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A B S T R A C T

Digital signature schemes are used to guarantee for non-repudiation and

authenticity of any kind of data like documents, messages or software. The

Winternitz one-time signature (WOTS) scheme, which can be described using

a certain number of so-called “function chains”, plays an important role in

the design of both stateless and stateful many-time signature schemes. The

main idea of WOTS scheme is the use of a limited number of function chains,

all of which begin at some random values. This work introduces WOTS-GES,

a new WOTS type signature scheme in which the need for computing all

of the intermediate values of the chains is eliminated. More precisely, to

compute each algorithm of the proposed scheme, we only need to calculate

one intermediate value. This significantly reduces the number of required

operations needed to calculate the algorithms of WOTS-GES. To achieve this

results, we have used the concept of “leveled” multilinear maps which is also

referred to as graded encoding schemes. We expect these results to increase

the efficiency of Winternitz based digital signature schemes.

c© 2020 ISC. All rights reserved.

1 Introduction

Multilinear maps [1] that provide many applica-
tions in cryptography, was proposed as an ex-

tension of bilinear maps. Unlike bilinear maps, which
are known to be constructed using pairing of elliptic
curves, there was no method to construct a multilinear
maps before the year 2013. This long-standing open
problem was finally solved by Garg et al. [2]. They
proposed the concept of graded encoding schemes,
which is an approximate construction of multilinear
maps. In their work, ideal lattices are used to build
an instantiation of graded encoding schemes which is
called GGH13.
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Graded encoding schemes are one of the most im-
portant cryptographic tools that provide many appli-
cations in cryptography such as secret sharing scheme
[3], witness encryption [4], multipartite key exchange
[2], functional encryption [5], obfuscation [6, 7], aggre-
gate signature scheme [8] and so on. In this paper, we
offer another application of graded encoding schemes
in signature schemes.

Digital signature schemes [9–11] are useful crypto-
graphic primitives in practice. They provide many
uses for data security in a variety of applications, in-
cluding authenticity and non-repudiation, securing
software updates, the use in secure communication
protocols SSL/TLS and more. In one-time digital sig-
nature schemes the signer is limited to sign a single
message [12]. These schemes are important crypto-
graphic primitives that used as the core of the design
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2 A New Variant of the Winternitz OTS Based on Graded Encoding Schemes — Oraei and Hadian

of many-time digital signature schemes. One-time sig-
nature schemes have other important applications
like digital signatures with forward security property
[13, 14], network routing protocols [15] and so on.

So far, several techniques have been presented for
constructing one-time digital signature schemes, one
of the most interesting of which is the Winternitz
one-time signature (WOTS) scheme [16]. One-time
signature schemes designed using this technique play
important roles in the design of both stateless and
stateful many-time signature schemes [17–19]. For
example, if a Merkle signature scheme is built using a
WOTS type signature scheme, there is no need to put
the public verification key of WOTS scheme in the
signature [14]. In addition, in WOTS type signature
schemes, it is possible to make a trade-off between
the runtime and the size of signature [20–22].

Using the concept of “function chain”, we can give a
good description of WOTS scheme. A function chain,
using a function (family), produces a chain of values
starting from a given point. The main idea of WOTS
scheme is the use of a limited number of function
chains, that are all calculated starting from random
values. These values are in fact the private signing
key of WOTS scheme. The public verification key is
also the final values of each function chain. Finally,
to calculate the signature, the message is mapped to
one intermediate value of each chain.

1.1 Related Work

Along the years, several different versions of WOTS
scheme have been presented for various purposes. The
main idea of the WOTS scheme was first presented
in [16]. Using this basic idea, the one-time digital
signature schemes [23, 24] were designed using an
undetectable, collision resistant hash function. Af-
terwards, a WOTS type signature scheme was intro-
duced that achieve existential unforgeability under
adaptive chosen message attacks (EU-CMA) security
using a pseudorandom function family [25].

Under the name WOTS+, Hülsing [26] later intro-
duced a WOTS type signature scheme based on min-
imal security requirements i.e. undetectable, second-
preimage resistant, one-way hash functions. In this
scheme, using the bitmasks, the need for collision re-
sistant hash functions has been resolved. The security
proof of WOTS+ is tight, which allows the signature
size to be reduced compared to the previous WOTS
type signature schemes. Therefore, WOTS+ has been
given more attention than previous WOTS type sig-
nature schemes. For example, the one-time signature
which is used in the structure of stateless many-time
signature schemes SPHINCS [19] and SPHINCS+ [22]
is WOTS+. The variations of WOTS scheme that

have been described so far are all vulnerable to multi-
target attacks. More precisely, if an adversary has
several targets to attack them, then the probability of
being able to attack at least one of them is more than
he can attack exactly one. There is another WOTS
type signature scheme which is referred to as WOTS-
T [20]. This scheme is considered as an improved
version of WOTS+ that resists against multi-target
attacks. The major difference between WOTS-T and
WOTS+, which makes WOTS-T resistant to multi-
target attacks, is that it uses an addressing scheme.
Using this, a new bitmask is produced every time the
used hash function is called.

