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1 Introduction

Image watermarking refers to the process of embedding an authentication
message, called watermark, into the host image to uniquely identify the
ownership. In this paper a novel, intelligent, scalable, robust wavelet-based
watermarking approach is proposed. The proposed approach employs a genetic
algorithm to find nearly optimal positions to insert watermark. The embedding
positions coded as chromosomes and GA operators (e.g. selection, crossover,
mutation and elitism), are used to find the nearly optimal embedding positions.
A fitness function, which includes both factors related to transparency and
robustness, is used to assess and compare chromosomes. The watermarked
test images do not show any perceptual degradation. This approach supports
scalable watermark detection and provides robustness against progressive
wavelet image compression. The experimental results very efficiently prove the
robustness of the approach against progressive wavelet image coding even at
very low bit-rates and some other attacks. This approach is a good candidate for
providing efficient authentication for secure and progressive image transmission
applications especially over heterogeneous networks, such as the Internet.

© 2011 ISC. All rights reserved.

video) against unauthorized copy, illegal distribution
and forgery. Of the many approaches existent to pro-

The rapid expansion and proliferation of the Inter-
net, development of high capacity storage devices and
the advances of data digitization in recent decades all
have rapidly increased the availability and exchange
of digital data to the public. These facts, combined
with faster personal computers and powerful data pro-
cessing software, required a reliable copyright protec-
tion system of multimedia data (e.g. audio, images,
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tect digital data, especially multimedia data, digital
watermarking is probably the one that has received
the most interest [1, 2]. Digital watermarking refers to
the process of embedding an authentication message
such as text, sound or a logo image, called watermark,
into the digital data content which uniquely identifies
the data ownership.

Depending on the problem that watermarking is
being used to solve, a good watermarking system
should satisfy some of the following requirements:
transparency or fidelity, robustness, blindness, low
false positive detection rate, security [1-9] and scal-
ability [10, 11]. The transparency or fidelity means
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that the watermark insertion should not perceptually
degrade the quality of the host image. Cox et al. [1]
have defined transparency or fidelity as the perceptual
similarity between the original and the watermarked
versions of the cover work. Robustness implies that
the watermark should be detectable from the water-
marked data even after being attacked by common
intentional or unintentional signal processing attacks.
As a matter of fact, in a robust watermarking system,
the watermark should withstand against common pro-
cessing of the watermarked data such as lossy com-
pression, spatial filtering, added noise, printing and
re-scanning and geometric distortions (rotation, trans-
lation, scaling, and so on) as well. Blindness refers to
the ability of detecting watermark in the absence of
original host data. A false positive detection refers to
the event that the watermark detector reports a water-
mark to be present in data in which the watermark in
fact has not been embedded. In a good watermarking
system, the rate of this mistake has to be extremely
low. Security implies that the embedded watermark
must not be easily detectable, maskable or removable
by unauthorized users intended to thwart the water-
marking purpose. Scalability in our context, refers to
a potential in the watermarked data that allows recon-
structing the lower resolutions of the watermark from
the watermarked data. In a scalable watermarking
system, even after applying an attack on the water-
marked data which causes that the full resolution of
the watermark may not be recoverable, it would be
possible to at least reconstruct a lower resolution of
the watermark.

Inserting a watermark into a host image can be per-
formed in both spatial and frequency domains. The
spatial domain image watermarking methods act di-
rectly on the host image pixels. Although the spatial
watermarking methods are simple and easy to imple-
ment, they are weak against attacks and noise [1].
The frequency domain watermarking methods are per-
formed on the coefficients of transformed image after
applying a transform such as DCT (discrete cosine
transform), DFT (discrete Fourier transform) or DWT
(discrete wavelet transform) to the host image [6].

