first con-
vert data into a group of columns and then compress
and encrypt them. Fine-grained data retrieved in this
approach is limited to columns. Converting key-value
data types to tabular data is challenging and leads
to the inefficiency of key-value-specific queries. For
example, for the List data type, it is possible to as-
sign either a column to each value in the List or a
column to the whole List; both of them result in the
inefficiency of key-value queries on the List data type.
Some researchers have focused on the secure outsourc-
ing of key-value data. Zaki et al. [21] introduced a
new approach for providing authentication and confi-
dentiality in the Redis database management system.
This approach only supports SET and GET queries.
Pontes et al. [22] proposed a new approach to pre-
serve the confidentiality of key-value data based on
secret sharing and secure multi-party computation.
This approach transforms key-value data into tabular
data and does not directly support key-value-specific
queries and data types. This brief review of current
approaches indicates that there is no effective ap-
proach for the secure outsourcing of key-value data
stores.

3 The Proposed Method

In this section, we first describe our proposed system
architecture. Then, we discuss query processing focus-
ing on Redis data types and queries. Our method is
simply extendable to other known key-value database
management systems, such as Memcached and Etcd.
The intuition behind our method is based on the fol-
lowing facts:

(1) Most key-value database queries are executed
on keys. Values in rare queries are searchable.

(2) Keys are not often confidential and can be
plainly outsourced.

To address data security issues, we use the intrinsic
segregation between keys and values and store them
in separate index and data servers.

3.1 System Architecture

The architecture of the proposed method is illustrated
in Figure 1 We have two domains: the trusted domain
including users and the proxy, and the untrusted
domain including the index and data servers.

(1) The user is an entity that maintains encryption
keys and poses queries on outsourced data.

(2) The proxy mediates user queries. It transforms
them into index/data server apprehensible
queries and performs encryption/decryption of
values. The proxy in this method is deployed
on the user’s system.

(3) The index server maintains the data structure,
stores the keys, and addresses encrypted values
in the data servers.

(4) The data servers store confidential values in
key-value pairs, where a key is an incremental
number and the value is the encrypted form of
the original value.

In our method, the key-value data is securely out-
sourced without changing the data model. That is,
data is maintained as key-value data in the data
servers as well as in the index server. Choosing the
number of data servers is a security-cost trade-off. As
the number of data servers increases, the potential de-
gree of providing security requirements such as avail-
ability, and pattern confidentiality grows with the
expense of cloud storage and communication costs.

3.2 Key-Value Data Distribution

Now, we discuss the distribution of a sample key-
value pair to the index/data servers. The index server,
stores string pairs of key-value. The key is the orig-
inal data key, and the value is the address of con-
fidential value stored in the data servers. The data
servers store key-value pairs in string data type. A
key is an incremental number, and its value is the
encrypted form of the original value. We require the
last key stored on a data server to increment it in
the subsequent SET query. For this purpose, the last
key of each data server is stored in the table of proxy.
Figure 2 is an example of data distribution in our
method. This example distributes four pairs of key-
value that include user information like username,
password, name, and age. In this example, we use two
data servers. However, the number of data servers
is optional and is chosen according to the trade-off
between performance and security. Figure 2 shows
how key-value pairs of String, List, and Hash data
types are outsourced. These data types are Redis’
key-value data types. String is the most basic type of
value and List is a list of strings. Hash is a collection
of key-value pairs to represent objects. In addition to
storing confidential data addresses, the index server

ISeCure

116 Secure Searchable Outsourcing of KV Databases to the Public Cloud — Saeedi, and Hadavi

Figure 1. System architecture

Figure 2. An example of key-value data outsourcing

also keeps data structures. This figure also illustrates
that our method preserves the data model in the
sense that all key-value pairs are outsourced in the
key-value format.

3.3 Query Processing

A query searches keys in key-value databases. In this
method, keys and encrypted values are stored in two
separate clouds. The proxy transforms users’ queries
into new queries posed to the index server or the data
servers. In this section, we describe query processing
in the Redis syntax. We exemplify it by “Bob-Pass” as
a key-value pair where “Pass” is a confidential value,
encrypted and stored on the data server A as well as
other data servers. The process performed in a data
server is similarly performed in other data servers, so
in the query processing scenarios, we consider only a
data server, i.e., data server A.

