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Abstract

The exact manner of BKZ algorithm for higher block sizes cannot be studied
by practical running, so simulation of BKZ can be used to predict the total
cost and output quality of BKZ algorithm. Sampling method of enumeration
solution vector v is one of the main components of designing BKZ-simulation
and can be divided into two phases: sampling norm of solution vector v and
sampling corresponding coefficient vectors. This paper introduces a simple
and efficient idea for sampling the norm of enumeration solution v for any
success probability of enumeration bounding functions, while to the best of
our knowledge, no such sampling method for norm of enumeration solution
is proposed in former studies. Next, this paper analyzes the structure and
probability distribution of coefficient vectors (corresponding with enumeration
solution v), and consequently introduces the sampling methods for these
coefficient vectors which are verified by our test results, while no such a deep
analysis for sampling coefficient vectors is considered in design of former
BKZ-simulations. Moreover, this paper proposes an approximation for cost of
enumerations pruned by optimal bounding functions.

© 2020 ISC. All rights reserved.

1 Introduction

Lattice reduction is the determinative phase of most
lattice security attacks, and BKZ reduction is cur-

rently considered as a main practical one [1–4]. In
fact, for selecting security parameters in lattice cryp-
tographic primitives, the total cost and output quality
of BKZ algorithm should be determined in high block
sizes. For predicting the manner of BKZ in higher
block sizes, practical running is not the way, there-
fore BKZ-simulators are introduced. At first, an effi-
cient simulation algorithm is introduced by Chen and
Nguyen [2] based on Gaussian heuristic. The simula-
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tion by Shi Bai et al. [3] is focused on head concavity
phenomenon in BKZ and Gaussian heuristic. Also,
Aono et al. [4] introduces a sharp simulator under
geometric series assumption (GSA). There are many
studies which show the main role of BKZ algorithm
and BKZ-simulation in determining the bit-security of
lattice-based cryptographic primitives (see [2, 5–10]).

Two main outputs which are expected to be re-
turned from a BKZ-simulation over an input basis
(often in the form of GSO norms) are the output ba-
sis quality (often in form of GSO norms) and total
cost of BKZ. Total cost and output quality of ba-
sis depend to each other in many cases, (e.g., the
quality of a lattice block affects the enumeration cost
over that block, in other side, the cost of enumera-
tions in optimal progressive-BKZ affects the quality
of lattice blocks). Designing a BKZ-simulation with
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GNR-pruned enumeration needs to some necessary
building-blocks which includes enumeration radius,
generation of bounding function, estimation of suc-
cess probability, LLL simulation, estimation of GNR
enumeration cost, sampling method for enumeration
solution, simulation of updating GSO.

One of main components in design of BKZ-
simulation with GNR-pruned enumeration as SVP
solver are sampling the enumeration solution. Enu-
meration solution v is often represented in former
BKZ-simulations by estimating the expected value
of the norm of this solution as ‖v‖. This paper tries
to introduce an approximate sampling method for
enumeration solution v which samples both norm
and coefficient vectors of enumeration solution. In
fact, the GNR enumeration function in BKZ al-
gorithm over a lattice block L[bj ,...,bk] returns the
coefficient vector y, which can be used to compute
the solution vector v by linear combination of this

lattice block vectors as v =
k∑
l=j

ylbl. To the best of

our knowledge, no precise and explicit analysis of
sampling the coefficient vector y is considered in
former studies on BKZ-simulations. Also to the best
of our knowledge, no sampling method for norm of
GNR-pruned enumeration solution with any success
probability is introduced, however paper [3] intro-
duces a sampling method (see line 14 of Algorithm 4
from paper [3]) by using the probability distribution
of solution norm which is stated in Chen’s thesis [11]
just for full-enumeration (see Theorem 1 in [3]), not
for any GNR-pruning with any success probability.
Also, paper [4] uses an efficient way to estimate the
expected value of solution norm, instead of sampling
this norm. Moreover, paper [2] uses only the approxi-
mation by Gaussian heuristic expectation of solution
norm. In other side, not only this paper introduces a
sampling method for solution norm of GNR-pruned
enumeration with any success probability, but also
it introduces a statistical sampling method for co-
efficient vector y (and other coefficient vectors).
Also by using our analysis on enumerations solution
norm and coefficient vectors, this paper proposes an
approximation for cost of enumerations pruned by
optimal bounding functions.

The remainder of this paper is organized as follows.
Section 2 is dedicated to essential background for
understanding our contributions in this paper. Our
contributions in design of sampling method of GNR-
enumeration solution would be introduced in Section
3 (Section 3.1 introduces our sampling method of
norm of enumeration solution and Section 3.2 intro-
duces our sampling method of coefficient vectors of
enumeration solution). Also our approximation of
cost for GNR-enumeration by optimal bounding func-

tion is introduced at the end of Section 3. Our test
results for verifying our proposed sampling methods
are introduced in Section 4. Finally, in Section 5, the
conclusions and further studies for this work are ex-
pressed.

2 Background
In this section, a sufficient background on BKZ algo-
rithm is introduced to make this work easy to be un-
derstood. Also, some related preliminary discussions,
propositions, definitions and notations are proposed
which help to simply focus on our main contributions
in the next sections. To have most traceability among
relations, propositions and algorithms, the similar no-
tations would be used in this paper (such as the no-
tations of n and m for rank and dimension of lattice
in whole the paper).

2.1 Basic Definitions, Notations and
Concepts

Here some basic lattice concepts which are needed in
this paper are defined.

Lattices. A lattice is a set of points in the n-
dimensional space with a periodic structure [12].
More formally, given n-linearly independent vectors
b1, . . . , bn ∈ Rm, the lattice generated by them is a
set of vectors as follows:

L[b1,...,bn] =
n∑
i=1

xibi : xi ∈ Z (1)

Note: The set of vectors of [b1, . . . , bn] are known as
the basis of lattice, which is usually shown by the
column of matrix B.

Note: Since the lattice in paper is discussed for cryp-
tographic applications, this is assumed to bi ∈ Zm.

Note: The rank and dimension of lattice L(B) in this
paper are respectively n and m.

Note: The vector of x ∈ Zn in relation (1) is named
as coefficient basis vector.

Euclidean Norm. The length of a lattice vector v =
(v1, . . . , vm) is measured by ‖v‖= 2

√
v2

1 + · · ·+ v2
m.

Note: In this paper, the phrases of “norm” and “length”
refer to Euclidean norm.

Fundamental Domain. For a lattice L(B), the funda-
mental domain is defined as following set:

F(L) = t1b1 + t2b2 + · · ·+ tnbn : 0 ≤ ti < 1 (2)

Volume of Lattices. The volume of a lattice L(B) is
defined by the volume of the parallelepiped of funda-
mental domain F(L) which is computed as follows:

vol (L(B)) = vol (F(L(B))) = |detB| (3)
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There are many hard problems in the lattice theory,
where the shortest vector problem (SVP) is one of the
basic ones. For a given lattice basis B, SVP solvers try
to find the shortest nonzero vector in this lattice. In
practice, SVP is discussed as an approximate variant,
which is defined as follows:

Approximate-SVP (SVPγ). For a lattice L, the prob-
lem of finding a lattice vector whose length is at most
some approximation factor γ times the length of the
shortest nonzero vector.

Note: The norm of shortest nonzero vector in lattice
L is shown by λ1(L) (which is first successive-minima
in lattice L).

Since in practical attacks to solve SVPγ , the value
of λ1(L) is not known, so this is common to use the
concept of Hermite-SVPr which is defined as follows:

Hermite-SVPr (HSVPr). For a lattice L(B), the prob-
lem of finding a lattice vector whose length is at
most some approximation factor r times the length
of vol (L(B))1/n (i.e., ‖b1‖≤ r|detB|1/n).

Root-Hermite factor (δr). The common parameter to
measure the quality of a reduced basis B is defined
as follows

δr = r1/n (4)

Another basic concept which is needed in our analysis,
is the volume of a n-dimensional ball, which can be
computed as follows (by using sterling approximation
for high dimensional space)

Vn(R) = vol (Balln(R)) = (πn/2/Γ(n/2 + 1))Rn
≈ ((2πe/n)n/2/

√
nπ)Rn (5)

Note: In this paper, Vl(R) refers to volume of a l-
dimensional ball with radius R.

The gamma function Γ(x) is defined for x > 0
by Γ(x) =

∫∞
0 tx−1e−tdt, where by using sterling

approximation, the gamma function Γ(n/2 + 1) is
defined as Γ(n/2 + 1) ≈

√
nπ( n2e )n/2. Also, the beta

function Beta(x, y) which is used later in Lemma 1,
is defined as follows

Beta(x, y) =
∫ 1

0 t
x−1(1− t)y−1

dt = Γ(x)Γ(y)
Γ(x+y) (6)

Note: In this paper, the dimension m is assumed to
be equal to rank n (i.e., m = n), however the main
parts of this paper just work on analysis of lattice
blocks with rank of β and dimension n.

One of the main heuristic in lattice theory is Gaus-
sian heuristic, which estimates the number of points
in a set S. This heuristic is used massively in our
analysis and discussion. This heuristic is defined as
follows

Heuristic 1 (Gaussian heuristic). “Given a lattice

L and a set S, the number of points in S
⋂
L is

approximated by vol (S) /vol (L)” [1];

By using Heuristic 1 (Gaussian heuristic), if the lat-
tice L would be limited to a centred ball with radius
length of R = λ1(L), then this is expected that there
is at least one lattice vector in Balln(R) with radius
R, which is the shortest vector. Therefore, the value
of λ1(L) can be estimated by Gaussian heuristic of
lattice gh(L) as follows (by using sterling approxima-
tion)

gh(L) =
(

vol(L(B))
vol(Balln(1))

)1/n
≈
√

n
2πe (detB)1/n. (7)

Also, the concepts of Gram-Schmidt Orthogonaliza-
tion and projected sub-lattices are the fundamental
definitions in the structure of BKZ reduction, and
they are used massively in our contributions.

Orthogonal projection (πi). For a given lattice basis
B = (b1, b2, . . . , bn), the orthogonal projection πi(· · ·)
is defined as follows

πi : Rm 7→ span(b1, . . . , bi−1)⊥ for i ∈ {1, . . . , n}

Gram-Schmidt Orthogonal basis (GSO basis). For a
given lattice basis B = (b1, b2, . . . , bn), the Gram-
Schmidt Orthogonal basis B∗ = (b∗1, b∗2, . . . , b∗n) is
defined as follows

πi(bi) = b∗i = bi −
∑i−1
j=1 µi,jb

∗
j , (8)

where µi,j = (bib∗j )/‖b∗j‖
2 and 1 ≤ j < i ≤ n

Note: For an input lattice basis B, volume of the
lattice can be computed by norm of GSO vectors as
follows

vol (L(B)) =
∏n
i=1 ‖b∗i ‖. (9)

In addition to Heuristic 1 (Gaussian heuristic), other
important heuristic in Lattice theory is Geometric
Series Assumption (GSA), which is defined as follows

Geometric Series Assumption (GSA). Schnorr’s
GSA says that for a BKZ-reduced basis, the geometric
series of ‖b∗i ‖= ri−1‖b1‖ for the GSA constant r ∈
[3/4, 1) can be assumed [4].

By using GSA assumption, q-factor can be defined
as follows, which measures the quality of basis [13],

q ≈ 1/r = ‖b∗i ‖/‖b∗i+1‖. (10)

Furthermore, following approximation between root-
Hermite factor and q-factor can be assumed

δr ≈ q(n−1)/2n ≈ √q. (11)

In other side, some statistical distribution massively
is used in our analysis and proofs, such as Normal dis-
tribution and Gamma distribution (different from the
Gamma function Γ(x)), and exponential distribution.
These distributions are defined as follows.
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Normal distribution. The Normal distribution is a bell-
shaped, two-parameter and continuous probability
distribution which is defined as follows

N (x;µ, σ2) = 1
σ
√

2π e
− 1

2 ( x−µσ )2
, where x ∈ R.

(12)

The mean and variance in Normal distribution re-
spectively are determined by µ and σ2.

Gamma distribution. The gamma distribution is a two-
parameter and continuous probability distribution
which is defined as follows (for input shape-parameter
of k and scale-parameter of θ)

Gamma(x; k, θ) = xk−1e−x/θ

Γ(k)θk , where x > 0. (13)

The mean and variance in gamma distribution respec-
tively are determined by kθ and kθ2.

Exponential distribution. The exponential distribu-
tion is a one-parameter and continuous probability
distribution which is defined as follows (for input pa-
rameter of ϑ)

Expo(x;ϑ) = ϑe−ϑx, where x > 0 and ϑ > 0. (14)

The mean and variance in exponential distribution
respectively are determined by 1/ϑ and 1/ϑ2.

Note: In this paper, the expected value and variance
of random variable X respectively are shown by E [X]
and V [X].

At the end, some notations which be used in this
paper, are defined as follows. The random function
rand(x,...,y) returns a random real number between
x and y (except the numbers of x and y). In fact,
the notations of (x, . . . , y), (x, . . . , y], [x, . . . , y) and
[x, . . . , y] respectively represent the range of x to y
except x and y, the range of x to y except x, the
range of x to y except y and the full range of x to y.
Also, the notation of bxe returns the nearest integer
number to x.

2.2 LLL Reduction

The most well-known and widely used lattice reduc-
tion algorithm for lattice problems is LLL, which de-
veloped by Lenstra (Arjen Klaas), Lenstra (Hendrik
Willem), and LovÃąsz in 1982 [14]. LLL reduction
is a polynomial time algorithm for the approximate-
SVP within an approximation factor of γ = 2O(n)

(where n is the dimension of the lattice).

LLL-reduced basis. For a given basis b1, . . . , bn ∈ Zm,
and the parameter of δ ∈ [1/4, 1), LLL-reduced bases
should satisfy the following conditions

• Size-reduction: |µi,j |≤ 1/2 for 1 ≤ j < i ≤ n;
• Lovasz criterion: ‖b∗i+1‖2≥ (δ− µ2

i+1,i)‖b∗i ‖2 for
1 ≤ i ≤ n− 1;

Note: In this paper, the notation of LLL-parameter
is shown by δ and notation of root-Hermite factor is
shown by δr.

Remark 1. Based on Size-reduction and Lovasz crite-
rion, LLL cannot replace the first GSO norm of basis
(i.e., ‖b∗1‖) with a bigger GSO norm (in fact, LLL
always decreases or does not modify the first GSO
norm).

2.3 BKZ Algorithm

In 1987, BKZ (Blockwise Korkine-Zolotarev) algo-
rithm was proposed by Schnorr as an extension of
LLL algorithm. The main idea behind the design of
BKZ is to replace the blocks of 2× 2 (which are used
in LLL) with the blocks of larger size. Increasing the
block size improves the approximation factor at the
expense of more running time. There are several vari-
ants of Schnorr’s BKZ, but all these variants achieve
nearly the same exponential approximation factor.
Here, BKZ and HKZ (Hermite-Korkine-Zolotarev) is
formally defined as follows

HKZ-reduced basis. For every block L[bj ,...,bn] of in-
put lattice basis L[b1,...,bn] where j = 1 . . . n, the
basis should be size-reduced and satisfies πj(bj) =
λ1(πj(L[bj ,...,bn])).

BKZβ-reduced basis. For every block L[bj ,...,bk] of input
lattice basis L[b1,...,bn] where 1 ≤ j < k = min(j +
β − 1, n), then this basis should be size-reduced and
satisfies πj(bj) = λ1(πj(L[bj ,...,bk])).

Informally, BKZ algorithm starts with the LLL re-
duction of basis; then, it iteratively performs the fol-
lowing steps

• For an input parameter R (which is defined as
enumeration radius), the solution vector v =∑k
l=j ylbl is returned from SVP oracle (e.g., lat-

tice enumeration) applied on projected lattice
block of πj(L[bj ,...,bk]), when ‖πj(v)‖< R; at the
next, v is inserted between the vectors of bj−1
and bj . The resulted set of vectors is not a basis
(because of the linear dependency between vec-
tors), so LLL algorithm is performed on the par-
tial set of b1, . . . , bj−1, v, bj , . . . , bh=min(k+1,n).

• Otherwise, LLL algorithm is performed on the
partial set of b1, . . . , bh=min(k+1,n).

The pseudo-code of Schnorr-Euchner’s BKZ algo-
rithm is introduced in Appendix A.1. The BKZ algo-
rithm can use the lattice enumeration for solving SVP
in the projected lattice blocks (however some other
functions, such as sieve algorithm can be used too) [1].
The norm of first vector of a BKZβ-reduced basis B
is bounded by ‖b1‖≤ (β/(πe))(n−1)/(β−1)λ1(L(B)).
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2.4 Enumeration and Pruning

In this paper, for a lattice block of L[j...k] =
L[bj ,bj+1,...,bk], the block size β is assumed sufficiently
big. Also since these lattice blocks are assumed to be
used in BKZ algorithms, the notation L[bj ,bj+1,...,bk]
refers to the projected form of πj(bj , bj+1, . . . , bk),
as a lattice block from the index j to k, whose vec-
tors are projected on the vectors of (b1, b2, . . . , bj−1).
Furthermore, it is clear that the enumeration cost is
affected by the choice of the initial radius R [2].

Full-enumeration. For initial radius R, the full-
enumeration tree enumerates all lattice points in
n-dimensional ball of radius R.

The sound pruning technique, or GNR-pruning, which
is introduced by Gama, Nguyen and Regev, uses
the concept of cylinder-intersection in pruning the
enumeration tree. The cylinder-intersection, bounding
function and GNR-pruning formally are defined as
follows.

