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A B S T R A C T

In this paper, we introduce a method of threshold secret sharing scheme (TSSS)

in which secret reconstruction is based on Babai’s nearest plane algorithm. In

order to supply secure public channels for transmitting shares to parties, we

need to ensure that there is no quantum threats to these channels. A solution

to this problem can be the utilization of lattice-based cryptosystems for these

channels, which requires designing lattice-based TSSSs. We investigate the

effect of lattice dimension on the security and correctness of the proposed

scheme. Moreover, we prove that for a fixed lattice dimension the proposed

scheme is asymptotically correct. We also give a quantitative proof of security

from the information theoretic viewpoint.

© 2016 ISC. All rights reserved.

1 Introduction

L attice-based cryptography is one of the most pop-
ular areas in mathematical cryptography nowa-

days. It has received considerable attention in order
to build secure cryptographic primitives such as signa-
ture schemes, hash functions and public key cryptosys-
tems. Moreover, its rapid development is due in part
to security against quantum-computer based attacks
as well as efficiency and simplicity of basic operations.

A secret sharing scheme is a method of sharing a
secret data by distributing some values, called shares,
among a number of parties, called participants. In
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such a scheme, a dealer is an authority who undertakes
the task of computing each share and sending it to the
corresponding participant through a secure channel
which can be modelled by a public key cryptosystem.
Moreover, sharing the secret is performed in such a
way that only the authorized subsets of participants
are able to recover the secret.

The potential resistance of lattice-based cryptogra-
phy against quantum algorithms provides an appropri-
ate platform for designing new public key cryptosys-
tems for secure transmission of data [1–3]. This fact
motivates to design a new secret sharing scheme which
is compatible with lattice nature of the underlying
cryptosystem.

The notion of secret sharing was introduced by
Shamir [4] and Blakely [5] in 1979, independently.
While the Shamir’s TSSS is based on polynomial
interpolation over finite fields [4], Blakely’s scheme
is based on hyperplane geometry [5]. However, in
1983 another TSSS was introduced by Asmuth and
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Bloom [6] which was different fundamentally from
both previous schemes. Their scheme is based on
Chinese Remainder Theorem [6]. All aforementioned
schemes, are of a particular type of secret sharing
scheme, called TSSS. In a (t, n) TSSS, shares are
distributed among n participants, in such a way that
any coalition of size t or more of them are able to
recover the secret but smaller group cannot obtain
any information about the secret and reconstruct it.
Later, several other schemes have been introduced and
different features were added to those schemes [7–9].

Secret sharing has a lot of practical applications in
cryptography, among them are secure multiparty com-
putations [10], secure online auctions [11], electronic
voting systems [12] and information hiding [13].

In this paper, which is an extension of [14], a novel
(t, n) TSSS, t ≤ n, is introduced using a lattice con-
struction. To the best of our knowledge, the only
lattice-based TSSSs are those of Bansarkhani et al. [15]
and Georgescu [16], both of which are (n, n) TSSS,
which requires all participants pooling their shares to
recover the secret, while in the proposed scheme any
set of qualified participants are able to recover the
secret. Asaad et al. [17] proposed a variant of (t, n)
TSSS based on lattice. In [17], each share is an ele-
ment of Zp computed by adding a random noise to a
random multiple of the secret chosen from Zp.

In the proposed scheme, each share, given to each
participant, is computed by adding a random noise to
the inner product of two random vectors, where one
of the vectors is fixed such that its first component
is the secret and the second vector is associated with
the corresponding participant. The advantages of the
proposed scheme over that of Asaad et al. are twofold.
First, we discuss, in Section 5.3, using inner product of
the two vectors instead of two random field elements
to produce the shares providing a tradeoff between
correctness and security of our scheme with respect
to the choice of the length of those random vectors.
Second, we analyse the security and correctness of
the proposed scheme precisely by specifying the level
of security and correctness achieved with regard to
different parameters. Moreover, we study the effect of
different parameters on the correctness and security
of the proposed scheme using MATLAB. However,
the authors of [17] have shown that the secret entropy
loss converges to zero when p goes to infinity, but they
have not discussed about the level of security and
correctness of their proposed scheme.

Here, we apply a similar mathematical approach
used by Steinfeld et al. [18], to design a new variant
of lattice-based (t, n) TSSS, different from Shamir’s.
Steinfeld et al. [18] have designed a new method for
increasing the threshold in the standard Shamir secret

sharing scheme after distributing shares among partic-
ipants without communication between them. They
have used lattice reduction algorithms to increase the
threshold.

The proposed TSSS is composed of three phases:
public parameters generation, share distribution and
secret reconstruction. In the first phase, the dealer
chooses n distinct m-dimensional vectors l(i) uni-
formly at random and an m-dimensional vector a
whose first component is assigned to the secret while
the remaining m− 1 components are random values.
In the second phase, the dealer computes the shares by
adding some noise ei to the inner product of l(i) and a,
for each i. In the last phase, a combiner (server), gen-
erates a (t+m)-dimensional lattice basis, exploiting t

out of n vectors l(i) and a (t+m)-dimensional vector

t
′

using t out of n shares which is close to the certain
lattice point, whose (t+ 1)

th
component is a known

fraction of the secret. Running an approximation al-
gorithm, namely Babai’s nearest plane algorithm [19],
to find the closest vector of the lattice, generated by
the aforementioned basis, to the vector t

′
, the secret

is to be recovered.

Moreover, we improve the lower bound for the se-
curity parameter k stated in [14] and show that for a
certain security level we need less computations than
that mentioned in [14]. Also, we investigate the effect
of the parameter m on the security and correctness of
the scheme, when m varies in the interval [2, t− 1].

The rest of this paper is organized as follows. Sec-
tion 2 provides necessary concepts and notations used
in the rest of the paper. The formal definition of secret
sharing scheme is described in Section 3. Section 4
is dedicated to the proposed lattice-based TSSS.The
correctness and security of this scheme are discussed
in Section 5 and the proofs of the theorems are given
in this section. Furthermore, we examine the effects
of some parameters on the correctness and security of
the proposed scheme. Finally, we give a summery and
then conclude the paper.

2 Preliminaries

2.1 Notations

In this paper, we denote matrices with upper-case
bold letters while row vectors are denoted by lower-
case bold letters.The inner product of two row vectors
a and b is denoted by < a, b >, in short as abT , the
ith element of an n-dimensional vector v is denoted
by vi and we write v = ( v1, . . . ,vn). In addition, if
M is a matrix then its entry located in the ith row
and jth column is denoted by M ij . We denote the
ith row and the jth column of M by M i∗ and M∗j ,
respectively. For a finite set A, |A| denotes the number
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of elements in A. For integers m and n, Am×n denotes
the set of all matrices with m rows and n columns,
whose entries are chosen from A. We use D(Am×n) to
denote the subset of Am×n that contains all matrices
from Am×n with distinct nonzero rows.

We use different norms in this paper, defined as
follows. For an integer a and a prime p, we denote the
Lee norm of amodulo p, defined as mint∈Z |a− tp| , by
‖a‖L,p. Using this definition, the Lee norm of a vector
a modulo p which is defined as max1≤i≤n ‖ai‖L,p is

shown as ‖a‖L,p. The infinity norm of a vector a in
Rn is defined as ‖a‖∞ = max1≤i≤n |ai| .

