
ISeCure
The ISC Int'l Journal of
Information Security

January 2017, Volume 9, Number 1 (pp. 17–26)

http://www.isecure-journal.org

Side Channel Parameter Characteristics of Code InjectionAttacks

Ehsan Aerabi 1,∗, Mahdi Kaykha 1, Mahdi Fazeli 1, Ahmad Patooghy 1, and
Ahmad Akbari 1
1Iran University of Science and Technology, Tehran, Iran

A R T I C L E I N F O.

Article history:
Received: 6 April 2016

Revised: 6 January 2017

Accepted: 24 January 2017

Published Online: 29 January 2017

Keywords:
Embedded Systems, Code

Injection, Side Channel.

A B S T R A C T

Embedded systems are suggestive targets for code injection attacks in the

recent years. Software protection mechanisms, and in general computers, are

not usually applicable in embedded systems since they have limited resources

like memory and process power. In this paper we investigate side channel

characteristics of embedded systems and their applicability in code injection

attack detection. The architectural simulation for execution time, power

usage and temperature on benchmarks shows that these parameters disclose

meaningful and distinguishable behaviours in case of attack.

c© 2017 ISC. All rights reserved.

1 Introduction

O ver a decade, embedded systems have outcom-
peted general purpose computers in their num-

ber and applications in our daily life and industries.
Therefore, their security are major concern [1]. Vari-
ety of hardware and software threats are reported like
Energy Exhaustion Attacks, Side Channel Attacks,
Malwares, Thermal Viruses and Code Injection At-
tacks [1]. Code Injection is a big category of software
vulnerabilities which allows an attacker to remotely
exploit a programming flaw in an application in or-
der to change the program flow and make it to run a
malicious code. SQL Injection, Remote File Injection
and Shell Injection are three types of Code Injection
vulnerabilities. In workstation and server computers,
these attacks are countered by Firewalls and Intrusion
Prevention Systems. Embedded devices are designed
for a specific application and usually come with lim-
ited software/hardware resources. On hardware side,
these limitations include CPU performance, memory

∗ Corresponding author.

Email addresses: e aerabi@comp.iust.ac.ir (E. Aerabi),

kaykha@comp.iust.ac.ir (M. Kaykha),

m fazeli@iust.ac.ir (M. Fazeli), patooghy@iust.ac.ir (A.
Patooghy), akbari@iust.ac.ir (A. Akbari)

ISSN: 2008-2045 c© 2017 ISC. All rights reserved.

and power usage. On software side, small and fewer
running programs, smaller or no operating systems,
and lower level programming languages are some of
the limitations [2, 3]. Therefore, software monitors
and protection mechanisms like firewalls and IPSs im-
pose significant memory and processing overhead and
are not appropriate in embedded systems unlike in
desktop and server computers. On the other hand, em-
bedded device manufacturers usually do not support
third party antiviruses or firewalls. These limitation
have made cyber threats a big concern especially for
safety-critical devices like those in medical settings. In
this paper we conduct a feasibility study on side chan-
nel information for code injection attack detection,
which have no software overhead to examine. In other
words we find distinguishable side channel behaviours
like changes in power consumption, execution time
and temperature of a device in case of normal opera-
tion and when it is attacked by a remote intruder.

The rest of this paper counties as follows: inSection 2
we overview the related literature. Then in Section 3
we discuss about the parameters chosen to be mon-
itored for the attack detection. In Section 4 the im-
plementation of the detection scenario are covered.
Section 5 presents the attack detection results and
Section 6 shows how to use this technique in a machine

ISeCure

18 Side Channel Parameter Characteristics of Code Injection Attacks — Aerabi et al.

learning case study. Finally, the paper is concluded in
Section 7.

2 RelatedWork

2.1 Static Protection

Legacy prevention methods are still usable at com-
pile time like static source code analysis to find pro-
gramming bugs and then harden it [4–7] and also us-
ing managed programming technologies like Java and
more secure dialects of C++ [8, 10].

There are some protection mechanisms at
architecture-level like in [9]. They mainly focus on
allocating and maintaining safe memory areas to
protect processes from unauthorized access. This allo-
cation could be done either physically or by means of
a bus monitor [11]. [12] presents a model for imple-
menting an execution-only-memory (XOM) and some
heuristics like customized instructions and additive
information to the cache lines with virtual machine
software monitor. These methods are implemented
in some commercial processors like Trust-Zone in
ARM [13] and Lagrande in Intel [14]. This category
of prevention methods usually are not applicable to
the legacy application or require source code access,
which make them impractical in many cases.