There have been some researches in application
of genetic algorithms in image watermarking algo-
rithms [12-17]. The proposed watermarking approach
in [12] improves the performance of an existing algo-
rithm [13] using genetic algorithms optimization. The
watermarking system in [12] proposes an optimiza-
tion process where a genetic algorithm searches for
the optimum values of the parameters which improve
the visual quality of the watermarked image and the
robustness of the watermark. In [14], Aslantas has
presented an optimal watermarking algorithm based
on singular-value decomposition using genetic algo-
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rithms. In this algorithm, the singular values of the
host image are modified by multiple scaling factors
to embed the watermark image. Modifications are
optimized using GA to obtain a high robustness for
watermark without increasing the transparency of the
host image. The watermarking algorithm described
in [16] presents a robust technique for embedding the
watermark of signature information or textual data
around the region-of-interest of a medical image based
on genetic algorithms. In [15], Ketcham et al. pro-
pose an intelligent watermarking scheme for audio
signal based on genetic algorithms in the DWT do-
main which is robust against watermarking attacks.
They employed genetic algorithms for the optimal lo-
calization and intensity of watermark. Lee et al. [17]
have proposed a watermarking algorithm in the DWT
domain using genetic algorithms. In this algorithm,
the watermark insertion is done in the DWT domain
and a genetic algorithm is being used to extract the
watermark. This method is robust against various at-
tacks such as JPEG image compression and geometric
transformations. It can be deducted from the existing
results in [12—17] that employing a GA to improve
the performance of the existing watermarking algo-
rithms was successful. Taking to account the fact that
the GAs are powerful optimization tools [18, 19], the
optimized factors in the proposed GA-based water-
marking algorithms are commonly the transparency
and the robustness of the algorithm and consequently
the overall performance of the watermarking system.

One of the most important and the most commonly
used processes on digital images is compression. In the
recent decades, DWT-based image coding approach
has been an important field of research [20]. Due
to the inherent multiresolution signal representation
by DWT, DWT-based coding systems have also the
potential to support both SNR and spatial scalabil-
ity [21, 22]. As a consequence, many DWT-based im-
age coding approaches have been developed such as
SPIHT [23] and JPEG2000 [24, 25]. These coding ap-
proaches provide higher compression rates with much
better quality compared to DCT-based JPEG stan-
dard and support scalability and progressive lossy to
lossless coding features which are among the impor-
tant requirement features for the new generation of
image coding.

Several researches on digital image watermarking
compatible to wavelet-based image compression have
been reported in the literature [10, 26-33]. These
methods try to provide a robust watermarking system
against wavelet-based compression. In [31] Zaid, et al.
introduce a watermarking algorithm robust against
lossy compression, by exploring the use of turbo trellis-
coded quantization techniques on the wavelet domain.
This scheme is robust against lossy wavelet-based com-
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pression methods such as JPEG2000 and SPTHT. The
proposed approach in [32] implements image water-
marking in the domain of an overcomplete, or redun-
dant wavelet transform and is robust against SPTHT
algorithm. In [33] Makhloufi et al. attempt to integrate
watermarking in wavelet-based image coding. In this
approach the watermark embedding is directly per-
formed on the wavelet coefficients before the quanti-
zation phase of the coding algorithm. The watermark-
ing algorithm described in [26] first applies 3 levels of
wavelet transform to the host image and then inserts
the watermark data into the coefficients of the lowest
frequency subband. In [27] a secret message is directly
embedded in a SPTHT encoded bitstream. This pro-
cess allows to reconstruct the secret message during
the decoding process. The watermarking method pro-
posed in [29] first decomposes the watermark into a
pyramid of low resolution image and higher level dif-
ferences and then adds the decomposed data into the
DWT coefficients of the host image. The approach
proposed in [30] first applies 4 levels of wavelet trans-
form on the host image and then inserts the water-
mark data into the coefficients of the lowest frequency
subband using a weighing function. This method pro-
vides robustness of watermark against wavelet based
compression. Taking into account the robustness fea-
ture of these methods against wavelet based compres-
sions, none of them supports any of SNR and spatial
scalability (i.e. multiresolution detection) features for
watermark detection.