As discussed above, using the concept of func-
tion chain, there exists a good description of WOTS
scheme. Considering this fact, the difference between
all WOTS type signature schemes is in the method
that the used function chain is constructed. In the
function chain used in each of the WOTS type signa-
ture schemes, a function has been used that must be
repeated a certain number of times in order to gener-
ate the intermediate values of the chains. The total
number of production of each intermediate value in
the key generation, signature and verification algo-
rithms of this signature schemes is two. Thus, reduc-
ing the number of required intermediate values, can
reduce the number of operations required for these
algorithms.

In this work, we propose WOTS-GES, a new vari-
ant of the Winternitz one time signature scheme in
which the need for computing all of the intermediate
values of the chains is eliminated. More precisely, in
each key generation, signature and verification algo-
rithms of the proposed signature scheme, it is neces-
sary to calculate only one intermediate value in each
function chain. This significantly reduces the number
of required operations needed to calculate these al-
gorithms. To achieve this results, we have used the
concept of “leveled” multilinear maps which is also
referred to as graded encoding schemes. We also show
how the used graded encoding scheme can be instan-
tiated using GGH13.

The rest of the paper is as follows. In Section 2,
we review the required concepts. In Section 3, we
give description of the generic WOTS scheme. Sec-
tion 4, describes WOTS-GES based on graded en-
coding schemes. The security of WOTS-GES is pro-
posed in Section 5. In Section 6, the instantiation of
WOTS-GES using GGH13 is discussed and finally in
Section 7, conclusions are provided.

2 Preliminaries

This section reviews some required concepts which
are used throughout this paper. Most of the content
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in this section is devoted to graded encoding schemes.
But first of all, we provide a simple definition of
multilinear maps [1].

Definition 2.1. Suppose G1, . . . , Gk and GT be
groups of prime order q. Then, a k-multilinear map
e : G1× . . .×Gk −→ GT is a map with the following
properties:

(1) Multilinear: For a1, . . . , ak ∈ Z∗q and arbi-
trary elements g1 ∈ G1, . . . , gk ∈ Gk, it is hold
that e(ga11 , . . . , gakk ) = e(g1, . . . , gk)a1...ak .

(2) Non-degenerate: If gi ∈ Gi, 1 ≤ i ≤ k be
a generator of Gi, then e(g1, . . . , gk) is also a
generator of GT .

(3) Computable: For arbitrary elements g1 ∈
G1, . . . , gk ∈ Gk, the resulting e(g1, . . . , gk)
can be computed efficiently.

2.1 Graded Encoding Schemes

Garg et al. [2] proposed the concept of graded encod-
ing schemes, which is an approximate construction
of multilinear maps as follows:

Definition 2.2. For the family of sets S = {S(α)
i ⊂

{0, 1}∗ | 0 ≤ i ≤ k, α ∈ R} in which R is a ring,
assume that for each constant 0 ≤ i ≤ k, the sets

{S(α)
i | α ∈ R} be disjoint. Using this assumption, a

k-graded encoding scheme GES(R,S) can be defined
with the following procedures:

• InstGen(1λ, k) : The inputs of randomized
“instance-generation” procedure are a security
parameter λ and also multilinearity parameter
k. The corresponding output is (params, Pzt) in
which Pzt and params are a zero-test parame-
ter and description of the k-graded encoding
scheme, respectively.

• Samp(params) : The input of randomized “ring
sampler” procedure is params. The output of

this procedure is a ∈ S(α)
0 that is a “level-zero

encoding” (Here α ∈ R is a random and nearly
uniform element).

• Enc(params, i, a) : The inputs of (possibly ran-
domized) “encoding” procedure are params, an
index i ≤ k and also a “level-zero” encoding

a ∈ S(α)
0 . The corresponding output is u ∈ S(α)

i

that is a “level-i” encoding for the same element
α ∈ R.

Obviously for 1 ≤ i ≤ k, in order to obtain a
level-i encoding, we first get a level-0 encoding
of α using the ring sampler procedure and then
get a level-i encoding of α using the encoding
procedure.