2.2 Dynamic Protection

Dynamic protection methods detect attacks at run-
time and could be categorized as software and hard-
ware solutions. Similar to static methods, it is possible
to analyse program source codes on compile time but
extract vulnerabilities at runtime [15]. This method
is precise in case of false positives but it does not
guarantee to trace all execution paths at runtime.

In [16] authors extract formal behaviours for some
critical programs and detect unauthorized access by
analysing their execution traces. In this method, the
sequence of events in concurrent execution of programs
is used to determine normal behaviours of them.

[17] provides an environment for monitoring pro-
gram flow control at runtime and forcing the program
to follow some security policies like program start
points and restricted changes in control transitions
which previously have been determined by the system
operator. Previously mentioned methods also need ei-
ther the source code or any access/modification to the
internal behaviour of the system under protection.

Anomaly-based detection methods are also available
which need a learning phase to understand a program
normal behaviour [18–20]. These methods are always
prone to false positive and false negative cases because
of improper learning or changes in applications.

Using a security co-processor goes back to Tamper-
Resistant Crypto Processors for securely storing keys
and performing encryption algorithms [21, 22]. In [23],
the use of a co-processor for intrusion detection sys-
tems (IDS) was introduced. This would lead to an IDS
operation which no attack on the target system can
hinder. Unlike the other host-based IDS’s(HIDS), a
co-processor-based IDS(CIDS) monitors the system
without complete access to the internal information of
the system. Thus, CIDS works generally based on mon-
itoring external and side channel characteristics of a
system like time, user ID, memory and file checksums.

In [24] an FPGA implementation of a hardware-
assisted anomaly-based HIDS is expressed which de-
tects attacks by comparing valid and malicious be-
haviour of the underlying system. It can be updated
regularly to cope with new malwares attacks and can
operate in real-time. Normal behaviour of the system
is defined by the sequence of its valid system-calls.
Detecting system-calls is performed by monitoring
fetched instructions and register’s values. Thus, after
a sequence of three anomalous system-calls the mali-
cious process is killed. It is claimed that this method
is faster than software solutions and has less false
positive and false negative alerts. In [25], another
hardware-assisted approach is introduced which tracks
whether untrusted data can change program control
flow when they enter the system or not. [26] describes
a software-hardware method to verify code integrity
and prevent it from being damaged by the dynamic
changes at runtime by storing encrypted checksum
along with the executable code blocks at compile time
and compare it with updated checksums at runtime.

In [2], a monitoring scheme is introduced for multi-
processor settings in which one of the CPUs is a secu-
rity processor and monitors the other ones. At compile
time, a profile is created by a static analysis of the pro-
gram’s scheduling and is used at runtime for detection.
[27] presents another hardware monitor which runs
in parallel with the processor. The processor sends
information like changing in program flow control or
load/store sequence to the monitor and then moni-
tor checks to ensure that information is complying
with expected patterns and program is running on its
normal track.

In [28], anomalous events are detected by correlat-
ing thermal and processing information. A different
approach to the problem is introduced in [29] which
checks integrity of a program independently at run-
time by means of dynamic power consumption. This
power consumption fingerprinting method, measures
device’s current and validates it by applying pattern
recognition algorithms. This approach is continued
in [30, 31] and then in [36] proposing more sensitive

ISeCure

January 2017, Volume 9, Number 1 (pp. 17–26) 19

industrial controllers like PLC and SCADA. A similar
anomaly-based method is introduced in [32] and [33].
These methods exploits just power usage to detect
attacks.

Time variation can also be used for this purpose.
Lu et al. present a method that utilizes timing be-
haviour of the software for attack detection [34]. An-
other method exploits CPU program counter and cy-
cle per instruction to achieve anomaly detection [35].

In contrast with the previous methods mentioned
above, in this paper we aim to present a method which
does not require any access to the internal information
of the system (e.g., Data Bus, CPU instruction,) any
source code review or modification and any extra hard-
ware or architectural change in the system. Therefore,
it can be used on legacy software and hardware. The
proposed method utilizes different side channel char-
acteristics of the CPU and application including CPU
cycles, energy and temperature. Associating three dif-
ferent system parameters would enhance the detection
accuracy. This makes our work unique in comparison
to the previously mentioned methods.