In our previous work, we have proposed a scalable
image watermarking algorithm [10] in the DWT do-
main which is robust against DWT-based image com-
pression. Although that approach supports multireso-
lution detection for the watermark, one of its possible
drawbacks is that there the watermark data are in-
serted into fixed positions. In this paper, we are going
to increase the performance of that system [10] using
genetic algorithms. The embedding positions are sim-
ulated as chromosomes in the evolution process. Then
the nearly optimal embedding positions are obtained
by evolution of chromosomes using natural selection
and GA operators. Thus, the whole evolution of GA
can efficiently achieve high quality watermarked im-
age and highly robust image against DWT-based com-
pression.

The rest of this paper is organized as follows. Sec-
tion 2 discusses some useful related preliminaries. Sec-
tion 3 gives an overview of the proposed watermark-
ing system. In Section 4, watermark insertion and
detection algorithms are presented. Section 5 presents
some details about the simulation of the system and
provides various experimental results for test of the
proposed approach, and finally, Section 6 concludes
the paper.

2 Preliminaries
2.1 Discrete Wavelet Transform on Images

Applying one level of 2D-DWT on a M x N pixels
digital image decomposes it into one approximate sub-
band (sub-image) and 3 detail M /2 x N/2 subbands,
namely a low frequency subband LL;, a horizontal
high frequency detail subband HL;, a vertical high
frequency detail subband LH; and a diagonal high
frequency detail subband HH;. The total number of
coefficients in the four subbands is equal to the origi-
nal number of pixels in the image, i.e. M x N. The low
frequency subband (LL;) is a low resolution (coarse)
version of the original image. Its statistical character-
istic are similar to the original image and contain the
main part of the image’s energy. High frequency sub-
bands stand for the edges and textures of the image.
To apply other levels of wavelet transform on an im-
age, the low frequency subband of the previous level
is used. Figure 1 demonstrates the decomposed Boat
image 512 x 512 pixels after applying five levels of
wavelet transform by 9/7 [34] filterbanks.

Human visual system has different sensitivities to
each of the frequency subbands. This characteristic
of human visual system is very much similar to the
multiresolution analysis of wavelet transform at some
extend. Therefore, the digital watermarking technique
based on discrete wavelet transform can make an
efficient use of the basic characteristics of human visual
system, and can meet transparency and robustness,
two important requirements of digital watermarking
systems, at the same time.

2.2 A Review on Genetic Algorithms

Genetic algorithms (GAs), which were introduced by
John Holland in 1975 for the first time [18], are global
search methods that are based on Darwin’s “survival of
the fittest” theory and simulate the natural biological
evolution to solve optimization problems [18, 19]. In
the GAs, any candidate solution is represented by
an encoded string, called “chromosome”. To compare
chromosomes, a fitness function is used. The fitness
function generates (calculates) a fitness value for each
chromosome. To find a nearly optimum solution, an
evolution process is performed on a population of
chromosomes. The goal of evolution is to adjust the
elements in the chromosome (genes) to minimize or
maximize the fitness value of the chromosome. Figure 2
depicts the flowchart of a typical genetic algorithm.

According to Figure 2, the evolution process starts
by random creation of a population of chromosomes
as the initial population. At the next step, the fitness
value of each chromosome is calculated using a pre-
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(a) Decomposed Boat after applying 5 Levels of 2D-DWT

(scaled for better magnification of the differences).
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(b) Conventional notation of (a).

Figure 1. Decomposition of Boat image.