Cylinder-intersection. The l-dimensional cylinder-
intersection with radius (R1, . . . , Rl) is defined as
following set [1],

CR1...Rl =
{(x1, . . . , xl) ∈ Rl|∀1 ≤ i ≤ l : Σit=1x

2
t ≤ R2

i }. (15)

Bounding function. For initial radius R, the vec-
tor of R = [R1, . . . ,Rβ ] with condition of 0 ≤
R1 ≤ R2 ≤ · · · ≤ Rβ = 1, defines a bounded
cylinder-intersections with radius (R1, . . . , Rl) =
(R×R1, . . . , R×Rl) for 1 ≤ l ≤ β, and consequently
can be used to prune the enumeration trees [1].

GNR-pruning (Sound pruning). For a lattice block
of B[j,k] = (bj , bj+1, . . . , bk) and the coefficient
vector x ∈ Zβ , GNR pruning replaces the in-
equalities of ‖πk+1−i(xB[j,k])‖≤ R for 1 ≤ i ≤
k − j + 1 (as a bounded ball in full-enumeration) by
‖πk+1−i(xB[j,k])‖≤ RiR as a cylinder-intersection,
where 0 ≤ R1 ≤ . . . ≤ Rk−j+1 = 1 [2].

The pseudo-code of the sound pruned enumeration
function (GNR-enumeration) can be studied in Ap-
pendix B from paper [1]. Based on the definition of
GNR-pruning, this paper uses the concepts of final
solution vector (usually referred as solution vector)
as follows.

Final solution vector. For a lattice block of B[j,k] =
(bj , bj+1, . . . , bk) and the coefficient vector x ∈ Zβ ,
the projected vector of πj(xB[j,k]) where satisfies
the condition of ‖πj(xB[j,k])‖≤ Rk−j+1R is a final
solution vector.

Following fact is a clear proposition on updating

radius in GNR pruned enumeration.

Fact 1. If there are some vectors in cylinder-
intersection of a GNR pruned enumeration over Lβ ,
the shortest one is never eliminated by updating
radius and finally be returned as the response of
enumeration.

The success probability is one of the main features of
bounding function, which is defined as follows [1].

Success probability of bounding function. For any lat-
tice block of [bj , bj+1, . . . , bk], initial enumeration ra-
dius R and bounding function R, if there is just one
lattice vector v in n-dimensional ball with radius of
R (i.e., ‖v‖≤ R), the probability of finding solution
vector v after GNR pruning by R in enumeration tree
is defined as the success probability of R, which is
shown by psucc(R).

For analysis of the success probability of GNR bound-
ing function, Gama et al. uses following heuristic as-
sumptions (in addition to Gaussian heuristic) [1].

Heuristic 2. “The distribution of the coordinates of
the target vector v, when written in the normalized
Gram-Schmidt basis (b∗1/‖b∗1‖, . . . , b∗n/‖b∗n‖) of the in-
put basis, look like those of a uniformly distributed
vector of norm ‖v‖”.

Heuristic 3. “The distribution of the normalized
Gram-Schmidt orthogonalized basis

(b∗1/‖b∗1‖, . . . , b∗n/‖b∗n‖)

of a random reduced basis (b1, . . . , bn) looks like that
of a uniformly distributed orthogonal matrix”.

The coefficient of orthonormal basis vector z =
(z1, z2, . . . , zk−j+1=d) in Heuristic 2, which corre-
sponds with the target lattice vector of v, can be for-
mulated as follows (note that, b∗i /‖b∗i ‖ is the ith vector
of the orthonormal basis of (b∗1/‖b∗1‖, . . . , b∗n/‖b∗n‖) [1],

v = [z1, . . . , zd]


b∗k/‖b∗k‖

...

b∗j/‖b∗j‖

 = [v1, . . . , vm]. (16)

The coordinates of the coefficient vector z are re-
versed (i.e., zi corresponds to b∗k−i+1/‖b∗k−i+1‖), while
this is clear that ‖z‖= ‖v‖ [1]. Also, the vector
u = (u1, u2, . . . , uk−j+1=d) = (z1/R, z2/R, . . . , zd/R)
is chosen to be uniformly distributed from the d-
dimensional ball of the radius 1 (by the notation
of u ∼Balld). By using these formulations, success
probability of a GNR bounding function R can be
formally defined as follows [1]

psucc(R) = Pru∼Balld

(
∀i ∈ [1, d],

∑i
l=1 u

2
l ≤ R2

i /R
2
d

)
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= Pru∼Balld

(
∀i ∈ [1, d],

∑i
l=1 u

2
l ≤ R2

i

)
(17)

Note: Since in last block of BKZ, the size of blocks
become less than initial block size of β, so this paper
usually uses variable size of d = k−j+1 to emphasize
this fact.

At the end of this subsection, two families of bound-
ing function including linear-pruning and piecewise-
liner pruning, are defined as follows (here, assume
that the target vectors have the norm of ‖v‖= R) [1].

Linear pruning. The linear bounding function
is defined as R2

i = i/β, for i = 1, . . . , β [1].
The uniformly random coefficient vector z =
(z1, z2, . . . , zk−j+1=d) with length R in Heuristic 2,
has the expected squared norm of its projection on
the first coordinates of i exactly as (i/β)R2 [1]. Also,
since for vector u, which is uniformly distributed
in the unit sphere Ballβ , paper [1] shows that
Pru∼Ballβ

(
∀j ∈ [1, β],

∑j
l=1 u

2
l ≤ j/β

)
= 1/β [1].

Piecewise-linear pruning. The piecewise-linear bound-
ing function is defined as R2

i = 2ia/β, for i =
1, . . . , β/2 and otherwise R2

i = 2a − 1 + 2i(1 −
a)/β, where a > 0 [1]. In paper [1], it is shown
that the success probability of R is roughly ≥
Ω
(
β−5/2(4a(1− a))β/4

)
.

Linear pruning is an instance of piecewise-linear prun-
ing for parameter of a = 1/2. In this paper, linear
pruning bounding function is represented by Rlinear.
By using linear pruning, the function of F(d) (which
is frequently used in this paper) is defined as follows

F(d) ≈ 1
psucc(Rlinear) ∈ O(d). (18)

Note: However success probability of linear pruning
bounding function can be estimated by Monte-Carlo
method with condition of (25) or by using the efficient
technique of Chen-Nguyen in Algorithm 7 from [2],
the function F(d) can be estimated by our following
approximation of F(d) ≈ d

3.4+(d−50)/(8d) for 50 < d <
300.

2.5 Cost Analysis of GNR-enumeration

The estimation of total nodes in sound pruned enu-
meration tree is the same as the full-enumeration
(Schnorr-Euchner enumeration), except that, instead
of using balls of radius R, sound pruned enumer-
ation employs the cylinder-intersections of radius
(R1, . . . , Rl) = (R1R, . . . ,RlR) for 1 ≤ l ≤ β. The
enumeration radius R is defined in [2] as follows (by
some partial modification)

R =
{

min(
√

Υgh(L[j,k]), ‖b∗j‖), if k − j + 1 ≥ 30

‖b∗j‖, otherwise.
(19)

where gh(L[j,k]) is defined by relation (7). In reminder
of this paper, the enumeration radius is determined
by parameter of rfac, as follows

R = rfacgh(L) (20)

Also by using relation (20) and (19), for block size of
k − j > 30, the value of rfac is defined as follows

rfac = min(
√

Υgh(L[j,k]), ‖b∗j‖)/gh(L[j,k]). (21)

By using Heuristic 1 (Gaussian heuristic), the number
of nodes at the level l of the sound pruned enumera-
tion tree can be estimated as follows

H
′

l = 1
2

VR1,...,Rl∏k

i=k−l+1
‖b∗
i
‖

= 1
2

RlVR1,...,Rl∏k

i=k−l+1
‖b∗
i
‖
. (22)

The volume of CR1...Rl can be defined as follows

VR1...Rl = Vol(CR1...Rl)
= Vl(R) Pru∼Balll

(
∀j ∈ [1, l],

∑j
i=1 u

2
i ≤ R2

j

)
. (23)

Therefore, the total number of nodes in the sound
pruned enumeration tree can be estimated as

N ′(L[j,k],R′, R) ≈
∑k−j+1
l=1 H

′

l ≈∑β
l=1 Pru∼Balll

(
∀j ∈ [1, l],

∑j
i=1 u

2
i ≤ R2

j

)
Hl. (24)

The success probability of the bounding function
R can be estimated by Monte-Carlo simulation (see
Algorithm 8 in paper [2]) which is used in some tests
of this paper, but it is not so efficient, since the num-
ber of samples required in this estimation is propor-
tional to 1/psucc(R) [1]. The Monte-Carlo estimation
of success probability is defined by at least 1/psucc(R)
sampling of random vector u ∼ Balld, and counting
the times of success of satisfying the bounding func-
tion constraint which is defined as follows [2] (note
that R = Rd is the enumeration radius)(

∀i ∈ [1, d],
∑i
l=1 z

2
l ≤ R2

iR
2
d

)
≡
(
∀i ∈ [1, d],

∑i
l=1 u

2
l ≤

R2
i

R2
d

= R2
i

)
≡
(
∀i ∈ [1, d],

∑i
l=1

ωd−l+1∑d

t=1
ωt
≤ R2

i

)
(25)

where ωi ← Gamma(1/2, 2).

2.6 Static Success Probability & Dynamic
Success Frequency

The original definition of success probability in Sec-
tion 2.4, can be applied ideally, when the enumer-
ation radius is nearly equal to the shortest vector
length (i.e., R ≈ λ1). By using relation (20), Roger’s
theorem [15] determines the approximate number of
rfac

β/2 solution vector pairs (v,−v) with in the ball
of radius R = rfacgh(L) for sufficiently big block
size β. Roger’s theorem says that, if rfac > 1 then
the success frequency of bounding function R is more
than it’s success probability, by factor of ≈ rfac

β/2.
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Note: Since Roger’s theorem defines this expectation
in average-case, the factor of CRoger is used as an
abstract notation (not a real parameter) to emphasize
the variance for different lattice blocks and parameter
set, however CRoger is set to be 1 in this paper.

The definition of static success probability is the
same as the original definition of success probability
(which comes in Section 2.4 and is defined at first in
[1]) when enumeration radius R is set to be λ1 (i.e.,
the norm of shortest vector). This definition can be
declared in following forms.

Static success probability of bounding function. For any
lattice block of [bj , bj+1, . . . , bk], initial enumeration
radius R = λ1 and bounding function R, the static
success probability of R is defined as the probability
of finding solution vector v (with length of λ1) after
GNR pruning by bounding functionR in enumeration
tree.

By the original definition of success probability (which
comes in Section 2.4 and at first is defined in [1]),
this is clear that, in this definition, there is just one
lattice vector v with length of λ1 in n-dimensional
ball with radius of R (i.e., ‖v‖≤ R = λ1). The static
success probability is formulated as follows:

pnew0
succ (L[1,d],R, R) =

Pru∼Balld

(
∀j ∈ [1, d],

∑j
i=1 u

2
i ≤ R2

j

)
. (26)

Note: The definition of success probability in Section
2.4 and relation (17) corresponds to static success
probability pnew0

succ which is defined in (26).

In other side, by using Roger’s theorem, dynamic
success frequency can be defined as follows.

Dynamic success frequency of bounding function.
For any lattice block of L = [bj , bj+1, . . . , bk], initial
enumeration radius R = rfacgh(L) and bounding
function R with static success probability psucc(R),
there are rfac

β/2 solution vectors in n-dimensional
ball with radius of R, consequently the frequency
of solution vectors v in enumeration tree (where
‖v‖≤ R) after GNR-pruning by R is estimated by
psucc(R)rfac

β/2.

The dynamic success frequency is formulated as fol-
lows (while pnew0

succ is defined in (26))

fnew0
succ (L[1,d],R, R) = CRoger

rfacβ
2 pnew0

succ (L[1,d],R, R).
(27)

Note: However GNR-enumeration uses updating ra-
dius, if this is assumed that there is no updating
radius, then the dynamic success frequency of bound-
ing function can be assumed as the exact number of
solutions which be visited in enumeration function,
else this dynamic success frequency would be more

than the exact number of solutions visited in GNR-
enumeration.

Note: Dynamic success frequency would be any real
number, even much bigger than 1.

2.7 Norm of Full/Pruned Enumeration
Solution

For high dimensional lattice basis, it is assumed that
the basis tends to be random [2]. In fact, for exact
definition of random lattices, it can be shown that as
the lattice dimension tends to inanity, the expected
value of the best vector of the lattice converges to
gh(L[j,k]) [11, 15]. Currently, just general bounds
from a theoretical point of view are known on how
small λ1(L[j,k]) should be. Chen and Nguyen per-
formed some experimental tests which show that for
the sufficiently large block size β, the norm of the
best vector is nearly around gh(L[j,k]) (see Figure 4
in [2]). Also Chen and Nguyen [2] performed some
experimental tests to compare the final solution norm
of enumeration with value of gh(L[j,k]), depending on
the starting index j of a local block for one round of
BKZ, so that for the first indices j, the final norm is
significantly lower than gh(L[j,k]). This behaviour of
solution norm in running of BKZ is “head concavity
phenomenon” in BKZ, which is discussed in [3]. How-
ever, for the last indices (tail of GSO norms), the GSO
norms are significantly larger (which can be named
as “tail convexity”). Finally, in the middle indices,
which includes the most of the enumeration calls, the
solution norms are mostly bounded as follows [2]

0.95 gh(L[j,k]) ≤ ‖v‖≤ 1.05 gh(L[j,k]). (28)

This third behaviour of BKZ, can be named as “ran-
dom manner of middle lattice blocks”. To the best
of our knowledge, this test in paper [2] is performed
with some block sizes ≤ 70. It is believed in this paper
that these experiments correspond to the behaviour
of GSA, which is not satisfied exactly in the first and
last indexes [16]. There are several works modifying
the reduction algorithms so that their outputs satisfy
the GSA, but it seems difficult to obtain GSA shape
easily in practice [4, 13, 16]. Also in the test of Chen
and Nguyen (see Figure 3 in [2]), the average norm
of λ1 in the blocks L[j,k] from the basis B during
the BKZ reduction, in the middle indices, is almost
gh(L[j,k]). Besides the blocks of a basis in running of
BKZ reduction in the experimental test of [2], also the
best norm of solutions for Darmstadt SVP challenges
[17, 18] (which are assumed to be close to λ1) roughly
verify the bound of (28) for the random lattice blocks.

Although such experimental results which are
pointed at the beginning of this subsection are so
useful, some strong theoretical evidence is needed to
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define the probability distribution of enumeration
solution norms. In fact, the probability distribution
of best solution norm for a lattice basis/block is
stated in Chen’s thesis [11], as following theorem [3].

Theorem 1. For random lattice L1 with rank n and
unit volume, the distribution of Vn(1)λ1(L1)n con-
verges to distribution of Expo(1/2) as n→∞.

By using λ1(L) = X1/ngh(L) which X sampled from
Expo(1/2), the expected value and variance for λ1(L)
are computed as follows [3],

E [λ1(L)] = 21/nΓ(1 + 1/n)gh(L), (29)

V [λ1(L)] = 2 2
n

(
Γ(1 + 2

n )− Γ(1 + 1
n )2
)

gh(L)2
,

(30)

also for lattices with large n [3],

E [λ1(L)] ≈ (1 + 0.116/n+ o(1/n))gh(L),

V [λ1(L)] ≈ π2

6n2 (1 + o(1))gh(L)2.

The random variable of λ1(L) for lattices of rank d
can be sampled by following formula [3],

λ1(L)←
(
Xvol(L)
Vd(1)

)1/d
, whereX ← Expo(1/2). (31)

Note: Theorem 1 should be considered for full-
enumeration (i.e., a GNR enumeration function in-
cluding a bounding function with static success prob-
ability 1 or dynamic success frequency of rfac

β/2),
not for any pruned enumeration with any success
probability.

Since for high block sizes, pruned enumeration is
usually used, so the shortest vector of each lattice
block may not be returned by enumeration function.
In paper [4], for the lattice block L[j,k] (with dimen-
sion of β), the expected norm of the solution vec-
tor of a pruned enumerations is determined by using
Lemma 1 of paper [4], which computes the expected
value of the shortest length of vectors from origin to
the points uniformly sampled from the β-dimensional
unit ball as follows (see proof in [4])

Lemma 1. For K points x1, x2, . . . , xk which are
uniformly sampled from the β-dimensional unit ball,
the expected value of the shortest length of vectors
from origin to these points can be estimated as follows
[4],

E
[

mini∈{1,...,K}
‖xi‖≤1

‖xi‖

]
= KBeta

(
K, β+1

β

)
= K

∫ 1
0 t

1/β(1− t)K−1
dt. (32)

In particular, for K = 1, this expected value is
β/(β + 1) [4]. Therefore, for R = rfacgh(Lβ), the
expected norm of the solution vector returned by
pruned enumeration with success probability 2/rfac

β

can be computed as follows [4],

E′[‖v‖] = β

β + 1rfacgh(Lβ).

(33)

3 Our Sampling Method of
Enumeration Solution

One of main components in design of BKZ-simulation
with GNR-pruned enumeration as SVP-solver is sam-
pling the enumeration solution. Enumeration solution
v is represented in former BKZ-simulation just by es-
timating the expected value of the norm of this solu-
tion as ‖v‖. This paper tries to introduce an efficient
and exact sampling method for enumeration solution
v, in the way that samples both norm and coefficient
vectors of enumeration solution. In fact, the GNR enu-
meration function over each lattice block L[bj ,...,bk] in
BKZ algorithm returns the coefficient vector y, which
can be used to compute the solution vector v by lin-
ear combination of this lattice block vectors as v =
k∑
l=j

ylbl. To the best of our knowledge, no precise and

explicit analysis of sampling the coefficient vector y is
considered in former BKZ-simulations. Also, no sam-
pling method for norm of GNR-pruned enumeration
solution with any success probability is introduced,
however paper [3] introduces a sampling method (see
line 14 of Algorithm 4 from paper [3]) which is stated
in Chen’s thesis [11] just for full-enumeration (see
Theorem 1 in Section 2.7), not for any GNR pruning
with any success probability. Also our approximation
of cost for GNR-enumeration by optimal bounding
function is introduced at the end of this section.