2.3 Embedded and Industrial Limitations

All of the aforementioned methods require different
level of access and different level of modifications to
the systems. These levels include operating system,
compiler, application source code, application binary,
CPU internal attributes, architecture and some exter-
nal attributes like temperature and power consump-
tion.

Several access and modification constraints might
be imposed when it comes to embedded and industrial
systems and would limit the number of applicable
protection methods. In many, it is impossible or costly
to change hardware or software architecture. In some
others there is no possibility to access the internal CPU
attributes. In third party applications, source codes
are not accessible. In these cases, monitoring could
be carried out externally. For example, in medical
equipment, any modification in hardware or software
would void the system guarantee [37].

In this paper we investigate a few behaviours of
an external side channel parameters of an embedded
systems in presence of code injection attack. These
side channel parameters are time, power consumption
and temperature. These attributes are important be-
cause any protection solution based on them requires
no access to source or binary code, no modification
and no high level access to the system. We will show
how effective they can be under code injection attack
detection by implementing some real-world attacks
on our benchmarks.

3 Monitoring Parameters

In this section we study how temperature, execution
time and power usage behaviour can represent internal
device status in cases of code injection attacks.

3.1 Power Consumption

A digital circuit power consumption could be divided
into static and dynamic. Static power consumption
is caused by sub-threshold current and leakage. For
a long time it was assumed that static power has no
connection with the data being processed and hence
is not useful for intrusion detection. Despite previous
assumptions, researchers found that static power is
correlated to the data being processed [38] and have
useful information for our case. Nevertheless, in order
to exploit static power changes we need ultra precise
equipment in the presence of noise and error. Dynamic
power usage produced by circuit switching can effec-
tively help us detect such attacks [39]. Running a spe-
cific software routine would produce specific dynamic
power pattern or signature. Using power signature is
an effective method to find or protect some well known
hardware attacks like energy exhaustion, hardware
Trojans and fault attacks [40, 41]. These methods re-
quire pattern recognition algorithms at runtime which
impose considerable processing load on monitor. In
this work we use total power consumption of a process
since it needs less processing overhead at runtime.

3.2 CPU Temperature

Temperature can be another parameter for monitor-
ing. By increasing systems complexity and power den-
sity in chips, temperature effects of attacks are more
important than before [28]. Different processing work-
load can produce different thermal status. Therefore,
temperature is a candidate for anomaly detection.
Thermal changes is also correlated with power usage.
Temperature can affect CPU power usage by changing
sub-threshold and gate leakage.

3.3 Execution Time

Execution time is another parameter for detecting
code injection attacks. Every input data might change
a software procedure execution time, which can be
used to detect anomalies. Determining execution time
is possible as we have complete control of the CPU
reset pin.

4 Implementation

To evaluate proposed monitoring parameters, normal
operation of the system is determined when it is sup-
plied by a comprehensive valid inputs data sets. Then
we compare it with the operation under the attack

ISeCure

20 Side Channel Parameter Characteristics of Code Injection Attacks — Aerabi et al.

data sets. We chose “Mibench which is an opensource
test bench based on EDN Embedded Microprocessor
Benchmark Consortium [43]. This test bench is com-
prised of six areas: automatize and industrial control,
consumer device, office automation, networking, se-
curity and telecommunication. We study Qsort pro-
gram from automation and industrial control category
and SHA and Rijndael from security category. These
three are among the most general and frequently used
programs available in the test bench. SHA and Rijn-
dael(AES) are two cryptographic algorithms used in
everyday life for data encryption. Qsort is among the
best sorting algorithms and it is used in many pro-
grams. All of these are tested on MARS simulator of
MIPS processor [44].

We chose the following attack shell codes and in-
serted them into the test benches

• MIPS execve shellcode: this is a 60-byte shell code
used to gain remote access from a target system
[45].

• MIPS stdin-read shellcode: this is a 40-byte shell
code used to gain remote command execution
from a target system [46].

• MIPS -reboot() shellcode: this is a 32-byte shell
code used to remotely reset a target system [47].

Table 1 contains all three shellcodes assembly.

Table 1. MIPS Code Injection shellcodes.