• Add(params, i, u1, u2) : The inputs of “addi-
tion” procedure are params, an index i ≤
k and two level-i encodings u1 ∈ S

(α1)
i

and u2 ∈ S
(α2)
i . This procedure computes

Add(params, i, u1, u2) = u1 + u2 ∈ S(α1+α2)
i in

which α1 + α2 is addition in the ring R.
More generally, for a collection of encodings

uj ∈ S
(αj)
i where j = 1, . . . , h, it is hold that

u1 + · · ·+ uh ∈ S(α1+···+αh)
i .

• Neg(params, i, u1) : The inputs of “negation”
procedure are params, an index i ≤ k and a

level-i encodings u1 ∈ S
(α1)
i . This procedure

computes Neg(params, i, u1) = −u1 ∈ S(−α1)
i in

which −α1 is negation in the ring R.
• Mul(params, i1, u1, i2, u2) : The inputs of “mul-

tiplication” procedure are params, indices
i1, i2 with i1 + i2 ≤ k, a level-i1 encod-

ing u1 ∈ S
(α1)
i1

and also a level-i2 encoding

u2 ∈ S
(α2)
i2

. The output of this procedure is

Mul(params, i1, u1, i2, u2) = u1 × u2 ∈ S(α1·α2)
i1+i2

in which α1 · α2 is multiplication in the ring R
and i1 + i2 is integer addition.

More generally, for a collection of h encodings

uj ∈ S
(αj)
ij

with
∑h
j=1 ij ≤ k, it is hold that

u1 × . . .× uh ∈ S
(
∏h

j=1
αj)

i1+···+ih .
• isZero(params, Pzt, u) : The inputs of “zero-test”

procedure are params, Pzt and u. The output of

this procedure is 1 if u ∈ S(0)
k and 0 otherwise.

• Ext(params, Pzt, u) : The inputs of “extraction”

procedure are params, Pzt and u ∈ S(α)
k , The

output of this procedure is s ∈ {0, 1}λ with the
following properties:

a) For every α ∈ R and two level-k encodings

u1, u2 ∈ S(α)
k , it is hold that

Ext(params, Pzt, u1) = Ext(params, Pzt, u2)
(1)

b) The following distribution over {0, 1}λ is
nearly uniform (λ is the security parame-
ter):

{Ext(params, Pzt, u) | u ∈ S(α)
k , α ∈ R}

Garg et al. proposed GGH13 which is a k-graded
encoding scheme that is parameterized by λ and the
multilinearity parameter k ≤ poly(λ). GGH13 is a
realization of a k-graded encoding scheme with sev-
eral changes to the above definition. The important
change relevant to our signature scheme is in the ex-
traction procedure: the probability that the output
of the extraction procedure of GGH13 is the same for
two different level-k encodings of α is not 1. Thus, the
property a) of the extraction procedure is replaced
by a weaker requirement:

a′) Suppose that a← Samp(params) with a ∈ S(α)
0 .

Then, if the (randomized) encoding procedure
is run twice on a to obtain two level-k encodings
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u1, u2 ∈ S(α)
k :

Pr[Ext(params, Pzt, u1) = Ext(params, Pzt, u2)]

≥ 1− negl(λ)

In this paper, we work with the Definition 2.2, in
which the probability that the output of the extrac-
tion procedure is the same λ bit string for two differ-
ent level-k encodings of α is 1. If we want to use the
extraction procedure of GGH13, we must consider
the negligible probability that Ext(params, Pzt, u1) 6=
Ext(params, Pzt, u2). Thus, for every α ∈ R, we can

use Ext(params, Pzt, S
(α)
k ) to denote this λ bit string.

Remark 2.1. We can assume that a level 1 encod-
ing of 1 ∈ R is published as part of the instance-
generation procedure, namely an element y ∈
S
(1)
1 [27].

2.1.1 Graded Discrete-Logarithm (GDL)
Problem

The analog of discrete logarithm problem in a k-
graded encoding scheme GES(R,S) can be defined

as the following: consider a level-i encoding ui ∈ S(α)
i

in which 1 ≤ i ≤ k and α ∈ R, it must be hard to

output a level-j encoding uj ∈ S
(α)
j , where j < i.

Here, the value i is chosen uniformly at random from
the interval [1, k].

More formally, the following experiment can be
defined between a challenger C and an adversary B:

Experiment ExpGDL
GES(B, λ):

(1) Using λ and also the multilinearity parame-
ter k, the challenger C runs (params, Pzt) ←
InstGen(1λ, k) to get description of a k-graded
encoding scheme.

(2) Now, C firstly runs a ∈ S(α)
0 ← Samp(params)

to get a level-zero encoding of a random and
nearly uniform element α ∈ R. The challenger
C also runs ui ← Enc(params, i, a) to get a

level-i encoding ui ∈ S
(α)
i . Next, C sends

(params, Pzt, ui) to the adversary B.
(3) Finally, B outputs a value uj .