3.3.1 SET Queries

The user wants to store a key-value pair, e.g., “Bob-
Pass”, so he sends SET \Bob" \pass" to the
proxy. Since “pass” is a confidential value, the proxy
encrypts it and selects a data server, e.g., data server
A, to store the encrypted value. To this purpose,
the proxy looks up the data server “A” in the table
to find its “lastkey”. Assume “lastkey” is “100”.
Then, the proxy poses two queries, SET \100"
\Enc(pass)" to the data server and SET \Bob"
\A,100" to the index server. Finally, the proxy in-
creases the value of “lastkey” by one unit. Figure 3
depicts the SET query execution scenario.

Figure 3. The sequence of “SET” query

3.3.2 GET Queries

The user wants to retrieve a key-value pair when the
key is “Bob”. He submits GET \Bob" to the proxy.
The proxy asks the index server to send the address of
the encrypted value. The index server sends \A,100".
Then, the proxy sends a GET query GET \100" to
A. The data server A sends back \Enc(pass)" to
the proxy. Finally, the proxy decrypts Enc(pass) and
shows the result to the user. Figure 4 depicts the
GET query execution sequence.

3.3.3 DEL Queries

The user wants to delete a key-value pair, where the
key is “Bob”. He poses DEL \Bob" to the proxy.
The proxy executes GET \Bob" on the index server

ISeCure

November 2022, Volume 14, Number 3 (pp. 113–121) 117

Figure 4. The sequence of “GET” query

to retrieve the address of the encrypted value corre-
sponding to “Bob”. It receives \A,100" as the re-
sponse. Then, the proxy sends a DEL query with the
key “100” to data server A. Subsequently, data server
A deletes key 100 and its corresponding value. The in-
dex server deletes pair “(Bob,100)”, as well. Figure 5
depicts the DEL query execution sequence.

Figure 5. The sequence of “DEL” query

3.3.4 EXISTS Query

EXISTS queries are used to search on the keys and do
not require receiving data from the data server. The
user poses the query to the proxy and receives the
proxy response from the index server. For example,
if a user wants to know whether a key “Bob” exists,
he sends EXISTS \Bob" to the proxy. Subsequently,
the proxy asks the index server to check the key’s
existence by posing the same query EXISTS \Bob".
If it exists, the index server sends “1”, otherwise “0”,
back to the proxy. Figure 6 depicts the EXISTS query
execution sequence.

Figure 6. The sequence of ”EXISTS” query

3.3.5 Other Queries

Other key-value queries can be divided into two
groups, namely, composite queries and specific queries.
Composite queries are queries with a combination
of GET, SET, DEL, and EXISTS queries. Examples
include but are not limited to storing multiple key-
value pairs and storing if a key does not exist. To
execute these queries, the above queries are repeated
several times in a specific order. For example, the
\SETNX" query means storing if the key does not
exist. For this purpose, EXISTS query is executed
first. Then, if the key is not found, a SET query is
executed. Specific queries are queries for specific

data types or situations. Some of these queries de-
pend on the data type’s structures; for example, a
query to insert a value into the specific index of a
List data type. Since SecureKV maintains the data
structure in the index server, such queries are sim-
ply executed similarly to the above queries. Another
example is inserting a value if there is not exist the
same field in the Hash data type. This query is simply
executed as well, since the index server stores fields
in plain format. Some queries depend on the features
of the chosen encryption method. For example, if de-
terministic encryption is chosen, equality queries can
be executed on encrypted values, e.g., \LINSERT"
query in a List data type insert a value after/before
a specific value. If the owner chooses homomorphic
encryption to encrypt values, \INCREMENT" queries
can be executed on encrypted integer values.

4 Method Evaluation

In this section, we discuss the security and perfor-
mance aspects of our system in two subsections.