MIPS reboot()
shellcode

MIPS stdin-read
shellcode

MIPS execve
shellcode

lui $6,0x4321 li $4,-0x7350 li $6,0x7350

ori $6,$6,0xfedc $dpatch: LB: bltz $6,LB

lui $5,0x2812 bltz $4,$dpatch li $15,0x7350

ori $5,$5,0x1969 slti $4,$0,-1 slti $6,$0,-1

lui $4,0xfee1 li $15,-29 addiu $29,$29,-32

ori $4,$4,0xdead nor $15,$15,$0 li $15,-41

li $2,0x4088 addu $5,$31,$15 nor $15,$15,$0

syscall li $6,0x0201 addu $4,$31,$15

li $2,0x0205 sw $4,-24($29)

syscall sw $0,-20($29)

li $24,0x7350 addi $5,$29,-24

li $2,4011

syscall

We integrated simulation tools including Wattch,
HotSpot and PTscalar [48] which are used to emu-
late power usage and temperature of systems. They
are designed to work with the popular architecture-
level simulator SimpleScalar. PTscalar is a modified
cycle precision version of SimplaScalar, which accepts
system configuration and parameters and simulates

power and temperature for each clock cycle. Table 2
describes initial configuration for the simulation sce-
nario.

Table 2. PTscalar initial configuration.

Title Input Simulation
Parameters

Quantity

Number of CPU
Cores

- 1

CPU Modules TOTAL MODULES 18

Initial Temperature TOTAL MODULES 35(C)

CPU Frequency STD FREQ 3 (GHz)

CPU Supply Voltage VDD 1 (v)

Memory Supply
Voltage

SVdd 1.3 (v)

Data Bus Width DATA WIDTH 64 bits

Address Bus Width ADDR WIDTH 32 bits

L1 Cache Size cache:dl1
128KB/32-bit data

width/4-way

L1 Cache Size cache:dl2
1MB/64-bit data

width/4-way

5 Results

In this section, experimental results of the MIPS ex-
ecve shellcode attack on Qsort, SHA and Rijndael are
presented. Other attacks are excluded from this paper
to comply with page number constraint.

We choose four combinational signatures from the
monitoring parameters of temperature, execution time
and power usage as follows:

• CE : Execution Cycles and Total Energy Con-
sumption.

• CT : Execution Cycles and Temperature.
• ET : Total Energy Consumption and Tempera-
ture.

• CET : Execution Cycles, Total Energy Consump-
tion and Temperature.

Measurement unit is centigrade for temperature
and joule for total energy consumption. For Qsort
and Rijndael test-benches, an input set comprised
of 200 elements and for SHA, an input set including
500 elements are generated and applied. Figure 1
illustrates the results in which blue dots and red circles
representmeasured quantities for the safe and attacked
systems, respectively. Each dot or circle illustrates
the measured parameters for one of the elements in
the input set. Obtained result includes all CE, CT,
ET and CET signatures for all three Qsort, SHA and
Rijndael benchmarks.

In these figures, we can observe that monitoring sig-
natures are affected by the attack inputs that means
they might be useful for our purpose. To ensure that

ISeCure

January 2017, Volume 9, Number 1 (pp. 17–26) 21

Figure 1. Effect of MIPS execve shellcode attack to Qsort,SHA and Rijndael program on energy, temperature and time parameters.

ISeCure

22 Side Channel Parameter Characteristics of Code Injection Attacks — Aerabi et al.

Figure 2. Effect of input variations on side channel parameters.

Figure 3. Success rate of machine learning algorithms in finding “MIPS execve shellcode” attack on Qsort testbench- (C:cycle -

T:temperature - E:energy).

attack signatures are practically observable and de-
tectable, they should not be overshadowed by the sig-
natures resulted from input data variations. Therefore,
we investigated how much the monitoring parameters
are affected also by variations of valid inputs. We now
show how different input data sets can affect the mon-
itoring signatures. In this case we just show Qsort and
SHA results for CE and CET parameters and will omit

other programs from the paper. Figure 2 illustrates
the result for two set of inputs each of which with 200
entries processed by Qsort and SHA test benches. It
is obvious that total energy variations in each data set
are not significant enough to overshadow the attack
signatures.

ISeCure

January 2017, Volume 9, Number 1 (pp. 17–26) 23

Figure 4. Comparison of machine learning algorithms.