(4) The output is defined to be 1 iff uj ∈ S(α)
j and

j < i.

The success probability of an adversary B in the
experiment ExpGDL

GES(B, λ) can be defined as follows.

SuccGDL
GES(B, λ) = Pr[ExpGDL

GES(B, λ) = 1]

We say that the GDL problem is hard, if for each
polynomial time adversary B running in time ≤ t,
SuccGDL

GES(B, λ) is a negligible function of λ. In other
words,

InSecGDL(GES; t, λ) := max
B
{SuccGDL

GES(B, λ)} (2)

= negl(λ). (3)

Note that according to the Remark 2.1, the adver-

sary B can simply get a level-j′ encoding uj′ ∈ S(α)
j′

in the above experiment, by running the multiplica-
tion procedure

uj′ := ui × y × . . .× y︸ ︷︷ ︸
j′−i times

∈ S(α)
j′ , where i < j′

2.2 Digital Signature Schemes

Here, we give some required preliminaries about dig-
ital signature schemes and also security of these
schemes. In the remainder of the paper, we fix some
notation in order to simplify the explanation: We de-

note by x
$← X , if x is chosen randomly from the set

X . We also write log for log2.

Definition 2.3. Considering a message space M,
a digital signature scheme Dss can be defined using
the probabilistic polynomial time (PPT) algorithms
(Kg,Sign,Vf):

(1) Key generation algorithm Kg(1n) takes n as
the security parameter and outputs a private
signing key sk and a public verification key pk.

(2) Signature algorithm Sign(sk,M) takes as input
a message M and also the private signing key
sk. Then, if M ∈ M, the algorithm outputs a
signature σ for M under sk.

(3) Verification algorithm Vf(pk, σ,M) takes as in-
put the message M , the signature σ and the
public verification key pk. The algorithm out-
puts 1 iff σ is a valid signature on M under pk.

In a Dss = (Kg,Sign,Vf), for every sk, pk which are
outputs of Kg(1n) and every M ∈ M, the following
correctness condition must be satisfied:

Vf(M, Sign(sk,M), pk) = 1

2.2.1 EU-CMA Security

We now define “existential unforgeability under adap-
tive chosen message attacks (EU-CMA)” which is
the standard security notion for any digital signature
scheme Dss = (Kg,Sign,Vf). EU-CMA security can
be defined using the following experiment between a
challenger C and an adversary A. In the following, we
use the notation Dss(1n) for a Dss = (Kg,Sign,Vf)
with the security parameter n.

Experiment ExpEU-CMA
Dss(1n) (A):

ISeCure
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(1) C runs the key generation algorithm Kg(1n) to
generate a key pair (sk, pk) and sends the public
verification key pk to A.

(2) Suppose that Sign(sk, ·) be an oracle which
for every message M ∈ M, returns the signa-
ture Sign(sk,M). Here, we denote by ASign(sk,·)

the oracle access to Sign(sk, ·) for A. Let also
that {(Mi, σi)}qi=1 be the query-answer pairs of
Sign(sk, ·).

(3) The adversary then outputs (M?, σ?).

(4) The output of ExpEU-CMA
Dss(1n) (A) is defined to be 1

iff Vf(M?, σ?, pk) = 1 and M? /∈ {Mi}qi=1.

We define the success probability of A in the ex-
periment ExpEU-CMA

Dss(1n) (A) as

SuccEU-CMA
Dss(1n) (A) = Pr[ExpEU-CMA

Dss(1n) (A) = 1].

Now, we give the definition of EU-CMA security
as follows.

Definition 2.4. Let n, t, q ∈ N and t, q = Poly(n).
We say that a signature scheme Dss = (Kg,Sign,Vf)
is EU-CMA-secure, if for all PPT adversaries
ASign(sk,·) running in time at most t and making at
most q queries, the maximum success probability
InSecEU-CMA(Dss(1n); t, q) is a negligible function of
n:

InSecEU-CMA(Dss(1n); t, q) := max
A

{SuccEU-CMA
Dss(1n)(A)} (4)

= negl(n). (5)

Note that for any one-time signature (OTS) scheme,
the number of oracle queries of A in the above exper-
iment is restricted to one, i.e. q = 1.

3 Description of the Generic WOTS

Here, we give description of the generic WOTS
scheme. Before defining WOTS, we first recall the
definition of function chain.