4.1 Performance Evaluation

To assess the performance of SecureKV, we imple-
mented the proxy in C# on Windows 10 x64 with a
2.3 GHz Core i5 processor and 4GB RAM. The cloud
service provider is ArvanCloud 1 . We use two cloud
servers with Ubuntu 20,0,4 operating system, 1 core
CPU, 2GB RAM, and 50GB disk storage. Redis 5.0.7
is installed on both cloud servers. The performance
tests are executed on a dataset of about three million
key-value pairs. The key is a numeric string and the
value is a random eight-character string. We perform
experiments to assess the computation cost of SET,
GET, and DEL queries. We measure the processing
times of query execution in two situations of plain
and encrypted values:

(1) Plain values: Plain key-value pairs stored on a
cloud Redis server.

(2) Encrypted values: Keys are stored on a cloud
Redis server as the index server. AES encrypted
values are stored on a separate cloud Redis
server as the data server.

We use StackExchange.Redis 2 library for remote
connection to the Redis cloud server and Artisan-
Code.SimpleAesEncryption library for AES encryp-
tion. We assess computation cost by measuring the
response times of query processing in the proxy, in-
dex server, and data servers. To show query process-
ing times more sensibly, the queries are submitted in
batch files including 250, 500, 1000, and 2000 queries.
Also, communication, as well as storage costs in our

1 https://www.arvancloud.com
2 https://github.com/StackExchange/StackExchange.

Redis

ISeCure

https://www.arvancloud.com
https://github.com/StackExchange/StackExchange.Redis
https://github.com/StackExchange/StackExchange.Redis

118 Secure Searchable Outsourcing of KV Databases to the Public Cloud — Saeedi, and Hadavi

approach, are theoretically evaluated based on the
number of data servers.

4.1.1 Computation Cost

To measure the computation cost of query execution,
we use a collection of 250 to 1000 queries to evaluate
the processing times of SET, GET, and DEL queries.
SET : Figure 7a illustrates the response times of the
collection of SET queries for two situations of Plain
and Encrypted data. For the encrypted situation, we
have measured both the index and the data servers
times. The figure shows that the query processing
time increases linearly with the increasing number of
queries in the query collection. Moreover, it indicates
that query processing time is similar in both the
data and index servers and is nearly equal to the
server time in the plain situation. We expect the
same times since an equal number of SET queries
are executed in the three states. Figure 7b shows
the proxy response time for the collection of SET
queries. It shows that the client-side part of query
processing for SET is negligible compared to that of
the server side, which is highly interesting in cloud-
based outsourcing scenarios. Figure 8a displays the
total response time of the SET query for both plain
and encrypted data situations. Since in the encrypted
situation, queries can be executed in parallel on the
index server and the data server, the response time
is similar to that of the plain situation. GET : The
response time of separate GET queries is similar to
the collection of SET queries. Thus, Figure 8b just
illustrates the total response time of GET queries for
the two situations. In an encrypted data situation, it
is not possible to execute queries in parallel. The data
address must be retrieved first and the desired value
must be retrieved based on the address. Therefore,
the total response time is the response time of the
index server plus the data server response time. Total
response time increases linearly with the increasing
number of queries in the query collection. DEL: For
a DEL query in the plain situation, one query is
executed on the server. However, in the encrypted
situation, the index server first executes a GET query
to retrieve the address of the data. Then, the DEL
query is executed. Figure 9a shows the response time
of the index server which is the sum of GET and DEL
queries. In the encrypted situation, two DEL queries
in the index server and the data server are executed
in parallel. Figure 9b illustrates the total response
time of DEL queries in two situations of plain and
encrypted data. The figure shows that the DEL query
processing time in the encrypted situation is more
than plain. Also, the time increases linearly with the
increasing number of queries in the query collection.