6 Case Study

In this section, we further study effectiveness of side
channel parameters of code injection attacks which
were introduced in the previous section, by a machine
learning case study. In this experiment we usedWEKA
[49] which is an appropriate machine learning platform
for our work. We also fed the software with normal and
attacked inputs and used cross-fold variation method
with value of 10-fold for learning phase. Top 10 most
successful learning algorithms were chosen and their
results are depicted in Figure 3. In this figure, all pa-
rameter signatures along with the detection rate of
each method for Qsort test bench and MIPS execve
shellcode have been illustrated. It asserts effectiveness
of the side channel parameters in detection scenar-
ios. A detailed comparison among these methods are
presented in Figure 4. Rate of correct and incorrect
classification, relative absolute error, rooted relative
squared error, mean absolute error, true positive rate,
false positive rate and time are our comparison pa-
rameters. Among these, success classification rate and
mean absolute error are the most important ones. In
this study, the best classification results belong to

trees.LMT, Lazy.IBK and Regression. On the other
hand the lowest mean absolute errors result belong
to Lazy.IBK, JRip and FilteredClassifier. Finally, we
compared side channel parameters and their practi-
cality for detecting code injection attack in Figure 5.
Cycle-Temp-Energy has the best distinguishable char-
acteristics followed by Cycle-Temp, Energy-Temp and
Cycle-Temp.

7 Conclusion

In this paper we examined some combinations of side
channel parameters including temperature, energy
and CPU cycle in embedded systems and their char-
acteristics in case of code injection attack incident.
These experiments show that the combination of these
parameters can successfully distinguish normal and at-
tacked behaviour of the embedded software. We then
applied machine learning algorithms to identify attack
from safe inputs. These results show that further stud-
ies on code injection vulnerability detection based on
side channel characteristics of embedded systems are
feasible.

ISeCure

24 Side Channel Parameter Characteristics of Code Injection Attacks — Aerabi et al.

Figure 5. Comparison of side channel parameters in detecting Code Injection attack

References

[1] Sri Parameswaran and Tilman Wolf, “Embedded
systems security - an overview”, Design Automa-
tion for Embedded Systems 12, no. 3, pp. 173-183,
2008.

[2] Krutartha Patel, Sridevan Parameswaran, and
Seng Lin Shee, “Ensuring secure program ex-
ecution in multiprocessor embedded systems: a
case study”, In Hardware/Software Codesign
and System Synthesis (CODES+ ISSS) 2007 5th
IEEE/ACM/IFIP International Conference on,
pp. 57-62, IEEE, 2007.

[3] Tammy Noergaard, “Embedded Systems Architec-
ture: A Comprehensive Guide for Engineers and
Programmers”. Access Online via Elsevier, 2005.

[4] M. Howard and D. LeBlanc, “Writing Secure
Code”. Microsoft Press, 2002.

[5] G. Hoglund and G. McGraw, “Exploiting Soft-
ware: How to Break Code” Addison-Wesley, 2004.

[6] Ken, and Dawson Engler Ashcraft, “Using
programmer-written compiler extensions to catch
security holes”, In Security and Privacy, 2002.
Proceedings. 2002 IEEE Symposium on, pp. 143-
159, IEEE, 2002.

[7] William R., Jonathan D. Pincus, and David J.
Sielaff Bush, “A static analyzer for finding dy-
namic programming errors”, Software-Practice
and Experience 30, no. 7, pp. 775-802, 2000.

[8] Jeremy, Matthew Harren, Scott McPeak, George
C. Necula, andWestley Weimer Condit, “CCured
in the real world”, ACM SIGPLAN Notices 38,
no. 5, pp. 232-244, 2003.

[9] Srivaths, Anand Raghunathan, and Srimat
Chakradhar Ravi, “Tamper resistance mecha-
nisms for secure embedded systems”, In VLSI
Design, 2004.

[10] Dinakar, Sumant Kowshik, Vikram Adve, and

Chris Lattner Dhurjati, “Memory safety without
runtime checks or garbage collection”, In ACM
SIGPLANNotices, vol. 38, no. 7, pp. 69-80, ACM,
2003.

[11] CryptocellTM. Discretix Technologies Ltd. [On-
line]. http://www.discretix.com

[12] D. Lie et al., “Architectural support for copy and
tamper resistant software”, in Proc. ACMArchi-
tectural Support for Programming Languages
and Operating Systems (ASPLOS), pp. 168177,
2000.