Definition 3.1. Let n ∈ N , D and K be the secu-
rity parameter, domain and key space, respectively
such that the length of every X ∈ D and ck ∈ K be
polynomial in n. A function chain C = (I, E) consists
of the following PPT algorithms:

• The initialization algorithm I(1n, λ) takes as
input a chain length parameter λ ∈ N and also
the security parameter n and outputs a public
value ck ∈ K which is called “chain key”.

• The evaluation algorithm E i,jck (X) takes as in-
put a public chain key ck, an interval i, j ∈ N,
0 ≤ i < j ≤ λ, and a value X ∈ D which is the
ith value of the chain and outputs Y ∈ D, the
jth value of the chain.

For every n, λ ∈ N, every ck ∈ K which is output
of I(1n, λ), every i, j,m ∈ N such that 0 ≤ i ≤ j ≤

m ≤ λ and every X ∈ D, it must hold that

Ej,mck (E i,jck (X)) = E i,mck (X)

We now describe the generic W-OTS using a func-
tion chain C = (I, E). This digital signature is param-
eterized by

• m : the binary message length.
• n : the security parameter.
• w > 1 : the Winternitz parameter. This param-

eter determines the time-memory trade-off.
• l: the number of elements in a W-OTS signature,

public verification key and private signing key,
which is computed as

l1 = d
m

log(w)
e, l2 = b

log(l1 (̇w − 1))

log(w)
c+ 1, l = l1 + l2

Key Generation Algorithm (Kg(1n)): On input of
the security parameter n, this algorithm chooses the

private signing key sk = (sk1, . . . , skl)
$← Dl. Next, a

public chain key ck is obtained using the initialization
algorithm I(1n, λ) of the function chain. Finally, the
public verification key pk can be computed as

pk = (pk0, pk1, . . . , pkl) = (ck, E0,w−1
ck (sk1), . . . , E0,w−1

ck (skl))

Signature Algorithm (Sign(sk,M)): This algo-
rithm takes as input a message M ∈ {0, 1}n and the
private signing key sk. Firstly, the base w represen-
tation of M is computed, i.e. M = (b1, . . . , bl1) such
that bi ∈ {0, . . . , w − 1}. Next, the checksum

C =

l1∑
i=1

(w − 1− bi)

and also its base w representation C = (bl1+1, . . . , bl)
such that bi ∈ {0, . . . , w−1}, is computed (Note that
C ≤ l1(w − 1)). Now, the signature is computed as

σ = (σ1, . . . , σl) = (E0,b1ck (sk1), . . . , E0,blck (skl))

Verification Algorithm (Vf(pk, σ,M)): This algo-
rithm takes as input the message M , the signature
σ and also the public verification key pk. Firstly, the
bi, 1 ≤ i ≤ l are computed as above. Next, if the fol-
lowing comparison holds, the verification algorithm
returns true and false otherwise:

(pk1, . . . , pkl)
?
= (Eb1,w−1ck (σ1), . . . , Ebl,w−1ck (σl))

4 WOTS-GES

Here, we propose our digital signature scheme
WOTS-GES(k,m) based on a k-graded encoding
scheme GES(R,S) with the security parameter λ.
As mentioned before, this signature scheme is a new
variant of WOTS scheme. Like other versions of
WOTS, WOTS-GES(k,m) is parameterized by
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6 A New Variant of the Winternitz OTS Based on Graded Encoding Schemes — Oraei and Hadian

• m : the binary message length.
• w > 1 : the Winternitz parameter. Here we

suppose that w−1 is equal to the multilinearity
parameter k of the k-graded encoding scheme,
i.e. w − 1 = k.

• l: This parameter is calculated using the pa-
rameters m and w, as described in the previous
section.

Please note that according to the Remark 2.1, we
can consider that there is a level 1 encoding of 1, i.e.

11 ∈ S(1)
1 . It is assumed that in the pre-computation

phase, the encoding procedure Enc(params, i, 11) is

run to obtain the level-i encoding 1i ∈ S(1)
i , where

2 ≤ i ≤ k.

Key Generation Algorithm (Kg(GES(R,S))):
This algorithm takes as input the description of the
k-graded encoding scheme GES(R,S). Then, the
randomized ring sampler procedure Samp(params)

is run to obtain l level-zero encodings aj ∈ S
(αj)
0 ,

where α1, . . . , αl ∈ R are random and nearly uniform
elements and 1 ≤ j ≤ l. The private signing key
sk = (a1, . . . , al) consists of this level-zero encodings.