4.1.2 Communication Cost

The number of queries sent from the proxy affects
the communication cost. It varies in SET, GET, and
DEL queries, so the communication cost is calculated
separately for each query type. Table 1 shows the
communication costs of SET, GET, and DEL queries.
In this Table, we assume “M” as the volume of data
exchanged between the client and cloud server in the
plain situation and “d” as the number of data servers.
SET : For plain data, one query is executed for each
SET query. Thus, the communication cost is 1M. In
the encrypted data situation, two queries are exe-
cuted per SET query, one query on the index server
and one query on the data server. Therefore, the com-
munication cost is 2M ; 1M for the SET query on
the index server, 1M for the SET query on the data
server. That is, the communication cost is 1M for
the index server and 1M per data server. Therefore,
the communication cost of a SET query is 1M+1dM
where 1dM is the communication overhead. GET :
For a GET query, the plain situation has 2M com-
munication cost. The communication cost in the en-
crypted situation is 4M ; 2M on the index server and
2M on the data server. Generally, the communication
cost for executing a GET query is 2M+2dM where
2dM is the overhead. DEL: The communication cost
of a DEL query in the plain and encrypted data situ-
ations are 1M and 4M, respectively. The communi-
cation cost for executing a DEL query is 3M+1dM.
3M consists of 2M to retrieve the address of data,
and 1M to delete key-value pairs on the index server.
There is also 1M communication cost per data server.
Therefore, the communication overhead is 2M+1dM.

4.1.3 Storage Cost

Suppose “S” as the storage cost of storing plain key-
value pairs on the cloud. In our method, 1S is the cost
of the index server and, 1S is added to the storage
cost for each data server. Therefore, the storage cost is
“1S+1dS” and storage overhead is 1dS. The important
point of this method is that the client-side storage
cost is negligible.

4.2 Comparative Analysis

This section compares our method with some similar
related works in terms of some performance aspects.
Table 2 shows the results of our comparison. Our
method is schemaless in the sense that it neither needs
to change data types nor perform pre-configurations
for outsourcing data. Our method, unlike other ones,
is schemaless, preserves the data model after outsourc-
ing, and uses a multi-cloud storage scenario. Also,
it supports specific key-value queries while other ap-
proaches neglect to focus on key-value query process-
ing.

ISeCure

November 2022, Volume 14, Number 3 (pp. 113–121) 119

Table 1. The cost of communication & storage

Cost type Plain Encrypted data Overhead

SETqueryCommunication 1M 1M + 1(1)M = 2M 1dM

GETqueryCommunication 2M 2M + 2(1)M = 4M 2dM

DELqueryCommunication 1M 3M + 1(1)M = 4M 2M + 1dM

StorageCost 1S 1S + 1(1)S = 2S 1dS

Table 2. Comparative analysis

Orginal

data model

Outsourced

data model

Supporting

Key-value specific

queries

Schemaless
Multi/Single

Cloud

Secure Key-value Key-value ✓ ✓ Multi Cloud

[19] Tabular Key-value × × Single Cloud

[18] No constraint Key-value × × Single Cloud

[20] Tabular Column-based × × Single Cloud

4.3 Security Aspects in the Proposed
Method

In this section, we analyze the security aspects of our
method. To analyze the security aspects, we assume
users and the proxy are trusted entities, and both the
index server and data servers are honest-but-curious.
Segregating keys in the index server from values in
the data servers ensures the confidentiality of the
associations among keys and values. Data encryption
ensures the confidentiality of stored data in the data
servers and data in the move between the proxy and
the servers.

The confidentiality of data in our method relies on
the strength of the used encryption algorithms. For
example, if deterministic encryption is used, the data
servers leak data distribution. The number of data
servers and data distribution among them directly im-
pacts access pattern confidentiality. Let us clarify it
with an example. Consider Figure 4 for a GET query.
When a user poses a query"GET k1" to the proxy,
the proxy asks the index server to send the address of
the encrypted value corresponding to k1. The index
server sends the address of the desired value in a data
server, e.g., \dataSerever1,100". Subsequently,
the proxy sends "GET 100" to dataSerevr1. Depend-
ing on the number of data servers and the way values
are distributed among them, the index server may
return different addresses on different data servers
for identical queries posed by the proxy. That is, the
same query "GET k1" may result in returning dif-
ferent addresses on different data servers from the
proxy. That is why our method can provide access
pattern confidentiality proportional to the number of
data servers.