Create Initial
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Calculate Fitness of
Each Chromosome

l
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Stop
Criteria

Figure 2. The flowchart of a typical GA.

defined fitness function. Then the chromosomes com-
pete with each other to be selected as parents to pro-
duce offsprings. Fitter chromosomes have the greater
chance to be selected and survive during the evolution
process. The offsprings are then generated from the
selected parents by using genetic operations, crossover
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and mutation. In crossover, a crossover point is se-
lected between the first and last genes of the parents.
Then, the fractions of two parents after the crossover
point are exchanged, and two new offsprings are pro-
duced. In mutation, genes of the chromosomes are
randomly changed based on predefined mutation rate.
The process will repeat until a predefined condition is
satisfied, or a constant number of iterations is reached.

2.3 Brief Review of Scalable Image
Watermarking Approach

To insert watermark data into the host image, our pre-
viously proposed watermarking algorithm [10], first
applies multi-level 2D-DWTT to the host image to pro-
vide the wavelet coefficients pyramid. To have a mul-
tiresolution representation of the binary watermark,
a multi level 2D down-sampling is applied to the wa-
termark (see Figure 3(b)). Then the decomposed wa-
termark subbands are inserted into the seven top sub-
bands of the decomposed wavelet image as follows:

LN Oy =

(a) 64 x 64 pixels
watermark (logo)
image.

L=y ANy
(b) Decomposed
watermark after
applying 2 lev-
els of 2D down-
sampling.

(c) Conventional
notation of (b).

Figure 3. Multiresolution decomposition of a watermark.
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Step 1: The coefficients (bits) of the subband Loog
are placed into the 5th bit of the coefficients of the
subband LL5.

Step 2: The coefficients of subbands Loes, Leos and
Lees are placed into the 4th bit of the coefficients
of subbands HLs5, LH5; and HHj5, respectively.

Step 3: The coefficients of subbands Loe;, Leo; and
Lee; are placed into the 3rd bit of the coefficients
of subbands HL4, LH4 and HHy, respectively.

The watermarked DW'T coefficients are then en-
coded by a DWT-based image compression algorithm
such as SPTHT or HS-SPIHT, as a highly scalable
modification of SPIHT, to provide an embedded pro-
gressive (by quality and/or resolution) bitstream. Be-
fore extracting watermark data, the encoded water-
marked bitstream is first truncated at the decoder
budget (bit-rate) and then decoded to reconstruct the
watermarked DWT coefficients of the image. At the
watermark extraction step, binary data of each of the
multiresolution decomposed watermark subbands are
extracted from the reconstructed watermarked DW'T
coefficients. Multiple spatial resolutions (e.g. quar-
ter, half and full) of the watermark (see Figure 3) are
then reconstructible from the extracted decomposed
watermark data.

3 Overview of The Proposed
G A-Based Scalable Watermarking
System

This section illustrates our proposed intelligent im-
age authentication approach. Our previous proposed
scalable image watermarking system [10] embeds wa-
termark data into fixed positions in the wavelet im-
age. In this new work, we utilize a GA to find nearly
optimal embedding positions in DW'T subbands.

The proposed system is depicted in Figure 4. This
procedure is performed for each chromosome of the
population in all of the generations. On the insertion
side a multi level 2D-DWT is applied to the host image
to provide the wavelet coefficients pyramid. Figure 1
shows the decomposed Boat image after applying 5
levels of 2D-DWT and its conventional subband nota-
tion. A binary logo image is used as watermark (see
Figure 3). A multiresolution decomposition of the wa-
termark, is also provided by applying a multi level 2D
down-sampling to the binary watermark. Figure 3(b)
shows the multiresolution representation of the binary
watermark after applying 2 levels of down-sampling,
which results in 7 resolution subbands similar to a
2-level 2D-DWT decomposition. The decomposed wa-
termark coefficients are then inserted into the 7 top
subbands of the decomposed image according to the
positions which are introduced by the chromosome

(see Figure 5). The watermarked DWT coefficients
are then encoded by a DWT-based image compression
algorithm such as SPIHT or HS-SPIHT to provide an
embedded progressive (by quality and/or resolution)
bitstream. Also, to evaluate the transparency of the
watermarked image, a multi level 2D-IDW'T is applied
to the watermarked coefficients which results the wa-
termarked image. The fidelity of the watermarked im-
age is measured by PSNR (peak signal-to-noise ratio).