[13] R. York. A New Foundation for CPU Sys-
tems Security. ARM Limited. [Online].
http://www.arm.com/products/processors/

technologies/trustzone/index.php

[14] LaGrande Technology for Safer Computing.
Intel Inc. [Online]. http://www.intel.com/

technology/security

[15] D. Clarke, B. Gassend, M. van Dijk, and S. De-
vadas G. E. Suh, “AEGIS: Architecture for
Tamper-Evident and Tamper-Resistant Process-
ing”, in Proc. Intl Conf. Supercomputing (ICS
03), pp. 160171, June 2003.

[16] Calvin Ko, Manfred Ruschitzka, and Karl Levitt,
“Execution monitoring of security-critical pro-
grams in distributed systems: A specification-based
approach”, In Security and Privacy, 1997. Pro-
ceedings., 1997 IEEE Symposium on, pp. 175-187,
IEEE, 1997.

[17] Vladimir Kiriansky, Derek Bruening, and Saman
Amarasinghe, “Secure execution via program
shepherding”, Proceedings of the 11th USENIX
security symposium, vol. 6, no. 2, pp. 191206,
2002.

[18] Steven A., Stephanie Forrest, and Anil Somayaji
Hofmeyr, “Intrusion detection using sequences
of system calls”, Journal of computer security 6,
no. 3, pp. 151-180, 1998.

ISeCure

http://www.discretix.com
http://www.arm.com/products/processors/technologies/trustzone/index.php
http://www.arm.com/products/processors/technologies/trustzone/index.php
http://www.intel.com/technology/security
http://www.intel.com/technology/security

January 2017, Volume 9, Number 1 (pp. 17–26) 25

[19] Stephanie, Steven A. Hofmeyr, Anil Somayaji,
and Thomas A. Longstaff Forrest, “A sense of
self for unix processes”, In Security and Privacy,
1996. Proceedings., 1996 IEEE Symposium on,
pp. 120-128, IEEE, 1996.

[20] Sachin P., and Stephen R. Tate Joglekar, “Pro-
tomon: Embedded monitors for cryptographic pro-
tocol intrusion detection and prevention”, In In-
formation Technology: Coding and Computing.
Proceedings. ITCC 2004. International Confer-
ence on, vol. 1, pp. 81-88, IEEE, 2004.

[21] Divya Arora, Srivaths Ravi, Anand Raghunathan,
and Niraj K. Jha, “Secure embedded processing
through hardware-assisted run-time monitoring”,
Proceedings of the conference on Design, Au-
tomation and Test in Europe-Volume 1. IEEE
Computer Society, pp. 178-183, 2005.

[22] M. Kuhn, “The TrustNo 1 Cryptoprocessor
Concept. CS555 Report”, Purdue University
(http://www.cl.cam.ac.uk/?mgk25/), 1997

[23] X. Zhang, L. Doorn, T. Jaeger, R. Perez, and
R. Sailer, “Secure coprocessor-based intrusion
detection”, in Proc. ACM SIGOPS European
Wkshp, 2002.

[24] Mehryar Rahmatian, I. Harris, H. Kooti, and
Elaheh Bozorgzadeh, “Hardware-Assisted Detec-
tion of Malicious Software in Embedded Systems”,
Embedded Systems Letters, IEEE, 2012.

[25] G. E. Suh, J. Lee, and S. Devadas, “Secure
program execution via dynamic information flow
tracking”, Dept. of EECS, MIT, Tech. Rep., 2003.

[26] Roshan G. Ragel and Sri Parameswaran, “IM-
PRES: integrated monitoring for processor relia-
bility and security.”, In Proceedings of the 43rd
annual Design Automation Conference, pp. 502-
505, ACM, 2006.

[27] Shufu Mao and Tilman Wolf, “Hardware sup-
port for secure processing in embedded systems”,
Computers, IEEE Transactions on 59, no. 6, pp.
847-854, 2010.

[28] Tilman, Shufu Mao, Dhruv Kumar, Basab Datta,
Wayne Burleson, and Guy Gogniat Wolf, “Col-
laborative Monitors for embedded System secu-
rity”, Proc. Wkshp. of Embedded System Secu-
rity, 2006.

[29] Carlos R. Aguayo, and Jeffrey H. Reed Gonzalez,
“Power fingerprinting in SDR and CR integrity as-
sessment”, In Military Communications Confer-
ence, 2009. MILCOM 2009, pp. 1-7, IEEE, 2009.