For a real number a, Int(a) shows the largest inte-
ger number, strictly less than a, and for any probabil-
ity distribution D by x← D we mean that x is chosen
from the probability distribution D. In addition, for
any set A, we use UA to denote the uniform distribu-
tion over the set A. In this paper, whenever we use
log(·), we mean the logarithmic function with base 2.

Moreover, for a discrete random variable X which
takes values in an alphabet X with probability distri-
bution PX(·), the support of X, denoted by SUPPX ,
is defined as the set of all those values in X for which
the value of PX is nonzero. Considering this definition,
the Shannon entropy of the random variable X with
probability distribution PX(·), is defined as follows:

H (X) =
∑

a∈SUPPX

−PX(a)log(PX(a))

Furthermore, if PX( ·| e) denotes the conditional prob-
ability distribution of the random variable X given
the event e such that Pr(e) > 0, then the conditional
entropy of X given the event e is defined as follows:

H (X| e) =
∑

a∈SUPP X|e

−PX(a| e)log(PX(a| e))

where SUPP X|e denotes the set of all a ∈ X such
that PX(a| e) > 0.

2.2 Lattices

LetB = {b1, . . . , bn} be a set of n linearly independent
vectors in Rm. The lattice generated by B is defined
by L (B) = {

∑n
i=1 ci · bi : ci ∈ Z} as the set of all

integer linear combinations of the vectors b1, . . . , bn.
The integers m and n are known as the dimension and
rank of this lattice, respectively. The set B is called
a basis for the lattice L (B). Note that a lattice may
have more than one basis. Moreover, It is an obvious
requirement that m ≥ n. If m = n, the lattice is called
full rank.

So far, no efficient algorithms are known for many
lattice problems unless one considers approximation
solutions for them. The shortest vector problem (SVP),
is the most basic ones. In the approximation version

of this problem, that is γ-approximate SVP, assuming
that a lattice basis B is given, the goal is to find
a nonzero lattice vector, whose norm is not greater
than γsvpmina∈L(B)\{0} ‖a‖∞ . The basis reduction
algorithm of Lenstra, Lenstra, Lovasz, for short LLL
algorithm [20], is the basic algorithm in the lattice
context. This algorithm runs in polynomial time and
is used in the approximation versions of SVP and
Closest Vector Problem (CVP) with an approximation
factor of n1/22n/2 with regard to infinity norm. In this
paper, we use an approximation version of CVP to
find a vector a in a lattice, defined by a given basis B,
within distance γcvpminb∈L(B) ‖b− t‖∞ of the given
target vector t in Rn. According to Babai [19], we can
use the so-called nearest plane algorithm to solve the
approximation version of CVP with an approximation
factor of n1/22n/2 regarding infinity norm.

In the following, we quote the necessary definitions
and theorems from [18] and [21] used in the rest of
this paper:

Definition 1 (Minkowski’s successive minima): Let
Λ⊂Rn be a full rank lattice. For any integer k ≤ n,
λk(Λ), called the kth successive minimum of lattice
Λ, is defined as the smallest r > 0 such that there
exist at least k linearly independent lattice vectors
a1, . . . ,ak, whose infinity norms are bounded by r.

Theorem 1 (Minkowski’s First Theorem): Let Λ ⊂
Rn be a full rank lattice and λ1(Λ), denoting the first
Minkowski minimum of the lattice Λ. Then λ1 (Λ) ≤
det (Λ)

1
n .

Theorem 2 (Minkowski’s Second Theorem): Let Λ ⊂
Rn be a full rank lattice. If λ1 (Λ) , . . . , λn (Λ) denote
the first n Minkowski minima of the lattice Λ defined
with respect to infinity norm (see Definition 1 ), then∏n
i=1 λi (Λ) ≤ det(Λ) .

Theorem 3 (Blichfeldt-Corput): Let Λ ⊂ Rn be a full
rank lattice and B = {v ∈ Rn : ‖v‖∞ < N, ∀N ∈
R+}, then there exist at least 2Int

(
(2N)n

2ndet(Λ)

)
+ 1

lattice points in B.

In the following we give a generalization of the alge-
braic counting Lemma (Lemma 1 in [18]) introduced
first by Steinfeldt, Pieprzyk and Wang (SPW) [18].

2.3 A Generalization of SPW Algebraic
Counting Lemma

Steinfeld et al. [18] introduced an algebraic count-
ing Lemma to prove the correctness and security of
a lattice-based threshold changeable secret sharing
scheme. In the following, we state a generalization of
SPW Counting Lemma and prove it in an almost sim-
ilar manner. We use this lemma to prove the security
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and correctness of the proposed scheme.

Lemma 1: suppose that m, t,E are positive inte-
gers and p is a prime. Moreover, assume that A ⊆
Z1×m
p is a non-empty set and hm,t,E,p ⊆ Zt×mp de-

notes the set of matrices M ∈ Zt×mp for which there
exists at least a nonzero vector v ∈ A such that∥∥∥vMT

∥∥∥
L,p

< E. Then,|hm,t,E,p|, the number of ele-

ments in the set hm,t,E,p, is at most equal to the value

|A| (2E)
t
p(m−1)t.

Proof. Assume that M ∈ hm,t,E,p. Then, ac-
cording to the definition of hm,t,E,p there exists
a nonzero vector v ∈ A such that for any inte-
ger i ≤ t, ‖<M i∗,v >‖L,p < E. Thus, based on
the definition of Lee norm module p, for each i ≤
t, mint∈Z |<M i∗,v > −tp| < E . Hence, for each
i ≤ t there exists an integer number ri such that
|<M i∗,v > −rip| < E. Defining ei ,< M i∗,v >
−rip, we can say that there exist t integers e1, . . . , et
in Zp such that for any integer i ≤ t:

|ei|<E (1)

<M i∗,v>≡ei mod(p) (2)

Since v is a nonzero vector, there exists at
least an integer value j, 1 ≤ j ≤ m, such that
vj 6= 0. Now, we can rewrite the equation (2)
as vjM i,j +

∑m
t=1,t6=j vtM i,t ≡ ei mod(p). Thus,

the value M i,j is specified uniquely as the value

v−1
j

(
ei −

∑m
t=1,t6=j vtM i,t

)
mod(p).

Consequently, for each ei in Zp and nonzero
vector v∈A there are at most pm−1 vectors M i∗
such that <M i∗,v>≡ei mod(p), so for each vector
e= (e1, . . . ,et)∈Z1×t

p and nonzero vector v∈A there

are at most p(m−1)t matrices M such that for any
integer i ≤ t, (1) and (2) hold. Finally, based on the
fact that the number of possible values for the vectors
e and v are fewer than (2E)

t
and |A|, respectively,

the assertion hold. �

3 Secret Sharing Scheme

In this section, we give the definition of a TSSS that
we use in this paper. This definition is given in [18].

Definition 2 (Threshold Scheme): A (t, n) TSSS =
(PPG,DS, SC) consists of three efficient algorithms
which are defined as follows:

1) PPG (Public Parameter Generation): This is
an efficient algorithm which takes as input a security
parameter k ∈ K while returning as output a string
of public parameters x ∈ X .