3.1 New Sampling Method for Solution
Norm

The expected norm of solution vector returned by
GNR-pruned enumeration with success probability
2/rfac

β can be estimated by following limit

E [‖v‖] = gh(Lβ)
rfacβ

limt→∞
∑t
i=1
(
rfac − iω + ω

2
)
×(

(rfac − iω + ω)β − (rfac − iω)β
)
, (34)

where ω = (rfac − 1)/t.

As mentioned in Section 2.7, the expected value for
(34) is equal to E′[‖v‖] in formula (33). Also, the
median for the norm of these solution vectors (for a
pruned enumeration with success probability 2/rfac

β)
can be estimated as follows

Median[‖v‖] = β

√
rfacβ+1

2 gh(Lβ). (35)

The condition of E [‖v‖] < Median[‖v‖] can be con-
sidered for enumeration solution v. As mentioned,
by using formula (33), this is possible to estimate
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the expected norm of the solution vector returned by
pruned enumeration with success probability 2/rfac

β ,
while sampling the norm of this solution vector for
success probability 2/rfac

β can be estimated simply
by our proposed lemma, as follows.

Lemma 2. The norm of solution vector v returned
by a pruned enumeration with radius factor of rfac
and success probability 2/rfac

β over lattice block Lβ
can be sampled by (36)

‖v‖= β

√
1 + rand[0...1](rfacβ − 1)gh(Lβ) (36)

See proof in Appendix B.1.

This lemma can be generalized for other success prob-
ability of P ≥ 2/rfac

β , by repeating this sampling
method and selecting the shortest one, however run-
ning time of this technique may be non-tolerable as
the number of solution vectors would be increased.
Here we generalize Lemma 2 for any success proba-
bility 0 < P ≤ 1 by an efficient and simple technique
in Lemma 3.

Lemma 3. If norm of shortest vector in lattice block
Lβ is less than enumeration radius R, the norm of
solution vector v which is returned by a pruned enu-
meration with radius factor of rfac and static success
probability P over lattice block Lβ can be sampled by

‖v‖=

1 : X1/βgh(Lβ), where X ← Expo(1/2), if P ≈ 1

2 : β
√

1 + rand[0...1]( 2
P
− 1)gh(Lβ), if 2

rfacβ
≤ P < 1

3 : β
√

1 + rand[0...1](rfacβ − 1)gh(Lβ), if P < 2
rfacβ

&

rand[0... 2
rfacβ

] ≤ P

4 : Un-Successfull, if P < 2
rfacβ

&rand[0... 2
rfacβ

] > P

(37)

See proof in Appendix B.2.

The pseudo-code of our efficient sampling algorithm
by Lemma 3 can be studied in Algorithm 2 from Ap-
pendix A.2. Furthermore, our following lemma deter-
mines the number of rounds which BKZβ algorithm
with GNR-enumeration and bounding function of R
and any dynamic success frequency of fsucc needs to
reach the quality of a basis which is reduced by BKZβ
algorithm with full-enumeration.

Lemma 4. For given block size of β, enumeration
radius R defined by (21) and initial radius parame-
ter rfac =

√
Υ = 1 + 1/Cr, the Hermite-factor of a

basis reduced by the rounds number of N ≤ C0/Cr
from BKZβ algorithm including GNR-enumeration
with dynamic success frequency of fsucc1 and the ex-
pected norm of 0 < E [‖v‖] = 1

φ(β,fsucc1) × R where
φ(β, fsucc1) = 1 + 1/C0 > 1, is equal to the Hermite-
factor of this basis after one round of BKZβ-reduction

with full-enumeration.

See proof in Appendix B.3.

Note: Full-enumeration corresponds with GNR-
enumeration including a bounding function R with
static success probability of psucc(R) = 1 and dy-
namic success frequency of fsucc0 = rfac

β/2 (see our
definitions in Section 2.6).

Note: By using our definitions in Section 2.6, dy-
namic success frequency of fsucc1 = 1 corresponds
with static success probability of bounding functionR
as psucc(R) = 2/rfac

β and consequently φ(β, fsucc1 =
1) = β/(β + 1) (see relation (33) in Section 2.7).

Note: For GNR pruned enumeration including a
bounding function with dynamic success frequency
of fsucc1 = 1 (i.e., static success probability of
psucc(R) = 2/rfac

β), initial enumeration radius with
rfac =

√
Υ = 1.05 and parameters of Cr = 20 and

C0 = β, the rounds number of N in Lemma 4 can be
estimated as N ≤ β/20.

Remark 2. Since (to the best of our knowledge) the
best time complexity for heuristically sieving algo-
rithm is O(2292β) with exponential space order [19],
which by Grover algorithm, this cost would be low-
ered to O(2265β) with exponential space, so the op-
timal cost SVP-oracles currently have exponential
time/space order and consequently for high dimen-
sional lattices, any high block sizes cannot be used
in BKZ reduction. This means that, as the lattice di-
mension tends to in?nity, β ∈ O(1) and consequently,
the rounds number of N in Lemma 4, for dynamic
success frequency fsucc ≥ 1, asymptotically belongs
to O(1).

3.2 Our Sampling Method for Coefficient
Vectors of Enumeration Solution

In this section, the structure and probability distribu-
tion of coefficient vectors corresponding with solution
vector v returned by GNR-enumeration are defined.
Consequently the sampling method of them are de-
signed, while to the best of our knowledge, no such
deep discussions for sampling these coefficient vec-
tors are considered in former BKZ-simulations. This
section includes following steps. In Section 3.2.1, the
structure of coefficient vectors of w and y is analyzed.
In Section 3.2.2, the estimation of index of last non-
zero coefficient in vector of w is introduced (which
is notated by g). In Section 3.2.3, the probability
distributions of coefficient vectors of w, z and y are
analysed, and sampling methods of them are intro-
duced. Finally some complementary discussions on
coefficient vectors are introduced in Section 3.2.4.
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3.2.1 Structure of Coefficient Vector w
and y

By using Heuristic 2 and Heuristic 3, the uni-
form randomness of the coefficient vector z =
(z1, z2, . . . , zd) over the normalized Gram-Schmidt
basis (b∗d/‖b∗d‖, . . . , b∗1/‖b∗1‖) is assumed. Also, for the
enumeration radius R, the corresponding vector of
u = (u1, u2, . . . , ud) = (z1/R, z2/R, . . . , zd/R) can
be assumed to be uniformly distributed from the d-
dimensional ball with radius 1 (see Section 2.4). For
given lattice block L[1,d], the enumeration over this
block returns the solution vector v, where ‖v‖< ‖b∗1‖.
The solution vector v can be written by the coefficient
vector w = (zd/‖b∗1‖, . . . , z2/‖b∗d−1‖, z1/‖b∗d‖) on the
GSO block basis as follows (corresponding to (16))

v = (v1, . . . , vm) = (w1, . . . , wd)


b∗1
...

b∗d

 (38)

Note: The solution vector v from enumeration over
lattice block L[j,k] is a GSO projected vector which is
orthogonal over the previous basis vectors in L[1,j−1]
(remember that, here the notation of L[1,d] represents
L[j,k]).

By inserting the solution vector v at first of the
lattice block L[1,d] (which results in the block of
(v, b∗1, . . . , b∗d) with d+ 1 vectors), one of the vectors
from the GSO block (v, b∗1, . . . , b∗d) should be elimi-
nated after updating GSO norms of these d+ 1 vec-
tors. Lattice enumeration uses the integer coefficients
yi for enumerating over the projected lattice block
L[1,d], therefore the coefficients wi in vector w de-
pend on integer entries in the vector of y, as follows
(remember that, here the projection notation of π1(·)
represents πj(·)),

Note: The dimension of b∗i and v is m which differs
from the rank of lattice block (i.e., block size of d).

v = y×


π1(b1)

...

π1(bd)

 = y×


b∗1
...

b∗d +
∑d−1
i=1 µd,ib

∗
i

 (39)

where y = (y1, y2, . . . , yd).

v =(y1 +
d∑
i=2

yiµi,1)b∗1︸ ︷︷ ︸
zd

+ · · ·+ (yg +
d∑

i=g+1

yiµi,g)b∗g︸ ︷︷ ︸
zd−g+1

+ · · ·+

ydb
∗
d︸︷︷︸

z1

⇒

w =

y1 +
d∑
i=2

yiµi,1︸ ︷︷ ︸
w1

, . . . , yg +
d∑

i=g+1

yiµi,g︸ ︷︷ ︸
wg

, . . . , yd︸︷︷︸
wd


(40)

Consequently the following main theorem can be
introduced.

Theorem 2. The projected vector b∗g ∈ {b∗1, . . . , b∗d}
which is eliminated after inserting the enumeration
solution v, has the GSO norm of ‖b∗g‖≤ ‖v‖, and the
coefficient wg is always the last non-zero coefficient
in vector of w in lattice block of L[1,d], as follows

wg = yg = 1. (41)

See proof in Appendix B.4.

Based on (40), a zero coefficient of yi does not always
result in wi = 0, except for indices after the last non-
zero coefficient of yg.

3.2.2 Estimation of Last Non-zero Index g

In this section, the last non-zero index for vectors of
w and y (corresponding with first non-zero index for
vectors of z and u) would be determined statistically.
Lemma 5. After inserting the enumeration solution
v at the first of lattice block L[1,d], the vector of b1 is
never eliminated in updating GSO.

Proof. By using (19), the condition of ‖v‖< ‖b∗1‖ is
always true, while by using the fact of ‖b∗g‖≤ ‖v‖,
then ‖b∗g‖6= ‖b∗1‖ and consequently g > 1. �

If ‖b∗g‖2> R2R2
d−g+1 then the bounding function R

prunes all solution vectors of the lattice block with
last non-zero vector index g, and returns the solution
vectors with other last non-zero vector index, if there
is. Also following lemma motivates us for assuming
g = d when radius factor of rfac is not too small
Lemma 6. For block size d, the condition of ‖b∗g‖2>
R2R2

d−g+1 is never satisfied for a piecewise-linear
bounding function R with parameter 2(πe)2

d×rfac4 ≤ a.

See proof in Appendix B.5.

In fact, the concept behind the condition of ‖b∗g‖2≤
R2R2

d−g+1, formally can be defined by cut point in-
dex, as follows.

Cutting point. The enumeration cut point index is
defined as the last GSO norm index cut ∈ [1, d]
where ‖b∗cut‖2≤ R2R2

d−cut+1 and cut ≥ 2.

Remark 3. For an input lattice block L[1,d] and bound-
ing function R, the cutting point cut would be non-
negligibly smaller than d, just if this lattice block is
preprocessed too much, in the way that the quality of
GSO shape is too well (i.e., q-factor is too small) or
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the basis is formed by some special structures (such
as the one in Darmstadt lattice challenges, which has
exactly ‖b∗i ‖= 1 and consequently q = 1 in many last
GSO vector index i), or/and with an extremely small
success probability of R.

Surprisingly, this is possible to see some GNR enumer-
ations with cutting point in first block indices, which
nearly always does not lead to an enumeration solu-
tion (such as in Darmstadt lattice challenges)! The
pseudo-code of generating a piecewise-linear bounding
function with a specific success probability and deter-
mining the cutting point of the generated bounding
function is introduced in Algorithm 3 from Appendix
A.3. Following lemma introduces an expectation for
eliminated vector bg, in full-enumerations.

Lemma 7. Under assumption of Heuristic 2 for full
enumerations, the statistical expected vector of the
lattice block which is eliminated after updating GSO
is bg ≈ bd (i.e., g ≈ cut = d).

Proof. The proof is trivial, since Heuristic 2 states
that, the solution vector v is a uniformly distributed
vector of norm ‖v‖ on the normalized Gram-Schmidt
basis (b∗1/‖b∗1‖, . . . , b∗d/‖b∗d‖), so the chance of every
GSO vector of b∗i to be used in linear combination of
v is ≈ 1 (for this end, imagine that a unit vector in
two dimensional circle with unit radius is uniformly
distributed, now the probability of each two perpen-
dicular vertices in generating this vector in the unit-
radius circle is ≈ 1). At result, the last non-zero entry
of y would be yd with probability ≈ 1, thereby the
estimation of bg ≈ bd can be concluded. �

According to Heuristic 2 and Heuristic 3, for sampling
g, only this is needed to determine the probability
of whether an integer coefficient yi to be zero or not.
If the probability of that an integer coefficient yi is
none-zero, is assumed to be p, then

Pr(g = i) = p(1−p)d−i
1−(1−p)d ⇒

Pr(g = i) = p(1−p)d−i
1−(1−p)d−1 , where i ≥ 2. (42)

If the probability of whether an integer coefficient yi
to be zero or not, is assumed to be p ≈ 1/2, then by
using (42) and Lemma 5, the vector bi (where 1 ≤ i ≤
cut) with probability of Pr(g = i) = 2i−2/(2d−1 −
1) is the eliminated vector, also for block size d ≥
20, the expected value of index for the eliminated
vector is E [g] =

∑cut
i=1(2i−2i)/(2d−1 − 1) ≈ cut− 1.

Accordingly, the index of g can be sampled by

g =
⌊
log2

(
(2d − 1)rand[2/(2d−1),...,1]

)⌋
+ 1. (43)

There are massive observations in Section 4.1 with
useful statistical results for index g in lattice enumer-
ation over random lattice blocks which are reduced
by BKZβ=45 in different settings. For determining

PDF (probability distribution function) of g, the ex-
periments in Section 4.1 are not sufficient and needed
to be applied for sufficiently big block sizes. Instead
of using experimental results for determining this
PDF, by using the Roger’s theorem for sufficiently
big block sizes, the probability distribution of g can
be estimated in Lemma 8.

Lemma 8. For a GNR-enumeration with radius R =
rfacgh(L[1,d]) over lattice block of L[1,d] with quality
q, sufficiently big block size d and cut point index
cut, the probability distribution of g for the solution
vectors v which is returned from this enumeration is
estimated as follows

Pr(g = i) = rfac
i−d(d/i)i/2×

(‖b∗1‖...‖b
∗
d‖)

i
d−‖b∗i ‖(‖b

∗
1‖...‖b

∗
d‖)

i−1
d

√
ii

(i−1)i−1d rfac2

(‖b∗1‖...‖b∗i ‖)
(44)

≈ rfac
i−d
√

(dqi−d/i)i(1−
√

iiqd−2i+1

(i−1)i−1d rfac2 )

for rfac ≥
gh(L[1,i])
gh(L[1,d]) and i ≤ cut,

else Pr(g = i) = 0.

See proof in Appendix B.6.

For sufficiently big block sizes, the expected value of
g is predicted as E [g] ≈ d and corresponding variance
of V [g] is predicted to be negligible. Our experimen-
tal tests in Section 4.1 gives some useful information
on statistical measures of g in enumeration successes
of actual running BKZβ=45. Also a simple comparison
of formula (44) in Lemma 8 with formula (42) is intro-
duced in Figure 2 from Section 4.1 for dimension 60.

Note: Although the first vectors of block usually are
prone to violate the condition of ‖b∗i ‖≤ ‖v‖, for suffi-
ciently high block sizes, the probability of these vec-
tors to be selected as the eliminated vector would be
nearly zero, which is consistent with Lemma 8.

Note: The probability distribution of g in Lemma 8,
is consistent with Heuristic 2, relation (42), Lemma
7, and our massive observations in Section 4.1.

Note: For an input enumeration radius R =
rfacgh(L[1,d]), the enumeration radius factor rfac is
decreased for smaller block sizes i in L[1,i], since the
Gaussian heuristic is increased for this smaller block
sizes, i.e., gh(L[1,d]) < gh(L[1,i]); Consequently, by
using the probability distribution of solution vector
norms in Theorem 1, this is probable that there are no
solutions in these smaller block sizes! Therefore the
condition of rfac > gh(L[1,i])/gh(L[1,d]) keeps the
use of this probability distribution (44) just for the
solutions (with last non-zero index g) whose norms
are bigger than gh(L[1,g]). Accordingly, the relation
(44) is found to be consistent with Theorem 1 too.

By use of Lemma 8 (and Lemma 7), the following
corollary can introduce the approximate index of cut
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in average-case, if there is an enumeration solution.

Corollary 1 . If GNR enumeration returns a solution
vector, this is expected to g ≈ cut ≈ d in average-
case.

Also Corollary 1 is consistent with Remark 3. After de-
termining the probability distribution of g in Lemma
8, how many times should parameter g be sampled
until corresponding constraints in this lemma would
be satisfied? The number of samples of index g is K
which is the number of expected solutions existing in
the polytope of bounding function R (which is esti-
mated by dynamic success frequency). Our proposed
method for sampling the index of g can be studied in
Algorithm 4 from Appendix A.4.

3.2.3 Our Sampling Method of Vector w

In this section, the sampling method for coefficient
vector w (and consequently vector z) would be in-
troduced. One of the main phase in this step is to
sample a uniformly-distributed unit vector on a d-
dimensional unit ball, which can be estimated in Re-
mark 4 as follows.