[30] Carlos R. Aguayo, and Jeffrey H. Reed Gonzalez,
“Power fingerprinting in SDR integrity assessment
for security and regulatory compliance”, Analog
Integrated Circuits and Signal Processing 69, no.
2-3, pp. 307-327, 2011.

[31] Carlos R. Aguayo, and Jeffrey H. Reed Gonza-
lez, “Detecting unauthorized software execution

in SDR using power fingerprinting”, In MILI-
TARY COMMUNICATIONS CONFERENCE,
2010-MILCOM 2010, pp. 2211-2216, IEEE, 2010.

[32] Tang, Adrian, Simha Sethumadhavan, and Sal-
vatore J. Stolfo. “Unsupervised anomaly-based
malware detection using hardware features.” In-
ternational Workshop on Recent Advances in In-
trusion Detection, 2014.

[33] Liu, Hong, Hongmin Li, and Eugene Y. Vasser-
man. “Practicality of Using Side-Channel Analy-
sis for Software Integrity Checking of Embedded
Systems.” International Conference on Security
and Privacy in Communication Systems, 2015.

[34] Lu, Sixing, Minjun Seo, and Roman Lysecky.
“Timing-based anomaly detection in embedded
systems.” The 20th Asia and South Pacific Design
Automation Conference, 2015.

[35] Zhai, Xiaojun, et al. “A method for detecting ab-
normal program behavior on embedded devices.”
IEEE Transactions on Information Forensics and
Security 10.8 (2015): 1692-1704.

[36] Jeffrey H., and Carlos R. Aguayo Gonzalez Reed,
“Enhancing Smart Grid cyber security using power
fingerprinting: Integrity assessment and intru-
sion detection”, Future of Instrumentation Inter-
national Workshop (FIIW), IEEE, 2012.

[37] Shane S. Clark et al., “WattsUpDoc: Power Side
Channels to Nonintrusively Discover Untargeted
Malware on Embedded Medical Devices”, In Pre-
sented as part of the 2013 USENIX Workshop on
Health Information Technologies, 2013.

[38] A. Moradi, “Side-Channel Leakage through
Static Power” , Cryptographic Hardware and
Embedded Systems CHES 2014 Volume 8731 of
the series Lecture Notes in Computer Science pp
562-579

[39] John L. Hennessy and David A. Patterson, “Com-
puter architecture: a quantitative approach” , 4th
ed.: Elsevier, 2007.

[40] Dakshi, Selcuk Baktir, Deniz Karakoyunlu,
Pankaj Rohatgi, and Berk Sunar Agrawal, “Tro-
jan detection using IC fingerprinting”, In Secu-
rity and Privacy, 2007. SP’07. IEEE Symposium
on, pp. 296-310, IEEE, 2007.

[41] Li-Wei, and Hong-Wei Luo Wang, “A power
analysis based approach to detect Trojan circuits”,
In Quality, Reliability, Risk, Maintenance, and
Safety Engineering (ICQR2MSE), 2011 Interna-
tional Conference on, pp. 380-384, IEEE, 2011.

[42] Dongwoo Lee,Wesley Kwong, David Blaauw, and
Dennis Sylvester, “Analysis and minimization
techniques for total leakage considering gate oxide
leakage”, In Proceedings of the 40th annual De-
sign Automation Conference, pp. 175-180, ACM,
2003.

[43] Matthew R. Guthaus et al., “MiBench: A free,

ISeCure

http://www.cl.cam.ac.uk/?mgk25/

26 Side Channel Parameter Characteristics of Code Injection Attacks — Aerabi et al.

commercially representative embedded benchmark
suite”, In Workload Characterization. WWC-4.
2001 IEEE International Workshop on, pp. 3-14,
IEEE, 2001.