On the watermark extraction side, the input bit-
stream is first truncated at the decoder budget (bit-
rate) and then decoded to reconstruct the water-
marked DWT coefficients of the image. By applying
multi levels of 2D inverse DWT (2D-IDWT), the wa-
termarked image for the decoder bit-rate rate is recon-
structed. At the watermark extraction step, binary
data of the multiresolution decomposed watermark is
extracted from the reconstructed watermarked DWT
coefficients. Multiple spatial resolution of the water-
mark is then reconstructible from the extracted de-
composed watermark data. Watermark insertion and
detection algorithms will be discussed in details in
Section 4

According to the definition of GAs, we need to
define a fitness function to evaluate chromosomes. The
fitness value for each chromosome C' in the proposed
GA is defined as:

F¢ = PSNR¢
+ 5 - (DR¢,c,0.5 + DRt c,0.125 + DR¢.c,0.0625)
Where F¢ is the fitness of C and PSNR¢ is the PSNR
of the watermarked image using C'. The quality of the

reconstructed binary watermark is measured by DR
(Detector Response) which is defined as:

number of true extracted coefficients

~ total number of watermark coefficients

If the DR is 0.5, the original and reconstructed
watermarks are completely the same. However, a DR
value of —0.5 indicates a complete absence of the
watermark.

In the fitness calculation process, DRy ¢ is the
quality of the detected full resolution watermark at
the bit-rate h for h = {0.5, 0.125 and 0.0625} which
has been inserted using C'. Finally, g is a weighting
factor for the DRs.

To provide a visual sense of the fitness calculation
process, this process is depicted in Figure 6. The en-
coded watermarked bitstream is truncated and de-
coded at bit-rates 0.5, 0.125, 0.0625 bpp and the water-
mark’s data is extracted from each decoded image. In
this process, the PSNR plays the role of transparency
measure and DR values play the role of robustness
measure. Because the PSNR values are dozens of times
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Insertion Side

|
Wat K | Multiresolution Multi Level : Watermarked
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| Multi Level Watermark DWT-Based Encoded
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ost tmage | 2D-DWT Insertion Encoding | Bitstream
|
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Reconstructed : Multi Level :
Image | 2D-IDWT [ |
| T Chromosome
! 1
! 1
! |
Reconstructed | Multiresolution Watermark DWT—Based | Decoded
Watermark \ Reconstruction Detection Decoding : Bitstream
|

Extraction Side

Figure 4. Block diagram of the proposed system.

Figure 5. Corresponding subbands in the decomposed (down-sampled) watermark and the wavelet decomposed image.

larger than the associated DR values in the GA fitness
function, there is a need to magnify the DR values
with a weighting factor S to balance the influences
caused by both the transparency and robustness re-
quirements [35].

4 Chromosome Definition and
Watermark Insertion and Detection
Algorithms

4.1 Chromosome Definition

To use GAs as an optimization tool, first we need to
define the structure of the chromosomes. The struc-
ture of the binary chromosomes is defined in a way
that determines positions (a bit in each coefficient of
seven top subbands in the wavelet pyramid) to insert
the coefficients of the decomposed watermark (Fig-
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ure 7). The first two genes of the chromosome in the
Figure 7 (which are marked with (X1,Xg)) are used
to determine a position in the top-left coefficient of
the lowest frequency subband of the wavelet image
which the counterpart coefficient of the decomposed
watermark will be placed on it. The position is deter-
mined by adding a constant value to the decimal value
of the X;Xq (for example the decimal value for the
X1 Xp= “10” is 2). Similar to the Top-left coefficient,
to insert each coefficient of the decomposed water-
mark in to wavelet image, a position is determined by
the chromosome.