Next for 1 ≤ j ≤ l, the key generation algorithm
runs the encoding procedure Enc(params, k, aj) to get

l level-k encodings ujk ∈ S
(αj)
k . Finally, the extraction

procedure is run to obtain pkj = Ext(params, Pzt, ujk).
Now, the public verification key pk is defined as pk =
(pk1, . . . , pkl). The key generation algorithm is shown
in Figure 1.

pk1

pkl
Ext

Ext
a1 u1k

ulkal

sk pk

Figure 1. A schematic representation of key generation algo-

rithm

Signature Algorithm (Sign(sk,M)): This algo-
rithm takes as input a message M ∈ {0, 1}n and
also the private signing key sk = (a1, . . . , al). Firstly,
the base w representation of M is computed, i.e.
M = (b1, . . . , bl1) such that bi ∈ {0, . . . , w−1}. Next,
the checksum

C =

l1∑
i=1

(w − 1− bi)

and also its base w representation C = (bl1+1, . . . , bl)
such that bi ∈ {0, . . . , w − 1}, is computed. After-
wards for 1 ≤ j ≤ l, the signature algorithm runs

the encoding procedure Enc(params, bj , aj) to get the

level-bj encodings ujbj ∈ S
(αj)
bj

. Now, the signature σ
is defined as

σ = (σ1, . . . , σl) = (u1b1 , . . . , ulbl)

The signature algorithm is shown in Figure 2. Let B =
M‖C, then we can conclude from the checksum that
if M ′ 6= M be any other message, the corresponding
B′ consists of at least one b′j < bj , where 1 ≤ j ≤ l.

M ∈ {0, 1}m C

b1 b2 bl1 bl

pk1

pkl
Ext

Ext
a1 u1k

ulkal

u1b1 ∈ S
(α1)
b1

ulbl ∈ S
(αl)
bl

Figure 2. A schematic representation of signature algorithm

Verification Algorithm (Vf(pk, σ,M)): This algo-
rithm which is shown in Figure 3, takes as input the
message M , the signature σ and also the public veri-
fication key pk. In this algorithm for 1 ≤ j ≤ l:

(1) Firstly, the bjs are computed as described
above.

(2) Then, the verification algorithm runs the mul-
tiplication procedure Mul(params, bj , ujbj , k −
bj , 1k−bj ) to compute the level-k encoding u′jk ∈
S
(αj)
k .

(3) Finally, the extraction procedure is run to ob-
tain pk′j = Ext(params, Pzt, u

′
jk).

Now, if the following comparison holds, the verifi-
cation algorithm returns true and false otherwise:

(pk1, . . . , pkl)
?
= (pk′1, . . . , pk

′
l)

5 Security of WOTS-GES

Here, we prove the security of WOTS-GES. We ex-
plain how an adversary for WOTS-GES can be used
to construct an adversary to solve the GDL problem.
More formally, the GDL problem is reduced to the
EU-CMA security of WOTS-GES.

Lemma 1. Let k,m ∈ N. Then, if there is any PPT
adversary A who can break the proposed digital sig-
nature scheme WOTS-GES(k,m), then there exists a
PPT adversary B that is a solver for the GDL prob-
lem such that

SuccEU-CMA
Dss(1n) (A) ≤ kl · SuccGDL

GES(B, λ). (6)

ISeCure



January 2022, Volume 14, Number 1 (pp. 1–11) 7

M ∈ {0, 1}m C

b1 b2 bl1 bl

pk′1

pk′l
Ext

Ext
a1 u′1k

u′lk
al

pk′u1b1 ∈ S
(α1)
b1

ulbl ∈ S
(αl)
bl

Figure 3. A schematic representation of verification algorithm

Proof. Consider a PPT adversary A which acts ac-
cording to the Experiment ExpEU-CMA

Dss(1n) (A) against the

security of WOTS-GES(k,m), such that his success
probability SuccEU-CMA

Dss(1n) (A) = εA is non-negligible.
In the rest of the proof, we will define an adver-
sary B which acts according to the Experiment
ExpGDL

GES(B, λ) to solve the GDL problem in polyno-
mial time with a non-negligible success probability
SuccGDL

GES(B, λ) = εB and uses A as a sub-routine
(Note that we have n = λ):

(1) Based on λ and the multilinearity parameter k,
the challenger of the Experiment ExpGDL

GES(B, λ)
(that is C) runs (params, Pzt)← InstGen(1λ, k)
to get an explanation of a k-graded encod-
ing scheme GES(R,S). Now, the challenger
C firstly runs a ← Samp(params) to obtain a

level-zero encoding a ∈ S
(α)
0 , where α ∈ R

is a random and nearly uniform element.
Then, C runs ui ← Enc(params, i, a) to get

a level-i encoding ui ∈ S
(α)
i . Next, C sends

(params, Pzt, ui) to the adversary B.
(2) Now, B is used as a challenger for A in the

Experiment ExpEU-CMA
Dss(1n) (A). So, B executes

the WOTS-GES key generation algorithm
Kg(GES(R,S)) to obtain a private signing

key sk = (a1, . . . , al), where aj ∈ S
(αj)
0 are l

level-zero encodings and α1, . . . , αl ∈ R are
random and nearly uniform elements and also
a public verification key pk = (pk1, . . . , pkl).
Suppose that (M,σ) be the query-answer pair
of Sign(sk, ·) in the Step 2 of the experiment
ExpEU-CMA

Dss(1n) (A) and B = M‖C = (b1, . . . , bl).