5 Conclusion

In this paper, we proposed a method called SecureKV,
a key-value database framework that deals with the
challenges of secure search on outsourced key-value

(a) Server time for SET query (b) Proxy time for SET query

Figure 7. Server time and Proxy time for SET query

(a) Total time for SET query (b) Total time for GET query

Figure 8. Total time for SET query and GET query

Figure 9.

(a) Index server time for DEL query on
encrypted data (b) Total time for DEL query

Figure 10. Index server time and Total time for DEL query

databases. Separate cloud servers in a multi-cloud
scenario have been used to provide data confidential-
ity through encrypting values detached from their
corresponding keys. The SecureKV prototype eval-
uation indicates that increasing the query response
time in the encrypted data situation is similar to the
plain situation. Moreover, the evaluation results indi-
cate that the client-side computation cost is negligi-
ble versus the server-side, which is highly interesting
in cloud-based scenarios. However, communication
and storage costs increase proportionally to the num-
ber of data servers. On the other hand, redundant
data servers provide access pattern confidentiality.
We plan to extend our work to address data integrity
concerns. Also, we would like to investigate more on
security, cost, and efficiency trade-offs in our method.

References

[1] Raluca Ada Popa, Catherine MS Redfield, Nick-
olai Zeldovich, and Hari Balakrishnan. Cryptdb:
protecting confidentiality with encrypted query
processing. In Proceedings of the twenty-third
ACM symposium on operating systems princi-
ples, pages 85–100, 2011.

[2] Pierangela Samarati, S De Capitani di Vimer-

ISeCure

120 Secure Searchable Outsourcing of KV Databases to the Public Cloud — Saeedi, and Hadavi

cati, S Murugesan, and I Bojanova. Cloud secu-
rity: Issues and concerns. Encyclopedia on cloud
computing, pages 1–14, 2016.

[3] Mohammad Ali Hadavi, Rasool Jalili, Ernesto
Damiani, and Stelvio Cimato. Security and
searchability in secret sharing-based data out-
sourcing. International Journal of Information
Security, 14(6):513–529, 2015.

[4] Jason W Woodworth and Mohsen Amini Salehi.
S3bd: Secure semantic search over encrypted big
data in the cloud. Concurrency and Compu-
tation: Practice and Experience, 31(11):e5050,
2019.

[5] Lanxiang Chen, Nan Zhang, Hung-Min
Sun, Chin-Chen Chang, Shui Yu, and Kim-
Kwang Raymond Choo. Secure search for
encrypted personal health records from big
data nosql databases in cloud. Computing,
102(6):1521–1545, 2020.

[6] Mamdouh Alenezi, Muhammad Usama, Khaled
Almustafa, Waheed Iqbal, Muhammad Ali Raza,
and Tanveer Khan. An efficient, secure, and
queryable encryption for nosql-based databases
hosted on untrusted cloud environments. In-
ternational Journal of Information Security and
Privacy (IJISP), 13(2):14–31, 2019.

[7] Karamjit Kaur and Rinkle Rani. Modeling and
querying data in nosql databases. In 2013 IEEE
international conference on big data, pages 1–7.
IEEE, 2013.

[8] Ming-Hung Shih and J Morris Chang. Design
and analysis of high performance crypt-nosql.
In 2017 IEEE Conference on Dependable and
Secure Computing, pages 52–59. IEEE, 2017.

[9] Abdulatif Alabdulatif, Ibrahim Khalil, and Xun
Yi. Towards secure big data analytic for cloud-
enabled applications with fully homomorphic
encryption. Journal of Parallel and Distributed
Computing, 137:192–204, 2020.

[10] Viswanath Gudditti and P Venkata Krishna.
Light weight encryption model for map reduce
layer to preserve security in the big data and
cloud. Materials Today: Proceedings, 2021.

[11] Divyakant Agrawal, Amr El Abbadi, Fatih
Emekci, and Ahmed Metwally. Database man-
agement as a service: Challenges and opportu-
nities. In 2009 IEEE 25th International Con-
ference on Data Engineering, pages 1709–1716.
IEEE, 2009.