Remark 4. For given random variable X =
(X1,X2, . . . ,Xd) iid∼ N (0, 1), by assuming the vector
of X/

√
X 2

1 + · · ·+ X 2
d as a uniformly-distributed

unit vector on the surface of d-dimensional unit-radius
sphere, the formula (45) samples the vector of w
for a typical GSO lattice block [b∗1, b∗2, . . . , b∗g, . . . , b∗d]
under a full-enumeration

wi ← Xi
√

‖v‖2−‖b∗g‖2

‖b∗
i
‖2
∑g−1

t=1
X 2
t

, (45)

where Xi ∼ N (0, 1). It is clear that, the corresponding
vector z can be sampled by Remark 4 as follows

zd−i+1 ← Xi
√
‖v‖2−‖b∗g‖2∑g−1

t=1
X 2
t

, (46)

where Xi ∼ N (0, 1). Also by defining the random
variable of ωi = X 2

i , where ωi ← Gamma(1/2, 2), the
relations (45) and (46) can be re-defined as follows

wi ← (−1)brand[0...2)c
√

ωi(‖v‖2−‖b∗g‖2)
‖b∗
i
‖2
∑g−1

t=1
ωt

, (47)

where ωi ← Gamma(1/2, 2),

zd−i+1 ← (−1)brand[0...2)c
√

ωi(‖v‖2−‖b∗g‖2)∑g−1
t=1

ωt
, (48)

where ωi ← Gamma(1/2, 2). The Monte-Carlo es-
timation of success probability for bounding func-
tion in (25) is consistent with Remark 4 (see [2]).
The random vector z under Heuristic 2 and Heuris-
tic 3, is a uniformly distributed vector with norm of

√
‖v‖2−‖b∗g‖2 over the normalized Gram-Schmidt lat-

tice block (b∗d/‖b∗d‖, . . . , b∗1/‖b∗1‖), and it’s entries as
random variable of zt are dependent whose expected
values are estimated in Lemma 9.

Lemma 9. For a cut point index of cut, also for a
solution vector v returned by a full-enumeration over
a typical GSO lattice block [b∗1, b∗2, . . . , b∗g, . . . , b∗d], the
expected value for all entries of z2

x is approximately
similar to each other as follows,

E
[
z2
x

]
≈ ‖v‖

2−‖b∗g‖
2

cut , (49)

where x ∈ {d− g + 2, . . . , d}.

See proof in Appendix B.7.

Corollary 2 . For an enumeration solution vector v
returned by a full-enumeration over a typical GSO
lattice block [b∗1, b∗2, . . . , b∗g, . . . , b∗d], the expected value
for entries of w2

x is approximated with an increasing
slope as follows

E
[
w2
x

]
≈ ‖v‖

2−‖b∗g‖
2

cut‖b∗x‖2 , where x ∈ {1, . . . , g − 1}. (50)

The running time of rejection sampling for coefficient
vector w (and vector z) with number of ≈ 1/psucc(R)
rejections before one success is not tolerable for bound-
ing functions with asymptotically small success prob-
abilities. Therefore, some efficient techniques for this
sampling should be used, however the accuracy of
sampling distribution would be lowered a bit. Our
idea for sampling coefficient vector w originates from
following lemma (note that, ‖v‖ represents the solu-
tion norm and R represents the enumeration radius).
Lemma 10. Under condition of ‖v‖2/R2 ≈ 1 − ε
where ε ≈ O(1/d) and by assumption of uniform dis-
tribution for coefficient vector z on the normalized
orthogonal matrix (b∗d/‖b∗d‖, . . . , b∗1/‖b∗1‖), when ran-
dom variable w2

l = z2
t /‖b∗l ‖2 would be sampled by

(47) under full-enumeration, the expected value of
Xi =

∑i
t=1 z

2
t /R

2 can be closely approximated by en-
tries of linear pruned bounding function Rlinear (for
l = d− t+ 1).

See proof in Appendix B.8. As mentioned in Section
2.4, linear pruning is an instance of piecewise-linear
pruning by setting parameter of a = 1/2. Our pro-
posed approximate method of sampling vector w can
be generalized for piecewise-linear pruning (instead
of linear pruning), which Claim 1 states the main
idea behind it

Claim 1. Under the condition of ‖v‖2/R2 ≈
1 − ε where ε ≈ O(1/d), for a typical GSO block
(b∗1, b∗2, . . . , b∗g, . . . , b∗d) and piecewise-linear bounding
function R′ with parameter a′ , if random variable
of w2

j = z2
t /‖b∗j‖2 would be sampled by rejection

sampling in relation (47), then the expected value of
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random variable Xi =
i∑
t=1

z2
t /R

2 which is bounded

by R′i
2
, can be approximated by a piecewise-linear

bounding function R (with parameter a) and static
success probability of psucc(R) = psucc(R′)/F(d),
where function psucc is defined in (17) and function
F is defined in (18).

Claim 1 introduces the approximate expected value

for Xi =
i∑
t=1

z2
t /R

2 and consequently for entries of z2
t ,

while this is preferred for BKZ-simulations to use a
statistical random sampling from (48) bounded by R′ .
For this end, a suitable statistical sampling method
with sufficiently exact PDF should be used instead
of just approximate expected values of z2

t . Note that,
by using (49) and (50), the approximate expected
values for entries of z2

t can be simply modified into
approximate expected values for entries of w2

i . This
is clear that, Claim 1 is proved in Lemma 10 just for
piecewise-linear bounding functionR′ with parameter
a′ = 1 (corresponding with full-enumeration). Lemma
11 introduces a sampling technique for coefficient
vector z, based on Claim 1, in the way that this
sampling method (Lemma 11) claims to be equivalent
with rejection sampling by using (48) for coefficient

vector z (while random variable Xi =
i∑
t=1

z2
t /R

2 is

bounded by entries of R′i from bounding function R′

in Claim 1). Our sampling method by using Claim
1 and Lemma 11 which is referred as “Our sampling
method 1” would be verified in Section 4.2.1 (also
this sampling method is generalized to “Our sampling
method 2” in Section 4.2.2 and Section 4.2.3).

Lemma 11. Under condition of ‖v‖2/R2 ≈
1 − ε where ε ≈ O(1/d), for a typical GSO block
(b∗1, b∗2, . . . , b∗g, . . . , b∗d), and piecewise-linear bounding
function R, if the random variable of w2

l = z2
t /‖b∗l ‖2

would be sampled by formula (51), then the expected

value for random variable Xi =
i∑
t=1

z2
t /R

2 can be

closely approximated by R2
i

w2
l =

(1−a) ωl
(
‖v‖2−‖b∗g‖

2
)

‖b∗
l
‖2

(
(1−a)

b d2 c∑
t=1

ωt+a
g−1∑

t=b d2 c+1

ωt

) , for 1 ≤ l ≤ b d2 c

a ωl

(
‖v‖2−‖b∗g‖

2
)

‖b∗
l
‖2

(
(1−a)

b d2 c∑
t=1

ωt+a
g−1∑

t=b d2 c+1

ωt

) , for b d2 c < l ≤ g − 1

1, for l = g

0, for g < l ≤ d
(51)

where l = d − t + 1, R with parameter of a and

ωi ← Gamma(1/2, 2).

See proof in Appendix B.9.

Note: By using (47), the sign of entries of wl in vec-
tor w from formula (51), can be set by factor of
(−1)brand[0...2)c.

Lemma 11 by using Claim 1 introduces a sampling
method for coefficient vector w which tries to sam-
ples the random variable of Xi =

i∑
t=1

z2
t /R

2 as the

same as original sampling method of (48) which is
bounded by bounding function R′ . Our test results
in Test 1 from Section 4.2.1 show that our proposed
sampling method by Claim 1 and Lemma 11 is nearly
close to the original sampling method by (48) which
is bounded by bounding function R′ . Note that, the
condition of ‖v‖2/R2 ≈ 1− ε where ε ≈ O(1/d) for
our proposed sampling method emphasizes that the
enumeration radius should be neared to solution norm.
In fact, when the radius factor of rfac is sufficiently
close to 1 together with any success probability of
bounding function, or when there is any radius fac-
tor of rfac with small success probability of current
bounding function, this condition (the condition of
‖v‖2/R2 ≈ 1− ε where ε ≈ O(1/d)) can be observed.
The pseudo-code of this sampling method can be
seen in Algorithm 5 from Appendix A.5 (which imple-
ments our sampling method 1; also see Test 1 from
Section 4.2.1).

In fact, our sampling method by Lemma 11 and
Claim 1 is just introduced for piecewise-linear bound-
ing functions. Algorithm 6 in Appendix A.5, which
is referred as “Our sampling method 2”, tries to gen-
eralize Algorithm 5 to work with any type of bound-
ing function, any success probability and any radius
factor rfac. Lines 1-6 in Algorithm 6 do this general-
ization by use of a simple transformation. Our test
results in Test 2 and Test 3 from Section 4.2.2 and
Section 4.2.3, show that the accuracy of our sampling
method 2 is not acceptable in all settings and should
be revised for better exactness in further studies!

3.2.4 Complementary Discussions on
Coefficient Vectors

Another measurement which gives some useful infor-
mation about PDF of coefficient vector z (and vector

w) is median of random variable of Xi =
i∑
t=1

z2
t /R

2,

which is defined following lemma.
Lemma 12. For a GSO block (b∗1, b∗2, . . . , b∗g, . . . , b∗d)
and enumeration radii R, if the random variable of
w2
l = z2

t /‖b∗l ‖2 would be sampled by (47), the median
of random variable X which is bounded by bounding

function R′i (where Xi =
i∑
t=1

z2
t /R

2), can be approxi-
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mated by set of vectors in (52)

Median[X] ∈ {x| for 1 ≤ i ≤ d : xi ≤ R
′

i &
psucc(x) = 1

2 psucc(R′)} (52)

Proof. This proof is trivial and comes from the original
definition of median measurement. �

Note: There are too many medians for random vari-
able X which is bounded by a bounding function R′

(even if R′ is a piecewise-linear bounding function,
the shape of entries in one of these medians would be
in the form of a piecewise-linear bounding function
with dimension d).

At the end of this section, note that the coefficient
vector w originally is defined in a discrete way, based
on integer vector y. There is no polynomial time
method to find such integer vector y precisely, un-
less there is a polynomial time solver for correspond-
ing problem of approximate-SVP! A simple sampling
method of integer vector of y and corresponding dis-
crete vector w can be defined as following remark.

Remark 5. After sampling the continuous vector w
by use of (47) for L[1,d], the integer vector of y and
discrete value of entries of vector w as coefficient
vector of w′′ can be redefined as following way (the
sequence of operations is important in (53)).

[y, w′′ ] =
1 : yt ←

⌊
wt −

d∑
i=t+1

yiµi,t

⌉
, for t = d down to 1

2 : w′′t ← yt −
d∑

i=t+1
yiµi,t, for t = d down to 1

(53)

Some propositions in this paper which use the con-
tinuous vector w in their reasoning and proofs would
be affected by discrete version w′′ , such as, Lemma 9,
Corollary 2, Lemma 10, Lemma 11 and Claim 1. The
definition in Remark 5 introduces non-exact approxi-
mations, so the definitions of w and y are introduced
in a continuous way in this paper (instead of discrete
ones) as follows

yt ← wt −
d∑

i=t+1
yiµi,t, for t = d down to 1 (54)

The pseudo-code of rejection sampling method for
coefficient vector w and vector y can be studied in
Algorithm 5 (referred as “Our sampling method 1”)
and its generalized version in Algorithm 6 (referred
as “Our sampling method 2”) from Appendix A.5.

3.3 Approximate Cost of Enumeration by
Optimal Bounding Function

The estimation of cost for GNR-enumeration by op-
timal bounding function can be used to determine
the best running time of attacks which use this SVP-

solver (i.e., GNR-enumeration), such as BKZ algo-
rithm, and consequently better approximation for
bit-security of lattice-based cryptographic primitives
against these attacks. A formal definition of optimal
bounding function can be declared as follows.

Optimal bounding function. For input lattice block
L[j,k] and the enumeration radius R ≈ ‖v‖ where v
is expected to be the final solution vector of GNR-
enumeration with an input success probability P , the
optimal bounding function Ropt with success proba-
bility P can be defined formally as following set

Ropt ∈ {R| psucc(R) = P & ∀ R′ : N(L[j,k],R, R) ≤
N(L[j,k],R

′
, R)}, where R ≈ ‖v‖. (55)

The function of N(L[j,k],R, R) is defined in (24).

Note: This is possible to have many solutions in the
cylinder-intersection by bounding functionR, but just
one of them which is the shortest one among them is
the final solution and returned by GNR-enumeration
(see Fact 1).

Note: In our definition of optimal bounding function,
this is assumed that the enumeration radius is near
to final solution norm returned by GNR-enumeration
with an input success probability P , this means that,
for using optimal bounding function, the enumeration
radius should be forced to be R ≈ ‖v‖!

Following claim introduces an approximation for the
cost of GNR-enumeration by optimal bounding func-
tion.

Claim 2. For a typical lattice block L[j,k], the cost
of GNR-enumeration which is pruned by optimal
bounding functionRopt with static success probability
P which is defined in (55), can be approximated by
the cost of GNR-enumeration pruned by a bounding
function R1 whose entries are defined by expected

value of random variable of Xi =
i∑
t=1

z2
t /R

2 (i.e.,

R1[i] = E [Xi]) corresponding with final solution
vectors returned by a GNR-enumeration pruned by
arbitrary bounding function R2 with static success
probability P .

By using Claim 2, the cost of enumeration by optimal
bounding function can be approximated by using
a bounding function whose entries are equal to the

expected value of samples of Xi =
i∑
t=1

z2
t /R

2 in Our

sampling method 1 and Our sampling method 2 (and
these expected values of samples Xi refer to Ra3 with
piecewise-linear parameter of a3 in Algorithm 5 and
Algorithm 6). By using following approximations, the
reasoning behind Claim 2 would be clear more:

(1) Since Claim 2 is declared based on (55), this
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is forced that R ≈ ‖v‖, and the static success
probability of enumeration as P is nearly equiv-
alent to dynamic success frequency f succ.

(2) For a typical lattice block L[j,k], if an enumera-
tion by radius R ≈ ‖v‖ and an arbitrary bound-
ing function R2 with success probability P is
applied on that block and returns the final so-
lution vector v with coefficient vector of z and
value of Xi =

i∑
t=1

z2
t /R

2, then the best estima-

tion for optimal bounding functionRopt for that
block and success probability P can be equal
to Ropt = Xi + ε (which returns final solution
vector v again). Unfortunately this is not pos-
sible to find the exact final solution of an enu-
meration with success probability P simply! So
this is needed to use the approximate expected

value of E [Xi] = E
[
i∑
t=1

z2
t /R

2
]
for each input

lattice block (in fact, this is assumed that the

variance of Xi =
i∑
t=1

z2
t /R

2 is near to 0 which is

considered as a small approximation gap from
best estimation of optimal bounding function
in this reasoning).

(3) The probability distribution and expected value

of Xi =
i∑
t=1

z2
t /R

2 for different bounding func-

tions R2 (in Claim 2) with same success proba-
bility P is not similar in all settings (as shown
in Figure 5 for three different bounding func-
tions), however this is considered as another
small approximation gap from best estimation
for optimal bounding function in this reasoning.

4 Results for Our Sampling Methods
In this section, sufficient experimental/simulation re-
sults are introduced which try to verify our proposed
sampling methods of enumeration solution. All the
tests in this section are performed on the random
instances of SVP lattice challenges [17, 18] and Darm-
stadt lattice challenges [20, 21].

4.1 Results for Probability Distribution of g

To exhibit the statistical features of parameter of g as
last non-zero index in coefficient vectors of w and y,
which is defined in Theorem 2, we introduce some ex-
perimental tests by actual running of BKZβ=45 over
some random lattice bases with dimension 100 and
200, in different enumeration radius. Also, just the
successful enumerations are considered in results of
this test. By using excessive number of enumeration
successes in this test, the statistical parameters re-
lated to g are shown in Table 1. Table 1 includes
following parameters

• The parameter of E [g] represents the mean
value of parameter of g.
• The parameter of SD.[g] represents the standard
deviation of parameter of g;

• The parameter of E [rfac] represents the mean
value of rfac.
• The parameter of E [ZeroCount] represents the

mean value of number of zero entries in integer
coefficient vector y.

• The parameter of E [NoneZeroCount] repre-
sents the mean value of number of non-zero
entries in integer coefficient vector y.

• The parameter of E [|NonZero_yi|] represents
the mean value for absolute values of non-zero
entries in integer coefficient vector y.

• The parameter of E [|wi|] represents the mean
value for absolute values of the entries in coeffi-
cient vector w.

Furthermore, Figure 1 shows the relative frequency
distribution of g for local blocks with size of 45 in
this test (corresponding with Table 1), and tries to
make better sense about our proposed probability
distribution of g which is formulated in Lemma 8.

Figure 1. The probability of vector index i in blocks size of 45
to be set as g by experimental running of GNR-enumeration

Our experimental results in this test just make
better sense of coefficient vectors and last non-zero
index g, since for statistical analysis of coefficient vec-
tors of w, z, y and index of g, this is needed to test
sufficiently big block sizes. By using parameter of
E [g], SD.[g], E [ZeroCount], E [NoneZeroCount] and
E [|NonZero_yi|], we try to determine the probabil-
ity of that an integer coefficient yi is zero or not, and
consequently define a close approximation for prob-
ability of g = i, but the limitations of this test to-
gether with actual complexity of probability distribu-
tion for g avoid us for introducing this approximation.
In fact, Lemma 8 shows that, probability of g = i
depends on different parameters, such as block size of
β, enumeration radius factor of rfac, GSO norms of
basis as (‖b∗1‖, ‖b∗2‖, . . . , ‖b∗β‖). By using parameters
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Table 1. Experimental results for g in successful enumerations on blocks of BKZβ=45 over random lattices with dim. of 100 and 200

E [rfac] E [g] SD.[g] E [ZeroCount] E [NoneZeroCount] E [|NonZero_yi|] E [|wi|]

1.2 43.23 4.03 16.93 28.07 1.59 0.25

1.23 40.67 7.2 19.48 25.52 1.61 0.27

1.25 40.67 8.39 21.46 23.54 1.51 0.27

1.28 42.03 6.14 19.41 25.59 1.51 0.27

1.32 42.96 4.04 18.38 26.62 1.48 0.28

1.33 43.05 3.92 18.17 26.83 1.5 0.29

of E [g] and SD.[g] together with Figure 1, an approx-
imate view of the probability distribution of (44) in
Lemma 8 can be sensed. Finally, a simple comparison
of formula (44) in Lemma 8 as “prob_g2” (with pa-
rameters of β = 60, rfac ≈ 1.063 and GSO norms of
random/LLL-reduced/HKZ-reduced bases) and for-
mula (42) as “prob_g1” (with parameters of p = 0.5,
p = 0.6, p = 0.7, p = 0.8 and p = 0.9) is introduced
in Figure 2.