Let also that (M?, σ?) be the output of the ad-
versary A in the Step 3 of this experiment and
B? = M?‖C? = (b?1, . . . , b

?
l ). Because of the

checksum, the corresponding B? of the suc-
cessful forgery (M?, σ?) must contain at least
one b?γ < bγ , where 1 ≤ γ ≤ l. More precisely,
the γ-th components of σ = (σ1, . . . , σl) and
σ? = (σ?1 , . . . , σ

?
l ) i.e. σγ and σ?γ are a level-bγ

encoding σγ ∈ S
(αγ)
bγ

and a level-b?γ encoding

σ?γ ∈ S
(αγ)
b?γ

, respectively, where 1 ≤ γ ≤ l. In

the following, the adversary B tries to conjec-
ture the location of σγ and place the level-i

encoding ui ∈ S
(α)
i there. Hence, he will re-

ply the signature query and finally extract a

level-j encoding uj ∈ S(α)
j using the successful

forgery σ?, where 0 ≤ j < i:
(a) The adversary B selects the position of a

component of the private signing key sk =
(a1, . . . , al) choosing the index 1 ≤ γ′ ≤ l
uniformly at random.

(b) B considers the level-i encoding ui ∈ S(α)
i

challenge as the level-i encoding of an
unknown level-zero encoding a′γ′ = a.
Next, B runs the multiplication procedure
Mul(params, i, ui, k − i, 1k−i) to compute

the level-k encoding uk ∈ S
(α)
k . After-

wards, B runs the extraction procedure
to compute pk′γ′ = Ext(params, Pzt, uk)
Consequently, the manipulated public
verification key pk′ is obtained as pk′ =
(pk1, . . . , pk

′
γ′ , . . . , pkl). Note that the

private signing key is also changed as
sk = (a1, . . . , a

′
γ′ , . . . , al), where a′γ′ is un-

known. Now, B sends the manipulated
public verification key pk′ to A (the start
of the Experiment ExpEU-CMA

Dss(1n) (A)).

(c) Note that B only knows the level-j′ en-

codings uj′ ∈ S
(α)
j′ , where i ≤ j′ ≤ k as

he can run the multiplication procedure
Mul(params, i, ui, j

′ − i, 1j′−i) to compute

the level-j′ encoding uj′ ∈ S(α)
j′ . So, B can

only answer the A’s query M , if i ≤ bγ′ .
(d) Also, the successful forgery (M?, σ?) is

only helpful if b?γ′ < i. In this case, the
adversary B announces the level-b?γ′ en-

coding ub?
γ′
∈ S

(α)
b?
γ′

as its output (Step 3

of the Experiment ExpGDL
GES(B, λ)).

In the following, the success probability of the ad-
versary B is calculated: As we saw in Step 2c, B
can only answer the A’s query M , if i ≤ bγ′ . To
make computation of the success probability easier,
we only consider a certain success case, i.e. i = bγ′ .
As i was selected randomly with uniform distribu-
tion from the interval [1, k], the case happens with
probability k−1.

We also pointed out that the corresponding B? of
the successful forgery (M?, σ?) must contain at least
one b?γ < bγ , where 1 ≤ γ ≤ l. This happens for
γ = γ′ with probability l−1 . Thus we have b?γ′ < bγ′ .
Consequently, we conclude that b?γ′ < i with proba-

bility (kl)−1 and therefore the condition in Step 2d

ISeCure



8 A New Variant of the Winternitz OTS Based on Graded Encoding Schemes — Oraei and Hadian

is fulfilled. Hence, the success probability of the ad-
versary A can be bounded as follows:

εA ≤ kl · εB.

Note that because of the Equation 1 of the extrac-
tion procedure, changing the public verification key
generation method to place our challenge, does not
change the public verification key. More precisely,
if we choose either the key generation algorithm of
WOTS-GES(k,m) or the method which is used in
the proof to produce public verification key, we ob-
tain an equal value for this key. Thus, the proof is
completed.