2) DS (Dealer Setup): This is a probabilistic algo-
rithm which takes as input (1k, x) as a pair of security/

public parameter and also s as a secret that comes
from the secret space S

(
1k, x

)
⊆ {0, 1}k+1

while re-
turning as output a vector of shares s = (s1, . . . , sn),
whose ith component is in the ith share space Si(1k, x)
for any integer i ≤ n. We use R(1k, x) to denote the
space of random inputs and denote the mapping cor-
responding to the algorithm DS by:

DS(1k,x) (·, ·) : S
(
1k, x

)
×R

(
1k, x

)
→

n∏
i=1

Si(1k, x)

3) SC (Share Combiner): The input to this algo-
rithm is a pair of security/ public parameter (1k, x)
and a subset {si1 , · · · , sit} of t out of the n shares
and its output is the recovered secret s ∈ S

(
1k, x

)
.

In the following, the correctness and security of the
above-defined (t, n) TSSS are given [18].

Definition 3 (Correctness, Security): A (t, n) thresh-
old secret sharing scheme TSSS = (PPG,DS, SC)
is called as:

1) δc-correct, when the probability of failure in
secret recovery, denoted by pfail, taken over pub-
lic parameters x = PPG (k) ∈ X , is at most δc.
For a given pair (1k, x) the failure of secret recov-
ery means that there exist at least a pair (s, r) in
S
(
1k, x

)
×R

(
1k, x

)
and t indices i1, . . . , it in the set

{1, . . . , n} such that SC(1k,x) (si1 , . . . , sit) 6= s, where
(s1, . . . , sn) = DS(1k,x) (s, r). Precisely, pfail is de-
fined as follows:

pfail , pr{x = PPG(k) ∈ X : ∃ (s, r) ∈ S(1k, x)×R(1k, x)

such that(s1, . . . , sn) = DS(1k,x)(s, r),

∃ i1, . . . , it , SC(1k,x)(si1 , . . . , sit ) 6= s}

Moreover, the TSSS is asymptotically correct if for
any δ > 0, there exists k0 ∈ K such that if k > k0

then TSSS is δ-correct.

2) (ts, δs, εs, s← PS(1k,x))-secure, when the probabil-
ity of the secret entropy loss does not exceed the given
value εs, is at least 1− δs. Here, the secret s is sam-
pled from S

(
1k, x

)
w.r.t. the probability distribution

PS(1k,x) and the probability is computed over public
parameters x = PPG (k) ∈ X for any arbitrary ts
observed shares. Precisely, the following probability

ps , pr{x =PPG(k) : leak(1k,x)(µi1 , . . . ,µits
) ≤ εs,

∀ (µ1, . . . ,µn) ∈
n∏
i=1

Si(1k, x) ∀i1, . . . , its ,

s← PS(1k,x), (s1, . . . , sn) = D(1k,x)(s, r)& r ← UR(1k,x)}

is at least 1− δs where the secret entropy loss corre-
sponding to the observed shares µi1 , . . . ,µits , denoted

by leak(1k,x)

(
µi1 , . . . ,µits

)
, is defined as follows:

leak(1k,x)

(
µi1 , . . . ,µits

)
,∣∣∣H (s)−H

(
s
∣∣∣ sij = µij , j = 1, . . . , ts

)∣∣∣

ISeCure



January 2016, Volume 8, Number 1 (pp. 25–38) 29

Furthermore, the TSSS is said to be asymptotically
ts-secure with respect to PS(1k,x) when for sufficiently
large chosen security parameter k, there is a high
probability that the maximum ratio of secret entropy
loss to the security parameter, as the approximate
number of bits required to represent the secret, will
be arbitrarily small; to be more exact, the following
condition should be satisfied:

∀ δ > 0, ∀ε > 0 ∃k0 : ∀ k > k0 TSSS is (ts, δ, ε · k)-
secure

4 Lattice-based Threshold Secret
Sharing Scheme

In this section, we propose a new lattice-based TSSS,
inspired by the approach of [18]. In the proposed
scheme, the secret is reconstructed using Babai’s near-
est plane algorithm for solving the closest vector prob-
lem with approximation factor γcvp. In the following,
Γcvp denotes the value log( dγcvp + 1e) and we note
that Γcvp ≤ 1+0.5(t+m+log(t+m) ) if the Babai’s
nearest plane algorithm is used.

4.1 The proposed (t, n) TSSS algorithm:

(1) PPG(k):
a) Select prime p such that p > n and 2k ≤

p ≤ 2k+1.
b) Choose n distinct random vectors l(i) =(
l
(i)
1 , . . . , l(i)m

)
∈ Zmp , i = 1, . . . , n, where 2 ≤

m ≤ t− 1 is an arbitrary integer.
c) Choose the value of noise bound N as

follows to ensure that the proposed scheme is

δc-correct: N ,
⌊
pη

2

⌋
, η , 1 − m

t − ζ,ζ ,

1
k (log

(
δ
− 1
t

c .n
)

+ Γcvp + 1).

(2) DS (Dealer Setup): To share secret s ∈ Zp,
choose m − 1 random integers a1, . . . , am−1

in Zp. Considering a = (s, a1, . . . , am−1) ∈
Z1×m
p , we set the ith share to be si =(
< l(i),a > +ei

)
mod(p) in which the integer

ei is chosen uniformly at random in the interval
(−N,N).

(3) SC(si1 , . . . , sit) (Share Combiner): Let Mn×m
denote the matrix whose ith row is the vector l(i)

for i ∈ {1, . . . , n}. To recover the secret using
subshares {si1 , . . . , sit} such that δc-correctness
is guaranteed, do the following steps:

a) Corresponding to the set I = {i1, · · · , it},
define the matrix (M I)t×m satisfying (M I)r×s =

l(ir)
s for r ∈ {1, . . . , t} ands ∈ {1, . . . ,m}.

M I =


li11 li12 · · · li1m
...

...
. . .

...

lit1 lit2 · · · litm


b) Build the following full rank square matrix

MMI ,N,p, whose columns form a basis for a full
rank lattice LMI ,N,p:

MMI ,N,p =

 pIt M I

0t+m N/pIm


where It and Im denote identity matrices of size
t and m, respectively and 0t+m is a zero matrix
of size t+m.

c) Define the target vector

t′ = (si1 , . . . , sit , 0, . . . , 0)1×(t+m)

d) Run CVP approximation algorithm ACV P

on the lattice LMI ,N,p and the target vector t′.
Let us denote the output of this algorithm by
c = (c1, . . . , ct, ct+1, . . . , ct+m), then the secret
is recovered by computing s∗ = p

N ct+1mod(p).

5 Analysis of Correctness and
Security

5.1 Correctness

Theorem 4 (Correctness): The proposed TSSS is
asymptotically correct choosing δc = O(1/poly(k)). In
fact for any 0 < δc < 1 the (t, n)-TSSS is δc-correct for

all k ≥ k′0, wherek′0 ,
1

1−mt
(log

(
δ
− 1
t

c .n
)

+Γcvp +2) .

Proof. First of all, let I = {i1, · · · , it} ⊆ {1, · · · , n}
be a subset of indices, related to those participants
trying to reconstruct the secret. In order to calcu-

late sij =
(
l(ij)aT + eij

)
mod (p) , j = 1, · · · , t, one

should deduct the integer kjp from < l(ij),a > +eij ,
where

kj=
⌊
(l(ij)aT+eij )/p

⌋
∈Z .