Figure 2. The probability of vector index i in blocks size of
60 to be set as g by using formula (42) and (44)

4.2 Results for Sampling Coefficient
Vectors of y, w and z

In this section, three tests are introduced which gen-
eralize our idea in this paper for sampling coefficient
vectors of w and z in BKZ-simulation with GNR-
pruning. For these three tests, the mean value of test

Table 2. Mean value of specifications from 20 random bases in
the sense of Darmstadt lattice challenge with dimension of 200

Features Value

Block size β 200

Squared GSO norm of first vector ‖b∗1‖2 12795.4

Squared GSO norm of g-th vector ‖b∗g‖2 0.000692

Gaussian heuristic of block gh(L)2 33.5495

Quality of input block (reduction quality) LLLδ≈0.99

Root-Hermite factor of input block ≈ 1.02123

q-factor of input block ≈ 1.043

Number of bases Up to 20

specifications from 20 random bases in the sense of
Darmstadt lattice challenge [20, 21] with dimension
of 200 is used (see these specifications in Table 2).

Note: Since this is expected to g ≈ cut ≈ d by
Lemma 7, Lemma 8 and Corollary 1, all the tests in
this section for simplicity use g = cut = d.

Note: To compute the norm of solution ‖v‖ in all
samples of this test, the sampling method of (37) is
used.

Note: The bounding function R = (R1, . . . ,Rd) in all
figures of this test is scaled to the vector of R2R2 =
(R2

1R
2, . . . ,R2

dR
2), and consequently the samples of

R2Xi =
i∑
t=1

z2
t are upper bounded by entries of R2R2

(where z2
l are squared entries of coefficient vector z).

4.2.1 Test 1 for “Our sampling method 1”

In this test, our sampling method 1 for coefficient
vectors of w and z which is introduced in Claim 1 and
Lemma 11, would be verified by sufficient number of
results. To verify Claim 1, this test is divided in to four
parts. Each part compares our sampling method 1 (by
Claim 1 and Lemma 11) against the original sampling
method by (47) and (48). These four parts of test
differs from each other in enumeration radius factors
(parameter of rfac) and piecewise-linear parameter of
a. The bounding function is labeled by “R_picewise
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[a = c]” which means a piecewise-linear bounding
function with parameter a = c, and “R_Full [psucc =
1]” which means full-enumeration. This test is done
in following way

• The original sampling in this test uses formula
of (48) to sample coefficient vector z or for-
mula (47) to sample coefficient vector w, then
it selects just the sampled vector of z satisfying
the bounding function constraints in (25). The
mean value of entries of selected (successful)
samples of vector z is used to compute Xi =
i∑
t=1

z2
t /R

2 as “Original sampling of Xi”. Also

the trend line equation for “Original sampling
of Xi” is presented for each part of test.

• Our sampling method which is labeled as “Our
sampling 1 of Xi”, uses Claim 1 which says
that for each piecewise-linear bounding func-
tion Ra (labeled by “R_picewise [a = c]” or
“R_Full [psucc = 1]”), this is only needed to find
a piecewise-linear bounding function Ra′ where
psucc(Ra′ ) = psucc(Ra)

F(d) by function psucc de-
fined in (17) and function F defined in (18), and
consequently we use the entries ofRa′ as the ap-
proximate expected values of sampling of Xi =
i∑
t=1

z2
t /R

2 while bounded by Ra. The parameter

a′ from bounding function Ra′ can be used by
Lemma 11 to sample w2

t = z2
d−t+1/‖b∗t ‖2 and

consequently to sample the values of R2Xi =
i∑
t=1

z2
t which is bounded by R2

aR
2.

Our results for four parts of this test can be observed
in Figure 3 and Table 3. Each part uses up to 4× 108

samples.

Note: In Figure 3, Figure 4 and Figure 5, the label of
a typical bounding function R represents the vector
R2R2 = [R2

1R
2, . . . ,R2

dR
2], also the label of sampled

vector X represents the vector R2X with entries of

R2Xi =
i∑
t=1

z2
t .

As shown in Figure 3, the original sampling and

our sampling method 1 of R2Xi =
i∑
t=1

z2
t are upper-

bounded by bounding function of “R_picewise [a =
c]” (see the blue dash line as the bounding function).

The parameter a in Table 3 shows the piecewise-
linear parameter of bounding function of Ra. The
static success probability and dynamic success fre-
quency of Ra by (26) and (27) is shown in column
3 and 4. The parameter a′ shows the input param-
eter of Lemma 11 which computed by Claim 1 as
psucc(Ra′ ) = psucc(Ra)/F(d) by function psucc de-

fined in (17) and function F defined in (18) (parame-
ter a′ in Table 3 corresponds with parameter a3 in
Algorithm 5 from Appendix A.5). The expected num-
ber of solutions in the cylinder-intersection of radius
(R′1R2, . . . ,R′lR2) which is defined by fnew0

succ (Ra) in
(27) is approximated by column 4 in Table 3. In fact,
as shown in column 9 and column 10, the condition
of ‖v‖2/R2 ≈ 1− ε where ε ≈ O(1/d) is satisfied in
this test, so Claim 1, Lemma 10 and Lemma 11 can
be applied consistently. As shown in Figure 3, our
sampling method 1 by Claim 1 and Lemma 11 can
be used as an approximation of original sampling by
(47), (48) and (25), however as the piecewise-linear
parameter of a nears to 0, our sampling method 1
would be less precise.

Note: As mentioned, the success probability psucc,
which is defined in (17), is equal to static success
probability pnew0

succ which is defined in (26).

Note: If the radius factor rfac is sufficiently small to-
gether with any static success probability of bounding
function or the static success probability of current
bounding function is small together with any radius
factor rfac, then the condition of ‖v‖2/R2 ≈ 1 − ε
where ε ≈ O(1/d) can be observed. So our proposed
sampling method 1 (based on Claim 1 and Lemma
11) just be applied for small radius factor or small
static success probability! In other words, if dynamic
success frequency fnew0

succ (Ra) belongs to ≈ O(1), the
condition of ‖v‖2/R2 ≈ 1− ε where ε ≈ O(1/d) can
be observed.

4.2.2 Test 2 for “Our sampling method 2”

As mentioned, Claim 1, Lemma 10 and Lemma 11
are introduced under condition of ‖v‖2/R2 ≈ 1 − ε
where ε ≈ O(1/d). This test focuses on the situations
that ε would be close to ≈ 1, so this is not possible
to use Claim 1 and Lemma 11 directly to sample
the coefficient vector of z. For this case, Algorithm
6 in Appendix A.5 generalizes our sampling method
1 (in Algorithm 5 from Appendix A.5). Lines 1-6 in
Algorithm 6 do this generalization by use of a simple
transformation. This new sampling method is labeled
here as “Our sampling method 2 of Xi”. Our results
for this test would be observed in Figure 4 and Table
4. The trend line equation for “Original sampling of
Xi” is presented for each part of this test in Figure 4.

As shown in Figure 4, sampling method 2 of Xi (by
using lines 1-6 in Algorithm 6) introduces acceptable
approximation for sampling coefficient vector z. Note
that, by using these observation, sampling method
2 can be used for sampling coefficient vector z and
piecewise-linear bounding function with any enumer-
ation radius.
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(a) Using full-enumeration (corresponding with
a = 1) and radius factor of rfac2 = 1.01

(b) Using piecewise-linear with parameter of a = 0.5
and radius factor of rfac2 = 1.05

(c) Using piecewise-linear with parameter of a = 0.4
and radius factor of rfac2 = 1.09

(d) Using piecewise-linear with parameter of a = 0.3
and radius factor of rfac2 = 1.18

Figure 3. Comparison of original sampling method by (25), (47) and (48) with our sampling method 1 by Claim 1 and Lemma 11

Table 3. Configuration parameters for running Test 1

Test Param.
of a

pnew0
succ (Ra)

by (26)
fnew0
succ (Ra)

by (27)
Param.
of a′

psucc(Ra′ )
by (17)

Solution
Norm
‖v‖2

‖v‖2

gh(L)2
‖v‖2

R2
= 1− ε

Expected
value of ε

Radius
factor
rfac2

Enum.
radius
R2

(1) Full 1 1.35 0.5 0.0175 33.4313 0.9965 0.987 ≈1/77 1.01 33.885

(2) 0.5 0.0175 1.15 0.4134 5.926× 10−4 34.54 1.0295 0.98 ≈1/50 1.05 35.227

(3) 0.4 2.856× 10−4 0.8 0.3524 1.213× 10−5 35.742 1.0654 0.977 ≈1/44 1.09 36.569

(4) 0.3 1.09× 10−7 0.84 0.276 7.407× 10−9 38.399 1.1445 0.97 ≈1/34 1.18 39.5

Note: By our results in Figure 3 and Figure 4, as the
index of i would be neared to d, the distance between

the samples of R2Xi =
i∑
t=1

z2
t by original sampling

and the samples by our sampling method 2 would be
increased (i.e., the accuracy of our sampling method
would be less), while as the value of ‖v‖2/R2 would
be decreased from 1− 1/d down to 0 (i.e., the value
of ε in column 10 from Table 4 would be neared to
1), this distance can be decreased sharply (i.e., the

accuracy of our sampling method would be more) and
if the piecewise-linear parameter of a nears to 0, this
distance can be increased (i.e., the accuracy of our
sampling method would be less).

The last entry of samples as R2Xd =
d∑
t=1

z2
t (by

original sampling and our sampling) is equal to ‖v‖2,
while last entry of scaled bounding function R2R2

is equal to R2. As mentioned in this test (against
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(a) Using radius factor of rfac2 = 1.25 (b) Using radius factor of rfac2 = 1.5

(c) Using radius factor of rfac2 = 1.75 (d) Using radius factor of rfac2 = 2

Figure 4. Comparison of original sampling method by (25), (47) and (48) with our sampling method 2

Test 1), ‖v‖2 is not near to R2, so the condition of
‖v‖2/R2 ≈ 1 − ε where ε ≈ O(1/d) is violated and
this is shown in column 9 and column 10 in Table 4.

Note: The parameter a′ in Table 4 corresponds with
parameter a3 in Algorithm 6 from Appendix A.5.

4.2.3 Test 3 for “Our sampling method 2”

Our proposed sampling method 1 in Test 1 and our
sampling method 2 in Test 2 only focuses on the
piecewise-linear bounding function, but there are
many forms of bounding functions which should be
discussed. In this test, our sampling method 2 is used
for comparing sampled coefficient vectors of z which
is bounded by a piecewise-linear bounding function,
a step bounding function and an unnamed bounding
function (which is generated by authors just for this
test). In fact, this test tries to show that sampling
method 2 by Algorithm 6 in Appendix A.5 can be
generalized to any bounding function with an input
success probability P . Test 3 uses four parts whose

samples of R2Xi =
i∑
t=1

z2
t are compared in these three

types of bounding function (with same success proba-
bility). The success probability of bounding function
at each part of this test is different from each other.
Figure 5 and Table 5 show our results of this test.

As shown in Figure 5, sampling method 2 of Xi in-
troduces an approximation for sampling coefficient
vector z under each of these three types of bound-
ing function (however this is not too precise). Line 1
in Algorithm 6 applies this generalization by trans-
forming any bounding function to a piecewise-linear
bounding function with same success probability. In
fact, this test should be studied for more types of
bounding function with different success probabili-
ties in further studies. Table 5 shows complementary
information in Test 3 for comparison of original sam-
pling method with our generalized sampling method
2 for any type of bounding function.

The parameter of pnew0
succ (R) by (26) in Table 5 shows

the static success probability for each of these three
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Table 4. Configuration parameters for running Test 2

Test Param.
of a

pnew0
succ (Ra)

by (26)
fnew0
succ (Ra)

by (27)
Param.
of a′

psucc(Ra′ )
by (17)

Solution
Norm
‖v‖2

‖v‖2

gh(L)2
‖v‖2

R2
= 1− ε

Expected
value of ε

Radius
factor
rfac2

Enum.
radius
R2

(1) 0.3 1.091× 10−7 267.8 0.2897 3.58× 10−8 38.7656 1.1555 0.9244 ≈ 1/13 1.25 41.937

(2) 0.3 1.091× 10−7 2.22× 1010 0.3469 7.92× 10−5 38.84 1.1577 0.7718 ≈ 1/4 1.5 50.324

(3) 0.3 1.091× 10−7 1.09× 1017 0.4043 3.63× 10−4 38.886 1.159 0.6623 ≈ 1/3 1.75 58.712

(4) 0.3 1.091× 10−7 6.91× 1022 0.4617 5.05× 10−3 38.917 1.16 0.58 ≈ 1/2 2 67.099

(a) Using three types of bounding functions with
success probability ≈ 0.0002022 and radius factor of

rfac2 = 1.1

(b) Using three types of bounding functions with
success probability ≈ 0.00216 and radius factor of

rfac2 = 1.1

(c) Using three types of bounding functions with
success probability ≈ 0.01163 and radius factor of

rfac2 = 1.1

(d) Using three types of bounding functions with
success probability ≈ 0.6848 and radius factor of

rfac2 = 1.1

Figure 5. Comparison of original sampling method by (25), (47) and (48) with our sampling method 2 generalized for three types
of bounding function

bounding functions, also the parameter of fnew0
succ (R)

by (27) in Table 5 shows the dynamic success fre-
quency (or expected number of solutions in GNR
enumeration) by these three bounding functions. The
parameter a′ in Table 5 corresponds with input pa-
rameter of a in Lemma 11 (and corresponds with
parameter a3 in Algorithm 6 from Appendix A.5).

Moreover, column 6 shows the mean value of sam-
pled solution norm of enumerations by these three
bounding functions.

5 Conclusions and Further Works
BKZ algorithm has a determinative role in security
analysis of lattice-based cryptographic primitives,
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Table 5. Configuration parameters for running Test 3

Test pnew0
succ (R)

by (26)
fnew0
succ (Ra)

by (27)
Param.
of a′

psucc(Ra′ )
by (17)

Average
of Solution
Norm ‖v‖2

Average
of ‖v‖

2

gh(L)2

Average
of ‖v‖

2

R2
= 1− ε

Expected
value of ε

Radius
factor
rfac2

Enum.
radius
R2

(1) 0.0002024 1.39 0.349 9.46× 10−6 36.085 1.0756 0.9778 ≈ 1/45 1.1 36.904

(2) 0.00216 14.88 0.388 0.0001424 35.3452 1.0535 0.95775 ≈ 1/24 1.1 36.904

(3) 0.01163 80.13 0.422 0.00091 34.824 1.037 0.94363 ≈ 1/18 1.1 36.904

(4) 0.6848 4718.48 0.5 0.0175 33.73967 1.00567 0.91424 ≈ 1/12 1.1 36.904

therefore the total cost and output quality of BKZ
algorithm should be computed exactly to be used
in parameter selection of these primitives. Although
the exact manner of BKZ algorithm with small block
sizes can be studied by practical running of BKZ, this
manner for higher block sizes (e.g., β ≥ 100) should
be simulated precisely. Designing a BKZ-simulation
with GNR-pruned enumeration needs to some nec-
essary building-blocks which includes enumeration
radius, generation of bounding function, estimation
of success probability, LLL simulation, estimation of
GNR enumeration cost, sampling method for enu-
meration solution, simulation of updating GSO. This
paper tries to introduce an efficient and exact sam-
pling method for enumeration solution v which sam-
ples both norm and coefficient vectors of enumeration
solution.

To the best of our knowledge, no sampling method
for norm of GNR-pruned enumeration with any suc-
cess probability are introduced. The paper [3] intro-
duces a sampling method for norm of enumeration
(see line 14 of Algorithm 4 from paper [3]) by use of
the probability distribution of solution norm which
is stated in Chen’s thesis [11], but that sampling
method is defined just for full-enumeration, not any
GNR pruning (see Theorem 1 in Section 2.7). Also,
paper [4] uses an exact and efficient way to estimate
the expected value of the norm of solution norm, in-
stead of sampling this norm (see the formula (32)).
Moreover, paper [2] uses only the non-exact estima-
tion of gh(L) by relation (7) as the expected norm
of enumeration solution. In other side, this paper in-
troduces a simple and efficient sampling method for
norm of GNR pruned enumeration solution including
bounding functions with any success probability in
Lemma 3.

GNR enumeration function in BKZ algorithm over
a lattice block L[bj ,...,bk] returns the coefficient vector
y, which can be used to compute the solution vector v
by linear combination of this lattice block vectors as

v =
k∑
l=j

ylbl. To the best of our knowledge, no precise

and explicit analysis of sampling the coefficient vec-
tor y is considered in former BKZ-simulations. The

structure and probability distribution of coefficient
vectors corresponding with enumeration solution vec-
tor v (i.e., coefficient vectors of z, w and y; see Section
3.2) are discussed deeply in this paper. Consequently,
the sampling methods of these vectors are introduced
approximately, while no such a deep design of sam-
pling these coefficient vectors are considered in former
BKZ-simulations. Precisely, our sampling method for
coefficient vectors is developed in three versions, as
follows

• Our sampling method 1 (in Algorithm 5) is de-
fined just for piecewise-linear bounding func-
tions with condition of small enumeration radius
or small (static) success probability, in other
words, the condition that the expected number
of solutions in GNR enumeration (i.e., dynamic
success frequency) belongs to ≈ O(1); This sam-
pling method is verified in Section 4.2.1 (how-
ever, for much small success probability, this
version is not too accurate).
• Our sampling method 2 (in Algorithm 6) is de-
fined just for piecewise-linear bounding func-
tions with any enumeration radius and any suc-
cess probability; This sampling method is veri-
fied in Section 4.2.2 (however, for enumeration
radius of R ≈ ‖v‖ and much small success prob-
ability, this version is not too accurate).