[12] Varunya Attasena, Jérôme Darmont, and Nouria
Harbi. Secret sharing for cloud data security: a
survey. The VLDB Journal, 26(5):657–681, 2017.

[13] G Viswanath and P Venkata Krishna. Hybrid
encryption framework for securing big data stor-
age in multi-cloud environment. Evolutionary
Intelligence, 14(2):691–698, 2021.

[14] Gunasekaran Manogaran, Chandu Thota, and
M Vijay Kumar. Metaclouddatastorage archi-
tecture for big data security in cloud computing.
Procedia Computer Science, 87:128–133, 2016.

[15] Rishabh Poddar, Tobias Boelter, and
Raluca Ada Popa. Arx: an encrypted database
using semantically secure encryption. Cryptology
ePrint Archive, 2016.

[16] Gabriela Suntaxi, Aboubakr Achraf El Ghazi,
and Klemens Böhm. Secrecy and performance
models for query processing on outsourced
graph data. Distributed and Parallel Databases,
39(1):35–77, 2021.

[17] Muhammad Ali Raza, Muhammad Usama, Wa-
heed Iqbal, and Faisal Bukhari. Secure nosql over
cloud using data decomposition and queryable
encryption. In International Conference on In-
telligent Technologies and Applications, pages
409–421. Springer, 2019.

[18] Xingliang Yuan, Xinyu Wang, Cong Wang, Chen
Qian, and Jianxiong Lin. Building an encrypted,
distributed, and searchable key-value store. In
Proceedings of the 11th ACM on Asia Confer-
ence on Computer and Communications Secu-
rity, pages 547–558, 2016.

[19] Xingliang Yuan, Yu Guo, Xinyu Wang, Cong
Wang, Baochun Li, and Xiaohua Jia. Enckv: An
encrypted key-value store with rich queries. In
Proceedings of the 2017 ACM on Asia Confer-
ence on Computer and Communications Secu-
rity, pages 423–435, 2017.

[20] Meng Zhang, Saiyu Qi, Meixia Miao, and Fuyou
Zhang. Enabling compressed encryption for
cloud based big data stores. In International
Conference on Cryptology and Network Security,
pages 270–287. Springer, 2019.

[21] Asadulla Khan Zaki and M Indiramma. A novel
redis security extension for nosql database using
authentication and encryption. In 2015 IEEE In-
ternational Conference on Electrical, Computer
and Communication Technologies (ICECCT),
pages 1–6. IEEE, 2015.

[22] Rogério Pontes, Francisco Maia, Ricardo Vilaça,
and Nuno Machado. d’artagnan: A trusted nosql
database on untrusted clouds. In 2019 38th Sym-
posium on Reliable Distributed Systems (SRDS),
pages 61–6109. IEEE, 2019.

Maryam Saeedi Sadr received her
M.Sc. and B.Sc. degrees in Computer
Engineering from Malek Ashtar Uni-
versity of Technology, Tehran, Iran,
in 2022, and from Shariati Techni-
cal and Vocational College, Tehran,
Iran, in 2019, respectively.

ISeCure

November 2022, Volume 14, Number 3 (pp. 113–121) 121

Mohammad-Ali Hadavi received
his Ph.D. degree in Computer En-
gineering from the Sharif University
of Technology, Tehran, Iran, in 2015.
He received his M.Sc. and B.Sc. de-
grees in Software Engineering from
Amirkabir University of Technology,
Tehran, Iran, in 2004, and from Fer-

dowsi University of Mashhad, Iran, in 2002, respec-
tively. Now, he is an assistant professor at the Malek
Ashtar University of Technology. Focusing on informa-
tion security, he has published more than 50 papers
in national and international journals and conference
proceedings. His research interests include software se-
curity, security measurement, database security, cloud
security, and security aspects of data outsourcing.

ISeCure

	1 Introduction
	2 Related Work
	3 The Proposed Method
	3.1 System Architecture
	3.2 Key-Value Data Distribution
	3.3 Query Processing

	4 Method Evaluation
	4.1 Performance Evaluation
	4.2 Comparative Analysis
	4.3 Security Aspects in the Proposed Method

	5 Conclusion