Then, define βj,l
(ij)aT−kjp for j= 1,· · ·,t. Now,

consider the following lattice vector:

w = −
t∑
i=1

ki(MMI ,N,p)∗i + s(MMI ,N,p)∗t+1

+

m−1∑
i=1

ai(MMI ,N,p)∗t+1+i

which can be represented as the following vector:

w = (β1, . . . , βt, sN/p, a1N/p, . . . , am−1N/p)

Now, note that for j= 1, . . . ,t we have:
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sij =
(
l(ij)aT + eij

)
mod (p)

= l(ij)aT + eij − kjp
= βj + eij

Therefore, the target vector can be written as fol-
lows:

t′ = (β1 + ei1 , . . . , βt + eit , 0, . . . , 0)1×(t+m)

Now, considering
∣∣eij ∣∣<N for j = 1, . . . , t, the lattice

vector w

is roughly close, with regard to infinity norm,
to the target vector t′. In fact, since w−t

′
=

(ei1 , . . . , eit ,
a1N
p , . . . , am−1N

p ) and for each i, |ai|<p
we have: ∥∥∥w−t′∥∥∥

∞
< N (3)

Therefore, running CVP-approximation algorithm
ACV P , with approximation factor γcvp, on inputs t′

and the lattice LMI,N,p, we can get as output the
lattice vector c satisfying the following inequality:∥∥∥c−t′∥∥∥

∞
<γcvp

∥∥∥w−t′∥∥∥
∞
<γcvpN (4)

Now, define z , c−w, and use triangle inequality
to conclude from (4) that:

‖z‖∞= ‖c−w‖∞≤(γcvp+1)N (5)

In case p
N ct+1 ≡ p

Nwt+1 ≡ s mod(p), the secret
can be reconstructed correctly by the combiner. In
other case, there exists a lattice vector z = c − w
such that the following inappropriate case occurs:

p

N
zt+1 =

p

N
ct+1 −

p

N
wt+1 6≡ 0mod(p) (6)

Now, if the matrix M I , for a fixed I, is such that
the aforementioned inappropriate case happens, then
we call it a bad matrix. Let us denote the fraction
of bad matrices for a fixed I by δI . In fact, δI is the
fraction of all matrices M I ∈ D(Zt×mp ) for which
LMI ,N,p contains at least a short and inappropriate
vector z which satisfies the relations (5) and (6). Now,
we try to find an upper bound on δI . To achieve this
aim, we define the following function from Zmp to Zp,
with regard to z = ( z1, . . . ,zt+m) ∈ LMI ,N,p, in
the following way:

Fz (l1×m),< (pzt+1/N , . . . ,pzt+m/N) , l>mod(p)

First, we show that Fz for each z ∈ LMI ,N,p is
well defined. To do this, We note that according to
the definition of a lattice, the columns of the matrix
MMI ,N,p form a basis for the lattice LMI ,N,p. Now,
Let us denote the ith coordinate of the vector z ∈
LMI ,N,p with respect to this basis by πi(z) ∈ Z and
hence we can write

z =

t+m∑
i=1

πi (z)(MMI ,N,p)∗i

Now, according to the structure of the matrix
MMI ,N,p, we have:

zj = πj (z) p+

m∑
k=1

πt+k (z)l
(ij)
k , j = 1, . . . , t

and,

zj =
πj (z)N

p
, j = t+ 1, . . . , t+m.

Thus, p
N zt+i ∈ Z for i = 1, . . . ,m and since it is not

difficult to see that Fz is a function, we conclude that
Fz is well defined. Moreover, forj = 1, . . . , t we can
write

Fz

(
l(ij)

)
=

m∑
k=1

p

N
zt+kl

(ij)
k mod(p)

=
m∑
k=1

πt+k (z)l
(ij)
k mod(p)

Hence, we have zj = Fz

(
l(ij)

)
+ πj (z) p and con-

sequently Fz

(
l(ij)

)
≡ zj mod (p) for j = 1, . . . , t.

Moreover, we can write:

min
k∈Z

∣∣∣Fz

(
l(ij)

)
− kp

∣∣∣ = |zj − πj (z) p− kp| < |zj |

and therefore (5) implies that
∥∥∥Fz

(
l(ij)

)∥∥∥
L,p

<

(γcvp + 1)N ≤ 2ΓcvpN . Now, we use Lemma 1 with
E = 2ΓcvpN and |A| ≤pm to find an upper bound for
δI , for each fixed I, as follows:

δI ≤ pm(2E)
t
p(m−1)t/

∣∣D(Zt×mp )
∣∣

whereD(Zt×mp ) denotes the number of matrices in the
set Zt×mp with distinct non-zero rows which is equal
to (pm−1) (pm−2) · · · (pm−t). Hence, the probability
δ of a uniformly chosen matrix M ∈ D(Zn×mp ) for
which there exists at least a subset of indices I =
{i1, · · · , it} ⊆ {1, · · · , n} such that M I is bad, is at
most:

δ ≤
(
n
t

)
pm(2E)

t
p(m−1)t

(pm−1) (pm−2) · · · (pm−t)
(7)

Note that in obtaining (7) we have used the union
bound and the fact that the number of subsets of the
set {1, · · · , n} with t elements is equal to

(
n
t

)
.

In the following discussion, we prove that if k ≥
k′0, then the right-hand side of the inequality (7) is
less than δc. First, note that the condition k.η ≥ 1 is

implied by k ≥ k′0 because k′0 ,
1

1−mt
(log

(
δ
− 1
t

c .n
)

+

Γcvp + 2) and according to the definition of η, k.η is

equal to k
(
1− m

t

)
− log

(
δ
− 1
t

c .n
)
− Γcvp − 1. Since

ISeCure



January 2016, Volume 8, Number 1 (pp. 25–38) 31

2k ≤ p, the condition k.η ≥ 1 implies that pη ≥ 2. Let

R denote the value pmt

(pm−1)(pm−2)···(pm−t) . From (7) we

conclude that the sufficient condition for δ ≤ δc is

N≤ 1

2Γcvp+1

(
δcp

t−m/R
(n
t

)) 1
t

(8)

Since k′0 ≥ log(2t) , it follows that pm−i ≥ pm−t ≥
pm

2 for i = 1, . . . , t, therefore (pm − 1) (pm − 2) · · · (pm−
t) ≥ pmt

2t ,and so R
1
t ≤ 2. Moreover, we observe that(

n
t

) 1
t ≤ (nt)

1
t = n, and sinceN ,

⌊
pη

2

⌋
we have

N ≤ pη

2 . Therefore, according to the definition of η,
(8) is implied by satisfying the following condition:

ζ ≥
[
Γcvp+log

(
δ
− 1
t

c n
)

+1
]
/logp (9)

However, (9) is fulfilled by the choice of parameter
ζ used in the proposed scheme.

Finally, we need to show that the proposed
scheme is asymptotically correct. To this aim, δc =

O(1/poly(k)) results in δ
−1/t
c = O(poly(k)). There-

fore, for any δ > 0, δ-correctness is achieved whenever
k is chosen sufficiently large such that δ > δc and
k ≥ O(log (nkt) + Γcvp + 2). Note that logk

k = o(1),
therefore k can be chosen sufficiently large in order
to satisfy the mentioned conditions. �

5.2 Security

In this section, we prove that our proposed TSSS
scheme is secure according to Definition 3.