• Our sampling method 3 (in Algorithm 6) is
adapted for any bounding function with any
enumeration radius and any success probability
(i.e., with no constraint); Our test results for
this sampling method in Section 4.2.3 show
that the probability distribution (and expected

value) of Xi =
i∑
t=1

z2
t /R

2 for different bounding

functions with same success probability P is
not sufficiently similar, unless for big dynamic
success frequency (i.e., f succ�1).

Also by using the analysis on enumeration solution
norms and coefficient vectors, this paper proposes an
approximation for cost of enumerations by optimal
bounding functions in Section 3.3. However this paper
focuses on BKZ-simulation with GNR-enumeration
(as SVP-solver), other SVP-solvers can be considered,
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such as lattice enumeration with discrete pruning [22],
sieving algorithm (e.g., the variant in [23]), enumera-
tion by integrating sparse orthogonalized integer rep-
resentations for shortest vectors [24], or even our evo-
lutionary search for solving SVP [25]. Also, although
Test 3 in Section 4.2.3 tries to show that sampling
method 2 by Algorithm 6 in Appendix A.5 can be
generalized to any bounding function, new techniques
can be studied in further works to introduce more ac-
curate approximation of sampling coefficient vectors
of z, w, and y.
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Appendices

A. Algorithms Used/Introduced in
Paper
In this appendix, the pseudo-codes of essential algo-
rithms in this paper are introduced.

A.1 Schnorr-Euchner’s BKZ

Algorithm 1 shows the pseudo-code of original version
of BKZ algorithm [26].

Algorithm 1 Block Korkin-Zolotarev (BKZ)
Input: B = (b1, . . . , bn) ∈ Zn×m, GSO Coef Mat µ, 2 ≤ β ≤
n, 1/4 ≤ δ < 1.
Output: BKZβ reduced basis B.
1: LLL(B,µ, δ); //LLL reduce the basis and update µ
2: for (z = 0, j = 0; z < n− 1;) do
3: j = (j mod (n− 1)) + 1;
4: k = min(j + β − 1, n);
5: h = min(k + 1, n);
6: y ← Enum(‖b∗j‖2, ‖b∗j+1‖

2, . . . , ‖b∗k‖
2, µ[j,k]);

7: if y 6= (1, 0, . . . , 0) then

8: LLL([b1, . . . , bj−1,
k∑
l=j

ylbl, bj , . . . , bh], µ, δ)at stage j;

9: z = 0;
10: else
11: LLL ([b1, . . . , bh] , µ, δ) at stage h− 1;
12: z + +;
13: end if
14: end for

A.2 Our Sampling Algorithm of Solution
Norm

The pseudo-code of the sampling method of solution
norm by (37) in Lemma 3 can be studied in Algorithm
2. Note that, sampling x from exponential distribution
where PDF = Expo(x;ϑ) (see relation (14)), for ϑ =
0.5 can be done by uniformly random selection of Y
from corresponding CDF as Y ← CDF = 1− e−0.5x,
and computing the corresponding sample of x (see
line 2 in Algorithm 2).

A.3 Generator of Piecewise-Linear Bounding
Func.

Here, we introduce the pseudo-code of generating
piecewise-linear bounding function in Algorithm 3.
The function of PiecewiceLinear(a, d) makes a
piecewise-linear bounding function with length of d
and piecewise-linear parameter of a. The search ap-
proach for suitable parameter of a in this algorithm
can be used for step bounding function too. Also
function psucc(R) comes from relation (17) or (26) as
the static success probability which is implemented
in Algorithm 6 or Algorithm 7 from Appendix A in
paper [2].
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Algorithm 2 Our sampling method of solution norm
(Sample‖v‖)
Input: block size d, static success probability p, Gaussian
heuristic of local block gh, radii factor of rfac, Determinant of
local block V , Volume of d_dimensional ball with unit radii
as vd.
Output: [succ, `new]. /*boolean variable of succ which de-
termines whether a solution is sampled or not and norm of
solution by parameter of `new*/
1: succ = true;
2: x = −2 ln(1−rand(0...1));/*x is sampled from Expo(x;ϑ =

0.5) where 0 < rand(0...1) < 1*/
3: `min ← (xV /vd)1/d; /*see (31)*/
4: if (`min ≥ R) then succ = false;
5: else
6: if (p ≈ 1) then `new = `min;
7: else
8: if ( 2

rfacd
≤ p < 1) then

9: `new = d

√
1 + rand[0...1]( 2

p
− 1)× gh;

10: else
11: if (p < 2

rfacd
and rand[0... 2

rfacd
] ≤ p) then

12: `new = d
√

1 + rand[0...1](rfacd − 1)× gh;
13: else
14: if (p < 2

rfacd
and rand[0... 2

rfacd
] > p) then

15: succ = false;
16: end if
17: end if
18: end if
19: end if
20: end if

Algorithm 3 Geta_cut_1
Input: GSO norms of block given as B∗[1,d] = [‖b∗1‖. . . ‖b∗d‖],
enumeration radii R, success probability psucct,BKZ specific
structure S.
Output: piecewise linear parameter a and cutting point cut.
1: stepa = 0.5;//ε+ > 0
2: for (a = stepa; |stepa|> ε+;a+ = stepa) do
3: R← PiecewiceLinear(a, d);
4: p0 = psucc(R);
5: if (p0 − psucct > 0) then
6: stepa = −|stepa/2|;
7: else
8: stepa = |stepa/2|;
9: end if

10: end for
11: cut = −1;
12: for (i = d; i ≥ 2; i−−) do
13: if (‖b∗i ‖≤ RRd−i+1) then
14: cut = i; break;
15: end if
16: end for

If terminating condition of “for”-loop (i.e., the con-
dition which breaks the loop) in line 2 in Algorithm
3 would be replaced with the finishing condition of
|psucc(R) − psucct|≤ ε+ then ε+ is determined as a
function of psucct, while for finishing condition of
|stepa|≤ ε+ (which is preferred by us), ε+ is simply
the minimum bound for steps in searching the suit-
able value of a in time of O(log2(1/ε+)) iterations,

where ε+ = 1
number of step .

A.4 Sampling Method for Index of g

Algorithm 4 shows the pseudo-code of sampling g.
The lines 4-8 in Algorithm 4 determine cutdown
which is the minimum possible cutting point satisfy-
ing the radius factor constraint in Lemma 8. In fact,
for sampling g, just one sample is selected randomly
among the number of K solution samples. Note that,
since the input parameter K shows the number of
solution vectors in enumeration tree (without updat-
ing radius), so the probability of Pr(g = i) must be
changed into K Pr(g = i). In lines 1-3 from Algo-
rithm 4, this is determined that whether there is at
least one solution or not, and if there is at least one
solution to be returned by GNR-enumeration, then
the probability of failure in enumeration for g > cut
is not considered by this algorithm. Therefore, the
probability of Pr(g = i) must be changed into Pr(g =
i)/CDF(g ≤ cut) for g ≤ cut. Furthermore, since
p ← rand[0...1] in line 9 must be multiplied with K
and then checked just by variable of cdf in line 12,
the factor K is eliminated from these lines of Algo-
rithm 4 for simplicity. Note that, the returned index
in this algorithm showed by symbol of gidx.

Algorithm 4 Getg
Input: GSO norms of block given as B∗[1,d] = [‖b∗1‖. . . ‖b∗d‖],
enumeration radii R, solution norm `new,bounding function
R, radii factor rfac, K as the integer number of enumeration
solutions.
Output: last non-zero index of gidx.
1: if (K < 1) then
2: gidx = −1; return gidx;
3: end if
4: for (i = d− 1; i ≥ 2; i−−) do
5: if

(
rfac <

gh(L[1,i])
gh(L[1,d])

)
then

6: cutdown = i+ 1; break;
7: end if
8: end for
9: p← rand[0...1]; gidx = −1;

10: for (cdf = 0, i = cut; i ≥ cutdown; i−−) do
11: cdf+ = Pr(g=i)

CDF(g≤cut) ;/*CDF(g ≤ cut) can use relations
(42), (43), (44), etc., also for relation (43) CDF(g ≤ cut) =

1
2d−cut */

12: if (p ≤ cdf) then
13: if (‖b∗i ‖≤ `new and ‖b∗i ‖≤ Rd−i+1R) then

/*implicit condition which is applied automatically as fol-
lows (1 < gidx and cutdown ≤ gidx ≤ cut)*/

14: gidx = i; break;
15: end if
16: end if
17: end for

A.5 Sampling Method for Vector w

The pseudo-code of rejection sampling of coefficient
vector w (proposed in Claim 1 and Lemma 11) is
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shown in Algorithm 5. Our test results for Algorithm
5 can be studied in Test 1 from Section 4.2.1.

Algorithm 5 RejectionSamplew
Input: GSO norms of block given as B∗[1,d] = (‖b∗1‖. . . ‖b∗d‖) at
stage j, piecewise_linear parameter a1, enumeration radii R,
Sampled norm of enumeration solution as `new, last nonzero
index of g, boolean parameter of RandBlock, GSO Coefficient
Matrix of µ.
Output: Sampled coefficient vectors w and y.
1: p0 = psucc(Ra1 )

F(d) ;
2: a3 = Geta(p0, d);/*if(RandBlock=true) then a3 = 0.5;

also Geta is simpler than Geta_cut_1, so that just
searches for a where psucc(Ra) ≈ p0*/

3: for (SampleIsDone←false; SampleIsDone=false;) do
4: for (t = 1; t ≤ g − 1; t+ +) do
5: ωt ← Gamma(1/2, 2);
6: end for
7: for (i = 1; i ≤ bd/2c; i+ +) do
8: sign← (−1)brand[0...2)c;

9: wi = sign
√√√√√ (1−a3)ωi(`2

new−‖b∗g‖2)

‖b∗
i
‖2

(
(1−a3)

b d2 c∑
t=1

ωt+a3

g−1∑
t=b d2 c+1

ωt

) ;

10: end for
11: for (i = bd/2c+ 1; i ≤ g − 1; i+ +) do
12: sign← (−1)brand[0...2)c;

13: wi = sign
√√√√√ a3ωi(`2

new−‖b∗g‖2)

‖b∗
i
‖2

(
(1−a3)

b d2 c∑
t=1

ωt+a3

g−1∑
t=b d2 c+1

ωt

) ;

14: end for
15: wg = 1;//for i = g

16: for (i = g + 1; i ≤ d; i+ +) do
17: wi = 0;
18: end for
19: for (t = d; t ≥ 1; t−−) do

20: yt ← wt −
d∑

i=t+1
yiµi,t;//see relation (54)

21: end for
22: if (RandBlock=true) then
23: break;
24: else
25: SampleIsDone=true;
26: for (t = d− g + 2; t ≤ d; t+ +) do

27: if
(

t∑
l=d−g+1

w2
d−l+1‖b

∗
d−l+1‖

2> R2R2
t

)
then

28: SampleIsDone=false; break;
29: end if
30: end for
31: end if
32: end for

All operations in line 7 from Algorithm 5 implements
our proposed formula (51) in Lemma 11. Following
remark describes the features of sampling coefficient
vector of w in Algorithm 5 by considering whether
the input block is re-randomized or not.

Remark 6. The boolean variable of “RandBlock” in Al-
gorithm 5 (and Algorithm 6) determines that whether
the input lattice block is randomized or not. If the lat-
tice block is randomized, the parameter a in Lemma

11 is set to be a = 0.5, similar to full-enumeration
(the parameter a in Lemma 11 corresponds with a3
in Algorithm 5). Also if the lattice block is random-
ized, this is assumed that the solution vector with
input norm of `new and last non-zero index of g (for
its coefficient vectors) automatically satisfies the con-
straint of corresponding bounding function over ran-
domized lattice block (see this constraint in (25)),
and consequently this constraint is not checked for
the lattice block (before being randomized) in line 24
from Algorithm 5.

Algorithm 6 generalizes our sampling method in
Algorithm 5, in the way that the input bounding
function R is not limited to piecewise-linear bounding
function, also is not limited to short enumeration
radius factor or even small success probability of
bounding function (i.e., Algorithm 6 allows to work
with any length of enumeration radius, any success
probability and any bounding function). Our test
results for Algorithm 6 can be studied in Test 2 (in
Section 4.2.2) and Test 3 (in Section 4.2.3).

For these two algorithms, following remark introduces
an important approximate technique to speed-up their
sampling

Remark 7. The way proposed in this paper for sam-
pling coefficient vector of w (or vector of z) by Claim
1 and Lemma 11 (see Algorithm 5) and our gener-
alized sampling technique in Algorithm 6 are novel
ideas which approximates reasonably the original sam-
pling in (47) and (48) bounded by input bounding
function. In fact, for BKZ-simulation, this is believed
in this paper that the cost results and output qual-
ity of BKZ-simulation by using precise sampling for
coefficient vector w (and vector z) differ from some
approximate one negligibly. Therefore, there is no

need to force the constraint of Xi =
i∑
t=1

z2
t /R

2 ≤ R′i
2

(see relation (17)) over sampled vector z (and vec-
tor w) in BKZ-simulations, while this constraint (in
line 24 of Algorithm 5 and line 28 of Algorithm 6)
may lead to a long time loops, while the satisfaction
of this condition (constraint) may cause no sensible
effect on the BKZ-simulation outputs. Accordingly,
line 24 in Algorithm 5 and line 28 in Algorithm 6 can
be eliminated.

B. Proof of Lemmas and Theorems
In this appendix, our lemmas and theorems which
are introduced in this paper are proved (some short
proofs are included in the main text of paper).

B.1 Proof of Lemma 2

To prove this lemma, for given lattice block Lβ and an
input enumeration radius RH = rfacHgh(Lβ), this
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Algorithm 6 GeneralizedRejectionSamplew
Input: GSO norms of block given as B∗[1,d] = (‖b∗1‖. . . ‖b∗d‖) at
stage j, any type of bounding function R, enumeration radii R,
Sampled norm of enumeration solution as `new, last nonzero
index of g, boolean parameter of RandBlock, GSO Coefficient
Matrix of µ.
Output: Sampled coefficient vectors w and y.
1: p0 = psucc(R); a0 = Geta(p0, d); /*Geta(p0, d) is sim-

pler than Geta_cut_1 so that just searches for a0 where
psucc(Ra0 ) ≈ p0 */

2: p1 = p0
F(d) ;a1 = Geta(p1, d);

3: A = a1R
2−‖b∗g‖

2

d
2−(d−g+1)

;a3 = dA
2`2
new

;
4: if (a3 > 0.5) then
5: a3 = 0.5;
6: end if//if(RandBlock=true) then a3 = 0.5;
7: for (SampleIsDone←false; SampleIsDone=false;) do
8: for (t = 1; t ≤ g − 1; t+ +) do
9: ωt ← Gamma(1/2, 2);

10: end for
11: for (i = 1; i ≤ bd/2c; i+ +) do
12: sign← (−1)brand[0...2)c;

13: wi = sign
√√√√√ (1−a3)ωi(`2

new−‖b∗g‖2)

‖b∗
i
‖2

(
(1−a3)

b d2 c∑
t=1

ωt+a3

g−1∑
t=b d2 c+1

ωt

) ;

14: end for
15: for (i = bd/2c+ 1; i ≤ g − 1; i+ +) do
16: sign← (−1)brand[0...2)c;

17: wi = sign
√√√√√ a3ωi(`2

new−‖b∗g‖2)

‖b∗
i
‖2

(
(1−a3)

b d2 c∑
t=1

ωt+a3

g−1∑
t=b d2 c+1

ωt

) ;

18: end for
19: wg = 1;//for i = g
20: for (i = g + 1; i ≤ d; i+ +) do
21: wi = 0;
22: end for
23: for (t = d; t ≥ 1; t−−) do

24: yt ← wt −
d∑

i=t+1
yiµi,t;//see relation (54)

25: end for
26: if (RandBlock=true) then
27: break;
28: else
29: SampleIsDone=true;
30: for (t = d− g + 2; t ≤ d; t+ +) do

31: if
(

t∑
l=d−g+1

w2
d−l+1‖b

∗
d−l+1‖

2> R2R2
t

)
then

32: SampleIsDone=false; break;
33: end if
34: end for
35: end if
36: end for

is needed to show that the probability distribution
of the norm of returned solution vector by a pruned
enumeration which includes a bounding function with
static success probability 2/rfac

β
H is equal to the

probability distribution of sampled norm by formula
(36). This goal for proof can be modified into a well-
defined equivalent proposition, as follows.

Goal. For an input enumeration radius RH , the prob-
ability of that the returned solution vector from an
actual pruned enumeration function belongs to the
range of enumeration radius [R1, R2], where R1 ≤
R2 ≤ RH , is the same as the probability of that the
sampled norm by Lemma 2 belongs to this range.

Note: For input lattice block Lβ with block
size β: gh(Lβ) ≤ R1 = rfac1gh(Lβ) ≤ R2 =
rfac2gh(Lβ) ≤ RH = rfacHgh(Lβ).

For actual enumeration function on lattice block Lβ ,
the number of solution vectors in a ball with each enu-
meration radius of Ry, where gh(Lβ) ≤ Ry ≤ RH ,
is determined simply by using Roger’s theorem as
follows ny = rfac

β
y/2. Therefore, the probability of

that the returned solution vector from an actual full-
enumeration function belongs to the range of enumer-
ation radius [R1, R2], can be determined as follows.

P1 = (n2 − n1)/nH = (rfac
β
2 − rfac

β
1 )/rfac

β
H .