We now conclude the following theorem using
Lemma 1:

Theorem 1. Suppose that k,m ∈ N. Then, we
can bound the insecurity of WOTS-GES against an
EU-CMA attack by

InSecEU-CMA(WOTS-GES(k,m); t, 1) ≤ kl·InSecGDL(GES; t′, λ).
(7)

with t′ = t+ 5l.

Proof. Firstly note that the Equation 7 can be
simply derived from Equation 6 and also from Def-
initions 2 and 5. The time t′ = t + 5l is also the
maximum runtime required by the adversary A
(which behaves according to the Definition 2.4) plus
the time required to execute the three algorithms of
WOTS-GES once (follow the proof of Lemma 1).

6 Instantiation using GGH13

To use WOTS-GES, graded encoding scheme
GES(R,S) must be instantiated. In this section, we
discuss how GES(R,S) can be instantiated using
GGH13.

The graded encoding scheme GGH13 is parame-
terized by λ and also multilinearity parameter k ≤
poly(λ). Using these parameters, consider the cyclo-
tomic ring R = Z

<Xn+1> , in which n = Õ(kλ2) is a

power of 2. Also, let that the modulus q = 2kλ de-
fines the quotient ring Rq = R

qR . Finally, consider the

quotient ring QR = R
I in which I =< g > is a princi-

pal prime ideal and g is a secret short vector drawn
from the discrete Gaussian distribution g ← DZn,σ in

which σ = Õ(
√
n). There is also another secret vector

z ∈ Rq, that selected uniformly at random.

In the graded encoding scheme GGH13, the quo-
tient ring QR = R

I plays the role of ring R in Defi-
nition 2.2. More precisely, elements of QR are what
are encoded.

A level-zero encoding of an arbitrary cost r + I ∈
QR is a short vector of r + I. It can be proved that

Table 1. Comparison of the computational complexities

Step WOTS schemes
[16, 20, 23–26]

proposed scheme

Public verification
key generation

lk · Tfc l · (Tenc + Text)

Signature algorithm (
∑l

i=1
bi) · Tfc l · Tenc

Verification algorithm (
∑l

i=1
(k − bi)) · Tfc l · (Tmul + Text)

the size of level-zero encodings is bounded by λn2

(with high probability) [27]. On the other hand, the
private signing key sk = (a1, . . . , al) of the signature
scheme WOTS-GES consists of l level-zero encodings.
Consequently, the size of private signing key sk is
bounded by lλn2.

Also, a level-i encoding of a cost r+I ∈ QR, where
1 ≤ i ≤ k, is a vector of the form c

zi ∈ Rq in which

c ∈ r + I and ‖c‖< q
1
8 . Thus, the size of c

zi ∈ Rq is
bounded by qn. On the other hand, we know that
the signature σ = (σ1, . . . , σl) of a given message
M using WOTS-GES, consists of l level-i encodings,
where 0 ≤ i ≤ k. Therefore, signature σ consists of l
level-i encodings which size of each is at most either
λn2 or qn.

Finally, as described in Definition 2.2, the output of
the extraction procedure is a λ bit string. On the other
hand, the public verification key pk = (pk1, . . . , pkl)
is made up of l extraction procedure outputs. Thus,
the size of the public verification key is lλ bits.

In [28], GGHLite, an efficient version of GGH13 is
presented in which the size of some parameters has
been improved. Thus, instantiating the used graded
encoding scheme of WOTS-GES using GGHLite can
improve the efficiency of WOTS-GES.

7 Conclusion

Here, we provide a comparison for the number of
operations required by the key generation, signature
and verification algorithms of WOTS-GES scheme
and other WOTS scheme variants in the literature
[16, 20, 23–26]. We have summarized the results in
Table 1.

In this table, we have assumed that the Winternitz
parameter minus one is equal to the multilinearity
parameter k of the used k-graded encoding scheme, i.e.
w− 1 = k. We have also used the following notations
to analyze the complexities of the proposed scheme:

• Tfc: The time required to execute one iteration
of the used function chain.

• Tenc: The time required to execute the encod-
ing procedure of the used k-graded encoding
scheme.

• Text: The time required to execute the extrac-
tion procedure of the used k-graded encoding
scheme.
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• Tmul: The time required to execute the multipli-
cation procedure of the used k-graded encoding
scheme.

From the comparison in the table, we can see that
the number of operations required by the three al-
gorithms of WOTS-GES is less than that of other
WOTS scheme variants. In [29], the first practical
implementation of graded encoding schemes is pre-
sented in which the efficiency of GGHLite has also
been improved. Using our results along with the prac-
tical implementations of graded encoding schemes,
we can obtain an efficient one-time digital signature
scheme for various applications [13–15].
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