Theorem 5 (Security): The proposed TSSS is asymp-
totically Int(t − t

m )-secure when s ← UZp and δc =
O(1/poly(k)). More precisely, for any 0 < δc < 1 the
proposed TSSS is (ts, δs, εs, s ← UZp)-secure, choos-
ing the parameters as follows:

ts ≤
⌊

(t− t/m)/(1 +
t/m

k

(
log

(
δ
− 1
t

c n

)
+ Γcvp + 1

)
)

⌋

δs = δc, εs = (σ + 7) (ts +m) + 1 , σ =
log(2δ−1

c

(
n
ts

)
)

ts +m− 1

k ≥ k0 = max(k′0 +
(σ + 3)(t/m + 1)

1−m/t
, Z),

where k′0 is defined as in Theorem 4 and

Z =


A+B+C+m

ts

D , ts < m

A+B+C+1
D , ts ≥ m

where

A = log
(

2δ−1
c

(
n

ts

))
+ Γcvp + 3

B =
(

1 +
m

ts

)
log (ts +m)

C =
(

1 +
m

ts

)
(σ + 3) (ts +m− 1)

D = m(
1

ts
− 1

t
)

Proof. Suppose that I = {i1, · · · , its} ⊆ {1, · · · , n}
is a subset of indices and µ ∈ Z1×n

p is a fixed vector

of n shares. Moreover, the vector a ∈ Z1×m
p and the

noise vector
(
ei1 , . . . , eits

)
∈ (−N,N)

1×ts are cho-
sen uniformly at random. Let Pk,x (s | sI = µI) de-
note the conditional probability that the secret takes
the value s given that the random share vector sI =(
si1 , . . . , sits

)
takes the value µI =

(
µi1 , . . . ,µits

)
.

In view of the fact that p > 2N , for eacha ∈ Z1×m
p ,

there exists at most a noise vector
(
ei1 , . . . , eits

)
∈

(−N,N)
1×ts such that l(ij)aT +eij ≡ µijmod(p) for

j = 1, . . . , ts. Hence, we have:
Pk,x (s | sI = µI ) =∣∣∣{a ∈ Z1×m

p :

∥∥l(ij)
aT − µij

∥∥
L,p

< N, ∀j ∈ I, a1 ≡ s mod(p)
}∣∣∣∣∣∣{a ∈ Z1×m

p :

∥∥l(ij)
aT − µij

∥∥
L,p

< N , ∀j ∈ I
}∣∣∣

Now, for some integers s′ ≥ 0 , q ≥ 1, define the
following set:

Ss′,q ,{
a ∈ Z1×m

p :

∥∥l(ij)
a
T − µij

∥∥
L,p

< N ∀j ∈ I , a1 ≡ s
′
mod(q)

}
Consequently, we have:

Pk,x (s | sI = µI) = |Ss,p|/|S0,1| (10)

In the following, we try to find a lower bound on the
value |S0,1| and an upper bound on the value |Ss,p| for
all but a fraction δI of inappropriate choices ofM I ∈
D(Zt×mp ). Moreover, according to (10) we can find an
upper bound on the probability Pk,x (s | sI = µI) for
the fraction 1 − δI of appropriate choices of M I ∈
D(Zts×mp ). First of all, we use the following lemma
which indicates that |Ss′,q| is equal to the number of
points in the intersection of a particular lattice and a
hypercube of side length 2N .

Lemma 2 : Let us fix integers m, ts, p,N and q such
that p ≥ 2N and p is divisible by q. Moreover, let

s′ ∈ Zq, l(i)=
(
l
(i)
1 , . . . ,l

(i)
m

)
∈ Z1×m

p for i = 1, . . . , n,

and µI =
(
µi1 , . . . ,µits

)
∈ Z1×ts

p . Now, consider

matrices Mn×m and (M I)ts×m such that M ij =

l
(i)
j fori = 1, . . . , n, j = 1, . . . ,m and (M I)rs = l(ir)

s

for r = 1, . . . , ts,s = 1, . . . ,m . Define the lattice
LMI ,q generated by the columns of the following ma-
trix M ′

MI ,q:
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p 0 · · · 0 ql
(i1)
1 l

(i1)
2 · · · l(i1)

m

...
...

. . .
...

...
...

. . .
...

0 0 · · · p ql
(its )
1 l

(its )
2 · · · l(its )

m

0 0 · · · 0 2Nq/p 0 · · · 0

0 0 · · · 0 0 2N/p · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · 0 0 0 · · · 2N/p


and the following vector

µ
′
I = (θ1, . . . , θts , N

(
1−

1 + 2s′

p

)
, N

(
1−

1

p

)
, . . . , N

(
1−

1

p

)
),

where θj , µij − s′l
(ij)
1 j = 1, . . . , ts. Then, the

number of elements in the two following sets

Ss′,q ,{
b ∈ Z1×m

p :
∥∥l(ij)

b
T − µij

∥∥
L,p

< N ∀ j , b1 ≡ s
′
mod(q)

}
,

Vs′ ,q,
{
v∈LMI ,q:

∥∥∥v−µ′I∥∥∥∞<N}
are equal.

For the proof of Lemma 2 we refer to Appendix.

Regarding Lemma 2, we are going to find a lower
bound on the number of points in the intersec-

tion of the lattice LMI ,q and the set B
(
µ

′

I , N
)
,{

v ∈ Qts+m :
∥∥∥v − µ′

I

∥∥∥
∞
< N

}
.

Lemma 3 [18]: Suppose that Λ is a full rank lattice
in Rn, and µ ∈ Rn is an arbitrary vector and N > 0.
Then, we have∣∣{v ∈ Λ : ‖v− µ‖∞ < N}

∣∣ ≥ ∣∣{v ∈ Λ : ‖v‖∞ < N − ε}
∣∣

where ε = n
2λn(L).

Based on Theorem 2 for any lattice Λ we have:

λts+m (Λ) .λ1(Λ)
ts+m−1≤det(Λ) (11)

Lemma 4: Let m, ts, p,N, q be positive integers, σ
be a positive real number and p is a prime such that
p ≥ max{2N, 2ts} and q ∈ {1, p}. For each M I ∈
D(Zts×mp ) letM ′

MI ,q be the matrix defined in Lemma

2. Define L(1)
MI

the lattice generated by the columns

of the matrix obtained by eliminating the (ts + 1)
th

row and column of M ′
MI ,q. In the case that q = 1, if

1≤2−(σ+3)det (LMI ,1)
1

ts+m≤N, (12)

then for at least a fraction 1 − 2−σ(ts+m) of the ma-
trices MI ∈ D(Zts×mp ) we have

λ1(LMI ,1)≥2−(σ+3)det (LMI ,1)
1

ts+m (13)

in the case that q = p, if

1≤2−(σ+3)det
(
L(1)
MI

) 1
ts+m−1≤N, (14)

then for at least a fraction 1 − 2−σ(ts+m−1) of the
matrices M I ∈ D(Zts×mp ) we have

λ1(L(1)
MI

)≥λ1(LMI ,p)≥2−(σ+3)det
(
L(1)
MI

) 1
ts+m−1

(15)
For the proof of Lemma 4 we refer to Appendix.