In other side, the probability of whether the sampled
norm in this lemma belongs to the range of enumera-
tion radius [R1, R2] can be computed by determining
the corresponding distance of [x1, . . . , x2] from the
range of [0, . . . , 1] in random number generation in
formula (36), as follows

rfac1gh(Lβ) ≤ ‖v‖≤ rfac2gh(Lβ)⇒
rfac1gh(Lβ) ≤ β

√
1 + rand[x1,...,x2](rfac

β
H − 1)gh(Lβ)

≤ rfac2gh(Lβ)⇒
rfac

β
1 ≤ 1 + rand[x1,...,x2](rfac

β
H − 1) ≤ rfac

β
2 ⇒

rfac
β
1 − 1 ≤ rand[x1,...,x2](rfac

β
H − 1) ≤ rfac

β
2 − 1⇒

x1 = rfacβ1−1
rfacβH−1

and x2 = rfacβ2−1
rfacβH−1

⇒

P2 = x2 − x1 = rfacβ2−rfacβ1
rfacβH−1

Because of the equality of these two probabilities
(i.e., P1 ≈ P2), this proof is completed.

B.2 Proof of Lemma 3

Since Lemma 3 is introduced under the condition that
the norm of shortest vector of lattice block Lβ is less
than enumeration radius R, so there is at least one
solution which can be sampled or cannot be success-
full in sampling. Under this condition, four parts of
sampling method of (37) can be proved respectively
as follows.

• If P ≈ 1, then corresponding enumeration is
not pruned (i.e., this full-enumeration), and
therefore relation (31) from Theorem 1 can be
used.

• As mentioned in Section 2.6, dynamic success
frequency of bounding function R with static
success probability P = psucc(R) is defined as
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fsucc = P rfacβ
2 , therefore if P ≥ 2

rfacβ
then

fsucc ≥ 1, and the solution number is nearly
≈ bfsucce in average-case; If P = 2

rfacβ
, then

the number of solution is only bfsucce = 1 and
consequently the sampling method (37) is the
same as (36) in Lemma 2; If 2

rfacβ
< P < 1,

then the number of solution is 1 ≤ bfsucce ≤
rfacβ

2 , but for solution number > 1, one solu-
tion should be returned finally as the response
of GNR enumeration after updating radius; By
using Fact 1, the shortest solution vector is
never eliminated by updating radius and finally
is returned by GNR-enumeration. Therefore
the norm of shortest solution only should be
estimated. To sample the norm of shortest
solution in this case, the minimum radius for
GNR-enumeration with static success probabil-
ity P is needed, so that this GNR-enumeration
returns just one solution (i.e., a radius factor
r0 is searched to force the success probability
of corresponding GNR-pruned enumeration to
P
rβ0
2 = 1). Since the β-dimensional ball for full-

enumeration with radius R = β
√

2/Pgh(Lβ) <
rfacgh(Lβ) includes 1/P number of solutions,
the cylinder-intersection of corresponding
GNR-pruned enumeration with success proba-
bility P has one solution in average-case (i.e.,

P ×
(
β
√

2/P
)β

2 = 1) which can be sampled by
Lemma 2:

‖v‖= β

√
1 + rand[0...1]

((
β
√

2/P
)β
− 1
)

gh(Lβ)

= β
√

1 + rand[0...1](2/P − 1)gh(Lβ)
Note: Other solution vectors v with norms in
range of β

√
2/Pgh(Lβ) < ‖v‖≤ rfacgh(Lβ)

are eliminated by updating radii.
• For static success probability of P < 2

rfacβ
and

dynamic success frequency of fsucc = P rfacβ
2 <

1 (see the concepts of static success probabil-
ity and dynamic success frequency in Section
2.6), there is one solution with norm ‖v‖<
rfacgh(Lβ) to be returned by enumeration with
probability of fsucc. In this case, the condition of
“rand[0... 2

rfacβ
] ≤ P” check that whether there

is a solution to be sampled or not, as follows
rand[0...1] ≤ fsucc ⇒ rand[0...1] ≤ P rfacβ

2 ⇒
rand

[0... rfacβ
2 ]
≤ P

Therefore if the condition of “rand[0... 2
rfacβ

] ≤
P ” is true, then there is one solution with norm
‖v‖< rfacgh(Lβ), and consequently the norm
of this solution can be sampled by Lemma 2.

• By using our reasoning in previous item, for
static success probability of P < 2

rfacβ
, if condi-

tion of “rand[0... 2
rfacβ

] ≤ P ” is false, then there
is no solution to be sampled.

This proof is completed.

B.3 Proof of Lemma 4

For simplicity in this proof, without losing general-
ity, Gaussian heuristic is assumed as the minimum
expected norm of solution (which is approximately
consistent with Theorem 1). By this assumption, the
condition of φ(β, fsucc1) ≤ rfac should be satisfied to
result in the condition of C0 ≥ Cr. This proof divide
into two steps. In Step 1, Lemma 4 is proved for β =
n. At next, in Step 2, this is proved that for β < n,
after less number of rounds than the rounds count
in Step 1, the quality of BKZβ-reduced basis with
dynamic success frequency of fsucc1 is similar to one
round of BKZβ-reduced basis with full-enumeration.

Note: However this paper defines the concept of cut-
ting point in Section 3.2.2, the bounding functions is
assumed to be forced in this proof for cutting point
of cut = d (there is some techniques to force this).

Step 1 : In this step, when an enumeration solution
is added at the first of lattice block and consequently
GSO vectors of b∗i in this block are updated for β = n,
the determinant of the first block would be the same
as old one (i.e., Gaussian heuristic of the block is not
changed after each round). The GSO norm of first
vector in block of L[b1,...,bβ=n], after each round of
BKZβ=n with dynamic success frequency of fsucc1, is
computed by using (19), as follows.

Note: In this proof, the notations of l[i]j , gh[i]
[j,k] and

R
[i]
[j,k] respectively represent the GSO norm of ‖b∗j‖ in

round i, Gaussian heuristic and enumeration radius
R based on (19) for block L[j,k] in round i, also for
simplicity, the notation of φ(β, fsucc1) is shown by φ.

Round 0: l[0]
1 = ‖b∗1‖, with gh[0]

[1,β] =
√

β
2πe (l[0]

1 ×l
[0]
2 ×

. . .× l[0]
β )1/β where R[0]

[1,β] = rfacgh[0]
[1,β] by using

(21);
Round 1: l[1]

1 = 1
φrfacgh[0]

[1,β], with gh[1]
[1,β] = gh[0]

[1,β]

where R[1]
[1,β] = 1

φrfacgh[0]
[1,β] by (21);

Round 2: l[2]
1 =

(
1
φ

)2
rfacgh[0]

[1,β], with gh[2]
[1,β] =

gh[0]
[1,β] where R

[2]
[1,β] =

(
1
φ

)2
rfacgh[0]

[1,β] by (21);

...

Round N : l[N ]
1 =

(
1
φ

)N
rfacgh[0]

[1,β], with gh[N ]
[1,β] =

gh[0]
[1,β] where R

[N ]
[1,β] =

(
1
φ

)N
rfacgh[0]

[1,β].
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To reach the solution norm of gh[0]
[1,β] in this step, the

rounds count of N is computed as follows.
1
φN
rfac = 1⇒ N ln(1 + 1/C0) = ln(1 + 1/Cr)⇒

N = ln(Cr+1
Cr

)
ln
(
C0+1
C0

) = ln(Cr+1)−ln(Cr)
ln(C0+1)−ln(C0) =

1
Cr

1
C0

= C0
Cr

Step 2 : In this step, when an enumeration solution
is added at the first of lattice block with size of
β < n and consequently GSO norms of vectors in
this block are updated, the determinant of the first
block is preserved. After updating GSO, when partial-
LLL (see line 7 in Algorithm 1) applied on the basis,
the determinant of the block and the corresponding
Gaussian heuristic can be modified.

Note: Since updating GSO just changes the GSO
norm of lattice block vectors (i.e., norms of ‖b∗i ‖),
so the determinant of current block is not changed
by updating GSO, but the determinant of previous
blocks are changed. In other side, partial-LLL (see line
7 in Algorithm 1) always can modify the determinant
of all lattice blocks in the basis.

By using Remark 1, after each round of BKZβ<n with
dynamic success frequency of fsucc1, the first GSO
norm is computed as follows.

Round 0: l[0]
1 = ‖b∗1‖, with gh[0]

[1,β] =
√

β
2πe (l[0]

1 ×
l
[0]
2 × . . .× l

[0]
β )1/β where R[0]

[1,β] = rfacgh[0]
[1,β] ≤√

Υgh[0]
[1,β], since R

[0]
[1,β] = min(

√
Υgh[0]

[1,β], l
[0]
1 )

by using (21).
Round 1: l[1]

1 = 1
φrfacgh[0]

[1,β], where R
[1]
[1,β] ≤

1
φrfacgh[0]

[1,β] because of following three states:
(1) For gh[1]

[1,β] > gh[0]
[1,β], then R

[1]
[1,β] =

min(
√

Υgh[1]
[1,β], l

[1]
1 ) = l

[1]
1 = 1

φrfacgh[0]
[1,β],

since l[1]
1 <

√
Υgh[0]

[1,β] <
√

Υgh[1]
[1,β] and

l
[1]
1 < l

[0]
1 ,

(2) For gh[1]
[1,β] = gh[0]

[1,β], then R
[1]
[1,β] = l

[1]
1 =

1
φrfacgh[0]

[1,β] (similar to our reasoning in
Step 1),

(3) For gh[1]
[1,β] < gh[0]

[1,β], then R
[1]
[1,β] =

min(
√

Υgh[1]
[1,β], l

[1]
1 ) ≤ l

[1]
1 = 1

φrfacgh[0]
[1,β],

since if
√

Υgh[1]
[1,β] < l

[1]
1 then R

[1]
[1,β] =

√
Υgh[1]

[1,β] < l
[1]
1 else R[1]

[1,β] = l
[1]
1 .

Note: By using these three states, in average
case, this can be concluded that R[1]

[1,β] ≤ l
[1]
1 .

Round 2: l[2]
1 = 1

φR
[1]
[1,β] ≤

(
1
φ

)2
rfacgh[0]

[1,β], where

R
[2]
[1,β] ≤

(
1
φ

)2
rfacgh[0]

[1,β] for following states

(1) For gh[2]
[1,β] > gh[1]

[1,β], then R
[2]
[1,β] =

min(
√

Υgh[2]
[1,β], l

[2]
1 ) = l

[2]
1 ≤

(
1
φ

)2
rfac

gh[0]
[1,β], since l

[2]
1 <

√
Υgh[1]

[1,β] <
√

Υgh[2]
[1,β]

and l[2]
1 < l

[1]
1 ,

(2) For gh[2]
[1,β] = gh[1]

[1,β], then R
[2]
[1,β] = l

[2]
1 ≤(

1
φ

)2
rfacgh[0]

[1,β],

(3) For gh[2]
[1,β] < gh[1]

[1,β], then R
[2]
[1,β] =

min(
√

Υgh[2]
[1,β], l

[2]
1 ) ≤ l[2]

1 ≤
(

1
φ

)2
rfac

gh[0]
[1,β], since if

√
Υgh[2]

[1,β] < l
[2]
1 then

R
[2]
[1,β] =

√
Υgh[2]

[1,β] < l
[2]
1 else R[2]

[1,β] = l
[2]
1 .

Note: By using these three states, in average
case, this can be concluded that R[2]

[1,β] ≤ l
[2]
1 .

Round 3: l[3]
1 ≤

(
1
φ

)3
rfacgh[0]

[1,β], where R
[3]
[1,β] ≤(

1
φ

)[3]
rfacgh[0]

[1,β] with the same reasoning.

...

Round N : l[N ]
1 ≤

(
1
φ

)[N ]
rfacgh[0]

[1,β], where R
[N ]
[1,β] ≤(

1
φ

)[N ]
rfacgh[0]

[1,β] with the same reasoning.

To reach to solution norm of gh[0]
1 in this step, the

rounds count of N can be computed as follows
1
φN
rfac ≥ 1⇒ N ln(1 + 1/C0) ≤ ln(1 + 1/Cr)⇒

N ≤ ln(Cr+1
Cr

)
ln(C0+1

C0
)

= ln(Cr+1)−ln(Cr)
ln(C0+1)−ln(C0) =

1
Cr

1
C0

= C0
Cr

.

B.4 Proof of Theorem 2

By inserting a vector v at the beginning of the linear
independent GSO vectors of b∗1, b∗2, . . ., b∗d, while
vector v is generated by the linear combination of

these GSO vectors as v =
d∑
i=1

wib
∗
i , GSO process just

eliminates the last vector b∗g, where wg 6= 0. Because
of eliminating one of the solution pairs (v,−v) in
the enumeration tree (because of the symmetry of
enumeration tree), the enumeration algorithms just
can use wg > 0 or wg < 0. The enumeration algorithm
usually uses the positive values for wg (however use
of negative wg leads to a symmetric solution −v; see
line 29 in Algorithm 2 from paper [1] and line 32
in Algorithm 9 from paper [2], which use wg > 0).
Therefore

0 < wg = yg +
d∑

i=g+1
yiµi,g ≤ ‖v‖

‖b∗g‖

(yg+1, yg+2, . . . , yd) = (0, 0, . . . , 0)⇒
d∑

i=g+1
yiµi,g = 0⇒ 0 < wg = yg ≤ ‖v‖

‖b∗g‖
⇒ wg ∈ N.

Now there are two states which can be assumed as
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follows.

State 1: For wg = yg = 1 then ‖v‖= `1.
State 2: For wg = yg > 1 then `2 = `1 + (yg −

1)‖b∗g‖⇒ State 1 always leads to shorter solution
of v ⇒

wg = yg = 1. (56)

So this is concluded that ‖b∗g‖≤ ‖v‖. Now by adding
v at the first of block, the GSO vector b∗g is updated
as follows (here, the old vector of b∗g is shown by b∗g
and the updated vector is shown by b∗gnew):
The old orthogonal block of (b∗1, b∗2, . . . , b∗g, . . . , b∗d) is
updated to [π1(v), π2(b1), . . . , πg+1(bg), . . . , πd+1(bd)].
Also by using the relation of Span(v, b1, . . . , bg)⊥ =
Span(b1, . . . , bg, v)⊥, the updated orthogonal block
can be represented by L[1,d+1]new = [π1(b1), π2(b2), . . .
, πg(v), πg+1(bg), . . . , πd+1(bd)]. Now by using
L[1,d+1]new , the vector of b∗gnew would be computed
as follows.

b∗gnew = πg+1(bg) =

b∗g︷ ︸︸ ︷
bg −

g−1∑
j=1

µg,jb
∗
j −µg,vπg(v)

= b∗g − µg,vπg(v) (57)

where for 1 ≤ i ≤ g − 1, GSO coefficient of µv,i is
defined as follows.

µv,i = vb∗i
‖b∗
i
‖2 = wi‖b∗i ‖

2

‖b∗
i
‖2 = wi. (58)

By using (58), (56) and (38)

πg(v) = v −
g−1∑
j=1

µv,jb
∗
j = v − (w1b

∗
1 + w2b

∗
2 + . . . +

wg−1b
∗
g−1) = b∗g. (59)

Also, by using (38) and (59), the GSO coefficient
of µg,v for bg over solution v at index of g can be
computed as

µg,v = bgπg(v)
‖πg(v)‖2 = bgb

∗
g

‖b∗g‖2 = ‖b∗g‖
2

‖b∗g‖2 = 1. (60)

By using (60), (57) and (59) πg+1(bg) = b∗gnew = 0;
The proof is completed.

B.5 Proof of Lemma 6

GSA assumption leads to ‖b∗d‖2= ‖b∗1‖
2

q2d−2 .
By using the definition of piecewise-linear bounding
function with parameter of a and condition of ‖b∗g‖2≤
R2R2

d−g+1 ⇒ ‖b∗d‖2≤ 2a
d R

2.
By using the worst-case assumption of ‖b∗1‖= R =
rfacgh(L[1,d]) in satisfying the condition of ‖b∗g‖2≤
R2R2

d−g+1 ⇒ ‖b∗d‖2≤ 2a
d ‖b

∗
1‖2⇒

d
2q2d−2 ≤ a (61)

By using (11) and worst case assumption of ‖b∗1‖= R

(the notation δr shows the root-Hermite factor)

q ≈ δr2 =
(

‖b∗1‖
det(L[1,d])1/d

)2/d
=
(
rfacgh(L[1,d])
det(L[1,d])1/d

)2/d
⇒

q ≈
(
rfac
√

d
2πe det(L[1,d])1/d

det(L[1,d])1/d

)2/d
⇒

q ≈
(
d rfac2

2πe

)1/d
(62)

By using (61) and (62), 2(πe)2

d rfac4 ≤ a.

B.6 Proof of Lemma 8

By using the definition of cutting point in Section
3.2.2, Roger’s theorem says that, there are the num-
ber of rfaccut

2 solution vector pairs (v,−v) with in the
ball of radius R = rfacgh(L[1,d]) for the sufficiently
big block size d. Accordingly, the probability distri-
bution for last non-zero index of g can be computed
as follows,
Pr(g = i) ≈ (R/gh(L[1,i] ))i/2− (R/gh(L[1,i−1] ))i−1/2

rfac
d/2

.
By using (21):Pr(g = i) ≈(

rfac
gh(L[1,d])
gh(L[1,i])

)i
−

(
rfac

gh(L[1,d])
gh(L[1,i−1])

)i−1

rfacd
.

By using (7) and (9),

Pr(g = i) ≈

(
rfac
√

d
i

(‖b∗1‖...‖b∗d‖)1/d

(‖b∗1‖...‖b∗i ‖)
1/i

)i
rfacd

−(
rfac

√
d
i−1

(‖b∗1‖...‖b∗d‖)1/d

(‖b∗1‖...‖b∗i−1‖)
1/(i−1)

)i−1

rfacd
.

By using (10) and some simplifications: Pr(g = i) ≈

rfac
i−d(d/i)i/2qi(i−d)/2

(
1− 1

rfac

√
iiqd−2i+1

d (i−1)i−1

)
.