[44] MARS (MIPS Assembler and Runtime Sim-
ulator) An IDE for MIPS Assembly Lan-
guage Programming. [Online]. http://courses.
missouristate.edu/kenvollmar/mars/

[45] linux execve 60 bytes shellcode. [Online].
http://www.shell-storm.org/shellcode/

files/shellcode-80.php

[46] 40 byte MIPS/Irix PIC stdin-read shell-
code. [Online]. http://www.win.tue.nl/~aeb/
linux/hh/phrack/P56-16

[47] rigan. Linux/MIPS - reboot() - 32 bytes. [Online].
http://packetstormsecurity.com/files/

107735/Linux-MIPS-reboot-Shellcode.html

[48] Weiping Liao. PTscalar - University of California
at Los Angeles. [Online]. http://eda.ee.ucla.
edu/PTscalar/

[49] Weka 3: Data Mining Software in Java. [Online].
http://www.cs.waikato.ac.nz/ml/weka/

Ehsan Aerabi is a research assis-
tant at dependable systems & archi-
tectures (DSA) laboratory in Iran
University of Science and Technology.
He received his M.S. in computer ar-
chitecture from Isfahan University of
Technology and his B.S. in computer

engineering from Amirkabir University of Technology.
His research interests spans over computer architec-
ture, computer networks and cyberphysiscal systems.

Mahdi Kaykha is a graduate stu-
dent from computer engineering de-
partment of Iran University of Sci-
ence and Technology. He received his
BS from University of Sistan and
Baluchestan in computer engineer-
ing.

Mahdi Fazeli received M.S. and
Ph.D. degrees in computer engineer-
ing from the Sharif University of Tech-
nology, Tehran, Iran, in 2005 and
2011, respectively. He has been with
the department of computer engineer-
ing, Iran University of Science and

Technology (IUST), Tehran, since 2011, where he is
currently an assistant professor. He has established
and chaired two research laboratories at IUST since
2012, namely, the dependable systems and architec-
tures laboratory and the networked and embedded

system laboratory. He is the author or co-author of
over 50 papers in reputable journals and conference
proceedings. His current research interests include reli-
able issues in VLSI circuits and emerging technologies,
dependable embedded systems, low power circuits and
systems, fault-tolerant computer architectures, fault
injection, and reliability modeling and evaluation.

Ahmad Patooghy received his M.S.
and Ph.D. in computer engineering
from Sharif University of Technology,
Tehran, Iran, in 2005 and 2011, re-
spectively. He is currently an assis-
tance processor at department of com-
puter engineering, Iran University of

Science and Technology, Tehran, Iran. His research in-
terests include hardware design and test, architectural
design of multi- and many-core chips, dependability
and security evaluation of VLSI circuits, fault injec-
tion, and analytical modeling. Dr. Patooghy initiated
the “dependable systems and architectures laboratory”
at Iran University of Science and Technology in 2012
and has chaired the Laboratory since then.

AhmadAkbari received his B.S. de-
gree in electrical engineering from Is-
fahan University of Technology, and
M.S. degree in communications en-
gineering from Isfahan University of
Technology, Iran, in 1987 and 1989,
respectively. He received his Ph.D. in

electrical engineering from University of Rennes 1,
Rennes, France, in 1995. He joined the computer de-
partment of Iran University of Science and Technology
in 1995 where he is the head of RCIT (research center
for information technology) and head of the depart-
ment. Dr. Akbari has established ASPL (Audio and
Speech Processing Lab) and NRG (Network Research
Group) including graduate students and researchers
from different areas of computer and electrical engi-
neering. The research programs in the NRG lab fo-
cus on the five main streams of cloud computing, big
data analytics, software-defined network (SDN) and
network functions virtualization (NFV), multimedia
streaming and signal processing, and network security
and intrusion detection systems (IDS).

ISeCure

http://courses.missouristate.edu/kenvollmar/mars/
http://courses.missouristate.edu/kenvollmar/mars/
http://www.shell-storm.org/shellcode/files/shellcode-80.php
http://www.shell-storm.org/shellcode/files/shellcode-80.php
http://www.win.tue.nl/~aeb/linux/hh/phrack/P56-16
http://www.win.tue.nl/~aeb/linux/hh/phrack/P56-16
http://packetstormsecurity.com/files/107735/Linux-MIPS-reboot-Shellcode.html
http://packetstormsecurity.com/files/107735/Linux-MIPS-reboot-Shellcode.html
http://eda.ee.ucla.edu/PTscalar/
http://eda.ee.ucla.edu/PTscalar/
http://www.cs.waikato.ac.nz/ml/weka/

	1 Introduction
	2 Related Work
	2.1 Static Protection
	2.2 Dynamic Protection
	2.3 Embedded and Industrial Limitations

	3 Monitoring Parameters
	3.1 Power Consumption
	3.2 CPU Temperature
	3.3 Execution Time

	4 Implementation
	5 Results
	6 Case Study
	7 Conclusion