Now, we turn back to the rest of proof of Theo-
rem 5. For a fixed σ>0, we say that M I∈D(Zts×mp )
is bad if at least one of the bounds (13) or (15) does
not hold. We denote the fraction of matrices M I (for
I = {i1, · · · , its}) for which λ1 (LMI ,q) < ∆ by δI(q)
where LMI ,q was defined in Lemma 2. If the con-
ditions given in Lemma 4 hold, then the fraction δI
of bad matrices M I∈D(Zts×mp ) is upper bounded as
follows:

δI≤δI (1) +δI (p)≤2−σ(ts+m)(1+2σ) (16)

Suppose thatM I∈D(Zts×mp ) is not bad and the in-
equality (13) is true, then combine inequality (11) for
Λ=LMI ,1 with inequality (13) to obtain the inequal-

ity λts+m (LMI ,1) ≤ det (LMI ,1)
1

ts+m 2(σ+3)(ts+m−1)

which follows that for ε = (ts+m)
2 λts+m (LMI ,1) we

have ε ≤ (ts+m)
2 det (LMI ,1)

1
ts+m 2(σ+3)(ts+m−1), and

as a result if we use Lemma 3 for Λ=LMI ,1 and

ε = (ts+m)
2 λts+m (LMI ,1) we conclude that |V0,1| ≥

|{v ∈ LMI ,1 : ‖v‖∞ < N − ε}|. Therefore, if

X,
(ts+m)

2
det (LMI ,1)

1
ts+m 2(σ+3)(ts+m−1) ≤ N

2
by using the Blichfeldt-Corpot theorem (Theorem 3)
we find out that |V0,1| ≥ 2Int (Y) + 1 where Y ,

(N/2)ts+m

2ts+mdet(LMI ,1)
. Moreover, if X ≤ N

2 then Y≥1, and

so 2Int (Y) + 1 ≥ Y and therefore, |V0,1| ≥ Y. Fur-
thermore, the inequality X ≤ N

2 results in the right
hand side of (12).

To summarize the discussion above, we proved that:

|V0,1| ≥
(N/2)

ts+m

2ts+mdet (LMI ,1)
(17)

provided that M I is not bad; p≥max{2N, 2ts} ;
the left hand side of (12) and the inequality

(ts+m) 2(σ+3)(ts+m−1)det (LMI ,1)
1

ts+m ≤ N hold.

Lemma 5: Suppose that LMI ,p and L(1)
MI

are the

lattices defined in Lemma 4, µ
′

I is the vector de-

fined in lemma 2 and µ
′′

I is the vector obtained from
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µ
′

I by eliminating its (ts+1)
th

coordinate. Then∣∣∣Vs′ ,p∣∣∣≤ ∣∣∣V (1)

s′ ,p

∣∣∣ where

Vs′ ,p,
{
w∈LMI ,p:

∥∥∥w−µ′I∥∥∥∞<N}
V

(1)

s′ ,p
,
{
w∈L(1)

MI
:
∥∥∥w−µ′′I ∥∥∥∞<N} .

For the proof of Lemma 5 we refer to the Appendix.

Lemma 6 [18]: For any full rank lattice Λ in Rn,
vector µ ∈ Rn, and N > 0, we have

|{v ∈ Λ : ‖v− µ‖∞ < N}| ≤
(

2N

λ1 (Λ)
+ 1

)n
.

Now, we return to the rest of the proof of Theorem
5. Suppose that M I∈D(Zts×mp ) is not bad, then by
Lemma 5 and 6 we conclude that

|Vs,p| ≤
∣∣∣V (1)

s,p

∣∣∣ ≤
 2N

λ1

(
L(1)
MI

) + 1

ts+m−1

Moreover, according to lemma 4, if p≥max{2N, 2ts}

and 1≤2−(σ+3)det(L(1)
MI

)
1

ts+m−1≤N , then λ1(L(1)
MI

) ≥

2−(σ+3)det
(
L(1)
MI

) 1
ts+m−1

, which results in the in-

equality |Vs,p| ≤

(
2N

2−(σ+3)det
(
L(1)

MI

) 1
ts+m−1

+ 1

)ts+m−1

.

Since we supposed that 2−(σ+3)det
(
L(1)
MI

) 1
ts+m−1≤N ,

we have 2N

2−(σ+3)det
(
L(1)

MI

) 1
ts+m−1

≥ 1 and hence

2N

2−(σ+3)det(L(1)MI
)

1
ts+m−1

+1 ≤ 2×
2N

2−(σ+3)det(L(1)MI
)

1
ts+m−1

As a result, we have the following inequality

|Vs,p| ≤

2× 2N

2−(σ+3)det
(
L(1)
MI

) 1
ts+m−1


ts+m−1

≤2(σ+5)(ts+m−1)N ts+m−1/det
(
L(1)
MI

)
.

To summarize the discussion above, we proved that:

|Vs,p| ≤ 2(σ+5)(ts+m−1)N ts+m−1/det
(
L(1)
MI

)
(18)

provided that M I ∈ D(Zts×mp ) is not bad, and
the inequalities p ≥ max{2N, 2ts} and 1 ≤

2−(σ+3)det(L(1)
MI

)
1

ts+m−1 ≤ N hold.

Suppose that the above sufficient conditions for
holding the inequalities (17) and (18) are satisfied.
Then, at least with probability 1 − δI , the following
inequality holds:

p(1k,x) (s | sI = µI ) = |Vs,p|/|V0,1| < 2(σ+7)(ts+m)+1/p

As a result, the secret entropy loss is upper bounded
as follows:

leak(1k,x)

(
µi1 , . . . ,µits

)
≤ (σ + 7) (ts +m)+1 = εs,

with probability at least 1 − δI , for a fixed sub-
set of indicesI = {i1, · · · , its} ⊆ {1, · · · , n}, a
fixed vector µI = (µi1 , . . . ,µits ) ∈ Z1×ts

p and

a uniformly distributed MI ∈ D(Zts×mp ). Fi-
nally, using union bound probability, we con-

clude that leak(1k,x)

(
µj1 , . . . ,µjts

)
≤ εs does

not hold for at least some subset of indices J =
{j1, · · · , jts} ⊆ {1, · · · , n} with probability at most

δ =
(
n
ts

)
21−σ(ts+m−1). Note that we have δ ≤ δc if

we choose σ =
log(2δ−1

c ( nts ))

ts+m−1 .

Now, we prove that by choosing ts and k0 as men-
tioned in Theorem 5, the sufficient conditions for
holding the inequalities (16) and (17) are satisfied.
First, note that the left inequality of (12) implies
the left inequality of (14). Moreover, assume that
2(σ+3)( tm+1)≤2N , then the left inequality of (12)
holds. Therefore, Since 2N>pη−2 and p≥2k, it fol-
lows that the sufficient condition for realizing the left

inequality of (12) is 2(σ+3)( t
m+1)+1 ≤ 2kη which is

satisfied by the condition,

k≥k
′

0+
1

1−mt
(σ+3)(

t

m
+1).