This is clear that the index of g = i should be lower
than cutting point (i.e., the condition of i ≤ cut).
Also the condition of rfac ≥ gh(L[1,i])/gh(L[1,d]) em-
phasizes that whether a solution vector v exists in
lattice block L[1,i] to use this formula in estimating
the probability of index of g = i or not. In this condi-
tion, without losing generality, this is assumed that
the shortest norm of vector in a lattice block is not
lower than Gaussian heuristic of that lattice block.

B.7 Proof of Lemma 9

Let 1 < x ≤ g − 1 and Y = z2
x

‖v‖2−‖b∗g‖2 = ωx
g−1∑
t=1

ωt

.

Our goal is computing E [Y] where ωi ← Gamma(1/2, 2).
For random variable Y, since Y>0, the function of
φ(Y) = 1/Y is convex, therefore by using Jensen’s in-
equality [27], following inequality is proved as follows

Y > 0⇒ 1/E [Y] ≤ E [1/Y];

1/Y =

x−1∑
t=1

ωt+
g−1∑
t=x+1

ωt

ωx
+ 1,
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where ωi ← Gamma(1/2, 2);

Y1 =
x−1∑
t=1

ωt +
g−1∑
t=x+1

ωt and Y2 = ωx;

Fact 2. Let 1/Y = Y1/Y2 + 1, if Y1 is indepen-
dent from Y2 then E [Y1/Y2] = E [Y1] E [1/Y2], and
by using Jensen’s inequality [27]: E [Y1] /E [Y2] + 1 ≤
E [Y1] E [1/Y2] + 1⇒ E [Y1] /E [Y2] + 1 ≤ E [1/Y].

Approximation 1. Following with Fact 2, by using
1/E [Y] ≤ E [1/Y] and E [Y1] /E [Y2] + 1 ≤ E [1/Y],
this is assumed the approximation of E [Y1] /E [Y2] +
1 ≈ 1/E [Y].

By using Fact 2 and Approximation 1:

E [Y1] /E [Y2] + 1 ≈ E
[
g−1∑
t=1

ωt

]
/E [ωx] ≈ g − 1 ⇒

E [Y] ≈ 1
g−1 .

It is expected to g ≈ cut by using Lemma 7, so it is
expected E [Y] ≈ 1/cut and therefore, it is expected
that each entries of z approximately are similar to
each other as follows E

[
z2
x

]
≈ ‖v‖

2−‖b∗g‖
2

cut .

B.8 Proof of Lemma 10

To prove this lemma (and Lemma 11), the expected
value of ‖v‖2/R2 is approximated in Remark 8.

Remark 8. For full-enumeration with success
probability P = 1, by using (19) and (29),
this is expected to E

[
‖v‖2/R2] = E

[
λ2

1/R
2] =

22/dΓ2(1+1/d)gh2(L[j,k])
min(Υgh2(L[j,k]),‖b∗j ‖2) which can be simplified as
22/dΓ2(1+1/d)

Υ ≤ E
[
‖v‖2/R2] ≤ 1. For other success

probability 0 < P < 1, with number of solution as
K ≈ bP rfacβ

2 e, this is expected to E
[
‖v‖2/R2] =

K2 × Beta2(K, (β + 1)/β), and specially for suc-
cess probability of P = 2/rfac

β , this is expected
to E

[
‖v‖2/R2] = d/(d + 1). At result, for success

probability 2/rfac
β ≤ P ≤ 1, the expectation of

E
[
‖v‖2/R2] can be approximated by 1− ε where ε

nearly varied from 1/(d + 1) up to Υ−22/dΓ2(1+1/d)
Υ .

For much long enumeration radius, the condition
of ε ≈ 1 may be observed, while if the condition
of ‖v‖2/R2 ≈ 1 − ε where ε ≈ O(1/d) is satisfied,
then this is expected to E

[
‖v‖2/R2] ≈ 1− ε where

E [ε] ≈ O(1/d), also the enumeration radius R is
limited to be near to solution norm ‖v‖.

Note: The cutting point in full-enumeration with
bounding function R = [1, 1, . . . , 1] is always cut =
d. also by using Lemma 7 for full-enumeration, this
is expected to g ≈ d, therefore this can be assumed
to g ≈ cut.

Goal. For linear pruned bounding function R, this
proof tries to show the correctness of following ap-

proximation E
[
i∑
t=1

z2
t /R

2
]
≈ R2

i .

For simplicity, here we introduce Approximation 2
without violating the correctness of this proof.

Approximation 2. By using Lemma 7 (also Corol-
lary 1), this is assumed to g ≈ cut = d, so the ex-
pected value of ‖b∗g‖2 in this lemma can be approx-
imated by E

[
‖b∗g‖2

]
≈ R2R2

d−cut+1 where R is the
linear pruning bounding function, and consequently
following estimation is used

E
[
‖b∗g‖2/R2] ≈ R2

d−cut+1 = d−cut+1
d ;

Note: The value of ‖b∗g‖2 is smaller than the solution
norm ‖v‖2 and nearly smaller than other GSO norms
‖b∗i ‖2 where 1 ≤ i ≤ g.

Note: For more simplicity in this proof, the variance
of ‖b∗g‖ in Approximation 2 and ‖v‖ in Remark 8 is
assumed to be nearly 0, this means that, instead of
E
[
‖b∗g‖2

]
and E

[
‖v‖2

]
, this proof uses the approxi-

mations of ‖b∗g‖2≈ R2R2
d−cut+1 and ‖v‖2≈ (1− ε)R2

as invariants.
The mentioned approximation in Goal of this proof
can be simplified as follows

E
[
i∑
t=1

z2
t /R

2
]

?
≈ R2

i ⇒ E
[

i∑
t=d−g+2

z2
t

]
?
≈ R2R2

i −

‖b∗g‖2⇒ E
[

i∑
t=d−g+2

z2
t

‖v‖2−‖b∗g‖2

]
?
≈ R2R2

i−‖b
∗
g‖

2

‖v‖2−‖b∗g‖2

For 1 < g ≤ d and 1 ≤ x ≤ g − 1,

X =
i∑

t=d−g+2

z2
t

‖v‖2−‖b∗g‖2 =

g−1∑
t=x

ωt

g−1∑
t=1

ωt

,

where ωi ← Gamma(1/2, 2).
It should be proved that whether E [X] ?

≈
R2R2

d−x+1−‖b
∗
g‖

2

‖v‖2−‖b∗g‖2 for i = d− x+ 1.
Let c0 for linear pruned bounding function R
c0(i) = ‖v‖2−‖b∗g‖

2

R2R2
i
−‖b∗g‖2 = ‖v‖2/R2−‖b∗g‖

2/R2

R2
i
−‖b∗g‖2/R2 ≈

cut−εd−1
cut+i−d−1 ≈ O

(
d
i −

1
i

)
,

where E [ε] ≈ O(1/d) by Remark 8.
In other side, for random variable X, since X > 0,
the function φ(X) = 1/X is convex, therefore by
using Jensen’s inequality [27].
X > 0⇒ 1/E [X] ≤ E [1/X];

1/X =

x−1∑
t=1

ωt

g−1∑
t=x

ωt

+ 1. Y1 =
x−1∑
t=1

ωt and Y2 =
g−1∑
t=x

ωt are

independent random variables.
By using Fact 2, Approximation 1 and Approxima-
tion 2:
c1(i) = 1/E [X] ≈ E[Y1]

E[Y2] + 1 ≈ d−i
cut+i−d−1 + 1 ≈
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O(di − 1)⇒
To complete the proof, this is needed to check
whether the value of c0(i) is nearly equal to the value
of c1(i) or not, as follows
c1(i) ≈ c0(i)− 1 + err, where err ≈ O(1/i)⇒
For 1 ≤ i ≤ d: c1(i) ≈ O(c0(i)) ≈ O(d/i)⇒

Finally, by assuming that the variance of X =

g−1∑
t=x

ωt

g−1∑
t=1

ωt

is small enough (which can be checked in the same
way that be done for expected value of X), the
main approximation in Goal of this proof (i.e.,

E
[
i∑
t=1

z2
t /R

2
]
≈ R2

i ) can be proved as follows

E
[
i∑
t=1

z2
t /R

2
]
≈ E

[
(‖v‖2−‖b∗g‖

2)X+‖b∗g‖
2

R2

]
≈

(‖v‖2−‖b∗g‖
2)E[X]

R2 + ‖b∗g‖
2

R2 ≈ ‖v‖2−‖b∗g‖
2

R2c1(i) + ‖b∗g‖
2

R2 ≈
‖v‖2−‖b∗g‖

2

R2c0(i) + ‖b∗g‖
2

R2 ≈ R2
i .

B.9 Proof of Lemma 11

To prove this lemma, the expected value of ‖v‖2/R2

is approximated in Remark 8.

Note: It is expected to g ≈ cut ≈ d by using Lemma
7, Lemma 8, Corollary 1.

Goal. For piecewise-linear pruned bounding function
R, this proof tries to show the correctness of following

approximation: E
[
i∑
t=1

z2
t /R

2
]
≈ R2

i .

For simplicity, here we introduce Approximation 3
without violating the correctness of this proof.

Approximation 3. By using Corollary 1, this is as-
sumed to g ≈ cut ≈ d, so the expected value of ‖b∗g‖2
in this lemma can be approximated by E

[
‖b∗g‖2

]
≈

R2R2
d−cut+1 where R is the piecewise-linear bound-

ing function with parameter a, and consequently fol-
lowing estimation is used

E
[
‖b∗g‖2/R2] ≈ R2

d−cut+1 = 2a(d−cut+1)
d ;

Note: The value of ‖b∗g‖2 is smaller than the solution
norm ‖v‖2 and nearly smaller than other GSO norms
‖b∗i ‖2 where 1 ≤ i ≤ g.

Note: For more simplicity in this proof (similar to
proof of Lemma 10), the variance of ‖b∗g‖ in Ap-
proximation 3 and ‖v‖ in Remark 8 is assumed to
be nearly 0, this means that, instead of E

[
‖b∗g‖2

]
and E

[
‖v‖2

]
, this proof uses the approximations of

‖b∗g‖2≈ R2R2
d−cut+1 and ‖v‖2≈ (1 − ε)R2 as invari-

ants.

The mentioned approximation in Goal of this proof
can be simplified as follows

E
[
i∑
t=1

z2
t /R

2
]

?
≈ R2

i ⇒ E
[

i∑
t=d−g+2

z2
t

]
?
≈ R2R2

i −

‖b∗g‖2⇒ E
[

i∑
t=d−g+2

z2
t

‖v‖2−‖b∗g‖2

]
?
≈ R2R2

i−‖b
∗
g‖

2

‖v‖2−‖b∗g‖2 .

Note: The reasonable and effective piecewise-linear
parameter a even for extreme-pruning is nearly as-
sumed to be a > 0.1 (this note is used in approximat-
ing the expressions in this proof).

The reminder of this proof can be proceeded in fol-
lowing three steps.

Step 1 : For d/2 < g ≤ d and d/2 < x ≤ g − 1 let
For i = d− x+ 1, following approximation should be
proved

X =
i∑

t=d−g+2

z2
t

‖v‖2−‖b∗g‖2 =
a
g−1∑
t=x

ωt

(1−a)
d/2∑
t=1

ωt+a
g−1∑

t=d/2+1

ωt

,

where ωi ← Gamma(1/2, 2).
It should be proved whether E [X] ?

≈ R2R2
d−x+1−‖b

∗
g‖

2

‖v‖2−‖b∗g‖2 .
Let c0 for piecewise-linear bounding function R

c0(i) = ‖v‖2−‖b∗g‖
2

R2R2
i
−‖b∗g‖2 = ‖v‖2/R2−‖b∗g‖

2/R2

R2
i
−‖b∗g‖2/R2

≈ d−εd−2ad+2acut−2a
2ai−2ad+2acut−2a ,

where E [ε] ≈ O(1/d), and consequently by Remark 8,

c0(i) ≈ d−εd−2a
2ai−2a ≈ O(di −

1
i ) (63)

In other side, for random variable X, since X > 0,
the function φ(X) = 1/X is convex, therefore by
using Jensen’s inequality [27]
X > 0⇒ 1/E [X] ≤ E [1/X];

1/X =
(1−a)

d/2∑
t=1

ωt+a
x−1∑

t=d/2+1

ωt

a
g−1∑
t=x

ωt

+ 1;

Y1 = (1 − a)
d/2∑
t=1

ωt + a
x−1∑

t=d/2+1
ωt and Y2 = a

g−1∑
t=x

ωt

are independent random variables.
By using Fact 2, Approximation 1, Approximation 3
c1(i) = 1

E[X] ≈
E[Y1]
E[Y2] + 1 ≈ d−2ai

2ai−2a ≈ O(di − 1)
To complete the proof of this step, this is needed to
check whether the value of c0(i) is nearly equal to
the value of c1(i) or not, as follows
c1(i) ≈ c0(i)− 1 + err, where err ≈ O(1/i)⇒
For 1 ≤ i < d/2 + 1 in this step c1(i) ≈ O(c0(i)) ≈
O(d/i).
Finally, by assuming that the variance of X =
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a
g−1∑
t=x

ωt

(1−a)
d/2∑
t=1

ωt+a
g−1∑

t=d/2+1

ωt

is small enough (which can be

checked in the same way that be done for expected
value of X), the main approximation in Goal of this

proof, as E
[
i∑
t=1

z2
t /R

2
]
≈ R2

i , for 1 ≤ i < d/2 + 1,

can be proved as follows

E
[
i∑
t=1

z2
t /R

2
]
≈ E

[
(‖v‖2−‖b∗g‖

2)X+‖b∗g‖
2

R2

]
≈

(‖v‖2−‖b∗g‖
2)E[X]

R2 + ‖b∗g‖
2

R2 ≈ ‖v‖2−‖b∗g‖
2

R2c1(i) + ‖b∗g‖
2

R2 ≈
‖v‖2−‖b∗g‖

2

R2c0(i) + ‖b∗g‖
2

R2 ≈ R2
i ;

The proof of this step is completed.

Step 2 : For d/2 < g ≤ d and 1 ≤ x ≤ d/2 let
For i = d − x + 1, following approximation

should be proved X
′ =

i∑
t=d−g+2

z2
t

‖v‖2−‖b∗g‖2 =

a
g−1∑

t=d/2+1

ωt+(1−a)
d/2∑
t=x

ωt

(1−a)
d/2∑
t=1

ωt+a
g−1∑

t=d/2+1

ωt

, where ωi ← Gamma(1/2, 2)

It should be proved that whether E
[
X
′
] ?
≈

R2R2
d−x+1−‖b

∗
g‖

2

‖v‖2−‖b∗g‖2 or not.

Let c0 for piecewise-linear bounding function R

c0(i) = ‖v‖2−‖b∗g‖
2

R2R2
i
−‖b∗g‖2 = ‖v‖2/R2−‖b∗g‖

2/R2

R2
i
−‖b∗g‖2/R2

≈ d−εd−2ad+2acut−2a
−d+2i−2ia+2acut−2a ,

where E [ε] ≈ O(1/d) by Remark 8.

c0(i) ≈ d−εd−2a
−d+2i−2ia+2acut−2a ≈ O( d−εd

−d+2i+2ad ) (64)

In other side, by using Jensen’s inequality [27]

X
′
> 0⇒ 1/E

[
X
′
]
≤ E

[
1/X ′

]
;

1/X ′ =
(1−a)

x−1∑
t=1

ωt

(1−a)
d/2∑
t=x

ωt+a
g−1∑

t=d/2+1

ωt

+ 1;

Y3 = (1 − a)
x−1∑
t=1

ωt and Y4 = (1 − a)
d/2∑
t=x

ωt +

a
g−1∑

t=d/2+1
ωt are independent random variables.

By using Fact 2, Approximation 1, Approximation 3,

c1(i) = 1/E
[
X
′
]
≈ E[Y3]

E[Y4] + 1

≈ d
−d+2i−2ia+2acut−2a ≈ O( d

−d+2i+2ad )
To complete the proof of this step, this is needed to
check whether the value of c0(i) is nearly equal to
the value of c1(i) or not, as follows.

c1(i) ≈ c0(i) + err, where err ≈ O( 1
−d+2i+2ad )⇒

For d/2 + 1 ≤ i ≤ d in this step: c1(i) ≈ O(c0(i)) ≈
O( d
−d+2i+2ad ).

Finally, by assuming that the variance of X ′ =
a

g−1∑
t=d/2+1

ωt+(1−a)
d/2∑
t=x

ωt

(1−a)
d/2∑
t=1

ωt+a
g−1∑

t=d/2+1

ωt

is small enough (which can be

checked in the same way that be done for expected
value of X ′), the main approximation in Goal of this

proof, as E
[
i∑
t=1

z2
t /R

2
]
≈ R2

i , for d/2 + 1 ≤ i ≤ d,

can be proved as follows

E
[
i∑
t=1

z2
t /R

2
]
≈ E

[
(‖v‖2−‖b∗g‖

2)X
′
+‖b∗g‖

2

R2

]
≈

(‖v‖2−‖b∗g‖
2)E
[
X
′]

R2 + ‖b∗g‖
2

R2 ≈ ‖v‖2−‖b∗g‖
2

R2c1(i) + ‖b∗g‖
2

R2 ≈
‖v‖2−‖b∗g‖

2

R2c0(i) + ‖b∗g‖
2

R2 ≈ R2
i ;

The proof of this step is completed.

Step 3 : For 1 < g ≤ d/2 and 1 ≤ x ≤ d/2 let

By using Lemma 8, the probability of the condition
of 1 < g ≤ d/2 is zero! Therefore, this step refers to a
special case which is rarely expected to be observed
(and occurred), and consequently the effect of this
step can be ignored in checking the accuracy of our

approximation of the random variableXi =
i∑
t=1

z2
t /R

2

in Lemma 11. Therefore this step is not considered
in the proof;

At results, by using these three steps, for 1 ≤ i ≤
d, this is proved that the expected value of Xi =
i∑
t=1

z2
t /R

2 is closely approximated by R2
i .
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