Moreover, owing to the fact that 2k ≤ p and
pη

4 ≤ N =
⌊
pη

2

⌋
, the sufficient condition for

(ts+m) 2(σ+3)(ts+m−1)det (LMI ,1)
1

ts+m ≤ N when
ts ≤ m is:

k >
A+B + C + m

ts

D
,

and since p ≤ 2k+1 and pη

4 ≤ N , the sufficient con-

dition for (ts+m) 2(σ+3)(ts+m−1)det (LMI ,1)
1

ts+m ≤
N when tS ≥ m is:

k >
A+B + C + 1

D
,

where A,B,C and D are defined as in Theorem 5.
Finally, we observe that the right inequality of (14)
is obtained by the condition

p
ts−m+1
ts+m+1≤2(σ+3) − m−1

ts+m−1N
ts

ts+m−1

which is satisfied by the condition

ts≤
(
t− t

m

)
1+

t
m

k

(
log
(
δ
− 1
t

c n
)

+Γcvp+1
)

mentioned in Theorem 5.

Since δc = O(1/poly(k)), we have δs = δc = o(1).

Since
(
n
tc

)
< nts , it follows that ts =

⌊
t− t

m

1+o(1)

⌋
, and

thus ts = Int(t − t/m) when k is sufficiently large.
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Therefore, σ = O(log(k) ) and εs = o(k). This com-
pletes the proof of security of the proposed scheme.

�

5.3 Parameter Analysis

In this section, we discuss the effects of the parameters
m and ts on the correctness and security parameters,
as follows.

According to Theorem 4, if it is necessary for the
(t, n)-TSSS to be δc-correct for some fixed n, t, δc and
Γcvp,while 2 ≤ m ≤ t − 1, then choosing a greater
value for m implies choosing a larger value for k which
in turn implies the larger p. It means that more compu-
tations are required. Therefore, it seems that choosing
a smaller value for m is more appropriate.

Now, we are interested in studying the effect of the
parameter m on the security of our scheme that is
discussed in Theorem 5. With this aim in view, let
us fix some value for δc = δs in the interval (0, 1).
Moreover, we suppose that our scheme is (ts, δs, εs,
s← UZp)-secure requiring that all conditions stated
in Theorem 5 are satisfied.

Let Q = log
(
δ
− 1
t

c .n
)

+ Γcvp + 1, then

ts ≤
⌊

t− t
m

1 + t
mkQ

⌋
(19)

Figure 1. kmin as a function of m and ts for parameters

n = 50, t = 20 and δc = 2−30.

Since t
mkQ > 0, we have ts ≤

⌊
t− t

m

⌋
. Moreover,

we conclude from (19) that:

t

mk
Q ≤

t− t
m

ts
− 1,

and since ts ≤ t− t
m we have:

k ≥ tQts
m (t− ts)− t

Figure 2. εs as a function of m and ts for parameters n = 50,

t = 20 and δc = 2−30.

Let B = tQts
m(t−ts)−t . So, the following lower bound for

the security parameter k is obtained:

k ≥ max (k0, B) , kmin

Figure 1 shows the effects of m and ts on kmin for
n = 50, t = 20, and δc = 2−30. Furthermore, the
effects of m and ts on

εs =

 log
(

2δ−1
c

(
n
ts

))
ts +m− 1

+ 7

 (ts +m) + 1;

2 ≤ m ≤ t− 1, 1 ≤ ts ≤
⌊
t− t

m

⌋

Figure 3. Comparison between kmin of the TSSS scheme
proposed in [14] (red points) and kmin of the TSSS scheme
proposed in this paper (blue points) for parameters n = 50,

t = 20 and δc = 2−30.

is shown in Figure 2, where the same values are
chosen for the parameters n, t, and δc. In this way, we
suppose that the parametersm and ts are chosen prior
to the choice of the parameters k and εs such that the
proposed scheme is (ts, δs, εs, s← UZp)-secure.
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Figure 1 and Figure 2 show that for a fixed m,
any increase in the parameter ts implies that kmin
and εs being increased, as expected from Definition
4 (security). In fact, from Definition 4 we conclude
that in a (t, n) TSSS with the fixed parameter m, the
entropy loss is an increasing function of the number
of observed shares ts.

Moreover, Figure 1 shows that for a fixed ts the
amount of kmin is a decreasing function of the lattice
dimension m. This fact represents a tradeoff between
correctness and security of the scheme with respect
to the choice of m.

In this paper we improved the amount of parameter
Z, defined in Theorem 5 and used for choosing the
security parameter k. The smaller value of Z results in
the smaller security parameter k. Figure 3 compares
the effects of m and ts on kmin for the proposed
TSSS and [14], where n = 50, t = 20 and δc = 2−30.
Figure 3 shows that less computations are required
for a certain amount of security in the proposed TSSS
in comparison with [14].

6 Conclusion

In this paper, we have introduced a (t, n) TSSS based
on lattice construction. Such a scheme is useful for
distributing the share values securely using a lattice-
based public key primitive. By this motivation, a new
TSSS which is consistent with lattice nature of the
underlying primitive, is designed. We have analyzed
the proposed scheme by proving its asymptotic cor-
rectness, due to the probabilistic construction of the
share values. Moreover, we have given a quantitative
proof of its asymptotic security from the information
theoretic viewpoint. Finally, we have studied the ef-
fect of the parameters on the security and correctness
of our scheme.
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Appendix

Proof of Lemma 2:

Proof. Define the function f : Ss′ ,q−→Vs′ ,q which

maps an arbitrary vector b∗= (kq+s
′
, b∗2, . . . ,b

∗
m) in

Ss′ ,q to the vector

f(b∗) ,
ts∑
i=1

ki(M
′
MI,q

)∗i + k(M ′
MI,q

)∗ts+1

+

m∑
i=2

b∗i (M
′
MI,q

)∗ts+i

where the coefficients k1,. . .,kts are chosen such that∥∥∥f (b)−µ′I
∥∥∥
∞
<N . In the following, we prove that

this function is well defined, i.e. there exist unique

coefficients k1,. . .,kts such that
∥∥∥f (b)−µ′I

∥∥∥
∞
<N .
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Moreover, we show that f is one to one and onto. Fix

b=
(
kq+s

′
, b∗2, . . . ,b

∗
m

)
∈Ss′ ,q. Since 0≤kq+s′≤p−1,

and 0≤b∗i≤p−1, it follows that for i= 2, . . . ,m,∣∣∣k 2Nq
p −N(1− 1+2s

′

p )
∣∣∣<N and

∣∣∣b∗i 2N
p −N(1− 1

p )
∣∣∣<N .

Moreover, due to the fact that for each j we

have
∥∥∥l(ij)bT − µij∥∥∥

L,p
< N , there exists k̃j for

j= 1, . . . ,ts such that
∣∣∣<b, l(ij)> −µij+k̃jp∣∣∣<N .

Therefore, for j= 1, . . . ,ts the following inequality
holds:∣∣∣kql(ij)1 + b∗2l

(ij)
2 + · · ·+ b∗m−1l

(ij)
m + k̃jp− θj

∣∣∣ < N.

Thus, we define kj , k̃j and we conclude that∥∥∥f (b)− µ′

I

∥∥∥
∞
< N . Now, to prove the uniqueness of

kj ’s we suppose that there is at least one 1 ≤ j ≤ ts

for which there exists k
(1)
j 6= k̃j such that∣∣∣kql(ij)1 + b∗2l

(ij)
2 + · · ·+ b∗ml

(ij)
m + k

(1)
j p− θj

∣∣∣ < N.

The last two inequalities result in p <
∣∣∣k̃jp− k(1)

j p
∣∣∣ <

2N which contradicts with the assumption and this
proves the uniqueness of kj ’s. Now, suppose that

v =
∑ts+m
i=1 vi(M

′
MI ,q

)
∗i
∈ VS′,q, so ‖v − µ′I‖∞ <

N which results in 0 ≤ vts+1q + s′ ≤ p − 1 and
0 ≤ vts+i ≤ p − 1, for i = 2, . . . ,m. By defining
w , (vts+1q + s′, vts+2, . . . , vts+m) ∈ Ss′,q we have
f (w) = v. Therefore, the function f is onto. It is
straightforward to show that f is injective by the
definition. �

Proof of Lemma 4:

Proof. Fix positive integers ∆ ≤ 2N and q ∈ {1, p}.
We denote the fraction of matrices M I (for I =
{i1, · · · , its}) for which λ1 (LMI ,q) < ∆ by δI(q).
Based on the definition of M ′

MI ,q, any vector v ∈
LMI ,q is of the form:

v = (MI∗1a
′T

+k1p, . . . , MI∗tsa
′T

+ktsp, 2Na
′
1/p, . . . , 2Na

′
m/p)

for some integers k1, · · · , kts and vector a
′

= (
a

′

1, . . . ,a
′

m) in Zm such that a
′

1 ≡ 0 mod(q).
Now, suppose that λ1 (LMI ,q) < ∆, so there ex-

ists at least a nonzero vector v = (MI∗1a
′T

+

k1p, . . . , MI∗tsa
′T

+ktsp, 2Na
′

1/p, . . . , 2Na
′

m/p) ∈
LMI ,q such that ‖v‖∞ < ∆, and therefore for each

i = 1, . . . ,m,
∣∣∣2Na′

i/p
∣∣∣ < ∆. But we know that

∆ ≤ 2N , so we conclude that
∣∣∣a′

i

∣∣∣ < p for each

i = 1, . . . ,m. Moreover, owing to the fact that
v is a nonzero vector, if for each i, a

′

i = 0 then
v = (k1p, . . . , ktsp, 0, . . . , 0). So there exists at least
one j in {1, . . . , ts} such that kj 6= 0, therefore
‖v‖∞ ≥ |kjp| ≥ p ≥ 2N ≥ ∆. Thus, the fraction

δI(q) is at most equal to the fraction of matrices
M I ∈ D(Zts×mp ) for which there exists a vector
v ∈ LMI ,q, with ‖v‖∞ < ∆, such that the relations

a
′ 6= 0 mod (p) and a

′

1 = 0 mod (q) hold. We denote
a

′
mod (p) 6= 0 by a

′′
. In case q = 1, we conclude

from ‖v‖∞ < ∆ that∥∥∥< a′′ , M I∗j >
∥∥∥
L,p

< ∆, for j = 1, . . . , ts and∥∥∥a′′i ∥∥∥
L,p

< ∆
2N p for i = 1, . . . ,m. Therefore, by

Lemma 1 we have:

δI (1) ≤
(

2∆
2N p+ 1

)m
(2∆)

tsp(m−1)ts(∣∣D (Zts×mp

)∣∣)
≤

(
2∆
N p
)m

(2∆)
tsp(m−1)ts

(pm − 1) (pm − 2) · · · (pm − ts)

and since pm − j ≥ pm

2 , for j = 1, . . . , ts, we have

(pm − 1) (pm − 2) · · · (pm − ts) ≥
(
pm

2

)ts
resulting

in δI (1) ≤ ( 2∆
N p)

m
(2∆)tsp(m−1)ts

( p
m

2 )
ts . Since det (LMI ,1) =

pts−m(2N)
m

, we conclude that δI (1) ≤ 22(ts+m)∆ts+m

det(LMI ,1)
.

It is easy to see that by the choice of ∆ =⌊
2−(σ+2)det (LMI ,1)

1
ts+m

⌋
, we have δI (1) ≤

2−σ(ts+m) (note that since 1 ≤ 2−(σ+3)det(LMI ,1)
1

ts+m

≤ N , by this choice we have ∆ ≤ 2N). Hence, for at
least a fraction 1− 2−σ(ts+m) of the matrices M I we

have λ1(LMI ,1) ≥ 2−(σ+3)det (LMI ,1)
1

ts+m .

In case q = p, we conclude from ‖v‖∞ < ∆ that∥∥∥< a′′ , M I∗j >
∥∥∥
L,p

< ∆, for j = 1, . . . , ts and∥∥∥a′′i ∥∥∥
L,p

< ∆
2N p, for i = 2, . . . ,m. Therefore, by

Lemma 1 we have:

δI (p) ≤
(

2∆
2N p+ 1

)m−1
(2∆)

tsp(m−1)ts(∣∣D (Zts×mp

)∣∣)
with the same approach for q = 1, we can prove

that δI (p) ≤ 22(ts+m−1)∆ts+m−1

det
(
L(1)

MI

) which results

in δI (p) ≤ 2−σ(ts+m−1), by the choice of ∆ =⌊
2−(σ+2)det

(
L(1)
MI

) 1
ts+m−1

⌋
, Therefore, for at

least a fraction 1 − 2−σ(ts+m−1) of the matri-
ces M I ∈ D(Zts×mp ) we have λ1(LMI ,p) ≥

2−(σ+3)det
(
L(1)
MI

) 1
ts+m−1

. From the definitions of

L(1)
MI

and LMI ,p and similar justification given in

the proof of Lemma 4 of [18], we have λ1(L(1)
MI

) ≥
λ1(LMI ,p). This completes the proof. �

Proof of Lemma 5 :
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Proof. We prove this lemma following a similar ap-
proach given in the proof of Lemma 5 in [18]. First,
we note that if w∈Vs′ ,p then there exists some inte-

ger k such thatwts+1= 2Nk. Since
∥∥∥w−µ′I∥∥∥∞<N , it

follows that
∣∣∣wts+1−N( 1+2s

′

p )
∣∣∣<N , so we have k= 0

which results in wts+1= 0.

Define f :Vs′ ,p → V
(1)

s′ ,p
as a relation between Vs′ ,p

and V
(1)

s′ ,p
which maps each vector w∈Vs′ ,p to vec-

tor w(1)=f (w), obtained from w by eliminating its

(ts+1)
th

coordinate. Now, according to the defini-

tion of lattices LMI ,p and L(1)
MI

and the structure

of the matrix M
′

MI ,q, it is observed that when

w∈Vs′ ,p we have f(w)∈L(1)
MI

. Moreover, we see that

if
∥∥∥w−µ′I∥∥∥∞<N then

∥∥∥f(w)−µ′′I
∥∥∥
∞
<N . There-

fore, the relation f is a well defined function from

Vs′ ,p to V
(1)

s′ ,p
. Finally, suppose that f (u) =f(w)

for some u, w∈Vs′ ,p. Since u, w∈Vs′ ,p, it follows
that uts+1=wts+1 and from f (u) =f(w) we con-
clude that other coordinates of u and w are equal.
Hence, f is a one to one function which results in∣∣∣Vs′ ,p∣∣∣≤ ∣∣∣V (1)

s′ ,p

∣∣∣. �
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