4.2 Watermark Insertion Algorithm

Step 1: Apply 5 levels of 2D-DWT to the host image,
I(x,y), to generate the wavelet image, W(x,y), which
consists of one low frequency subband (LL5) and 15
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Figure 6. Block diagram of the fitness calculation process for each chromosome.

(X1 Xp)
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Figure 7. Sample chromosome definition (two times longer than the watermark size).

high frequency subbands (HL;, LH;, HH;, for i=1 4.3 Watermark Detection Algorithm

to 5) (.See Flgure' 1) These subbands are ClaSSIf.led Step 1: Apply 5 levels of 2D-DWT to the decoded wa-
according to their dependency to spatial resolution . . .

lovel follows: termarked image. The transformed image is named
Vs as 10 OwWs: Wa(x,y) and the subbands in W4(x,y) are classified

: ggig?j{{}}fl}f}LH HH; )} for i=1 o 5 in different subband levels (WSLg4(i)), in the same
WSL stands fo; ’Wa\;eilet Slubband Level way as done in the insertion procedure.
: Step 2: for (i=1 to 3):

Step 2: Apply 2 IGV.GIS of 2D down-sampling to the extract LSL4(i)’s subbands from WSLg4(i+3)’s sub-
binary watermark image, L(x,y), to generate 7 sub-
bands as follows:

bz.mds, POOQ and Loe;, Leo; and Lee;, lej .2 (see e for each coefficient (wy) in every subband of
Figure 3). Also, these subbands are classified as WSLy(i43):
d .

fOIiOVESS'L (3) = {Loos} o assume X;Xg as the position introduced by
e LSL(j) = {Loe;, Leoj, Lee;} for j=1, 2 o ihringfgizlfg; t;(le)cd'
LSL stands for Logo Subband Level. .fd - q 22-+3J1rk 0 | q 9i+2+k
Step 3: for (i=1 to 3): ° lh(wd Hi)l ) _) equals (wq mo )
Insert LSL(i)’s subbands into WSL(i+3)’s subbands then ¢g=1 else ¢4=0
as follows:

e for each component (¢) in the LSL(i)’s sub-
bands and its corresponding coefficient (w) in
its pair subband in the WSL(i+3):

o assume X; X as the position introduced by
chromosome for the c.
k = decimal (X;Xj)
w > (i+2+k)
Set LBS of w to 0
w L (i+2+k)
W =w + ¢ x2iT2Hk

Step 3:

e Take LSL,4(3) as the detected watermark at
quarter resolution.

e Take LSL4(3) and LSL4(2) and apply one level
reconstruction (i.e., inverse of the 2D down-
sampling done in the insertion stage) to obtain
detected watermark at half resolution.

e Take LSL4(3), LSL4(2) and LSL4(1) and apply
2 levels of reconstruction to obtain detected
watermark at full resolution.

o O O O o

One of the important notes about the proposed
algorithm is the watermarking chromosome. After fin-
ishing the evolution process, the best chromosome
(chromosome with the highest fitness value in the last

ISeﬂur@




Intelligent Scalable Image Watermarking Using GA — M. Deljavan Amiri et al.

generation) is being selected as the watermarking chro-
mosome. The chromosome contains a pair of binary
numbers (X;Xj) for each of the watermark coefficients.
Therefore it’s two times longer than the watermark, in
size. For Example, if we use a 64 x 64 pixels binary im-
age as watermark, the chromosome length will be 8192
bits (2 x 64x64). This bit string can be assumed as
the watermarking key in the proposed system. Having
a watermarking key in the watermarking algorithms
could have positive and negative effects on the algo-
rithm’s application. The existence of the watermark-
ing key increases security for watermark extraction
and watermark can not be extracted by an adversary.
On the other hand, the user needs to pay extra cost
to carry or send the key to the extraction point and
this might be pointed out as the major drawback of
the proposed algorithm.

Table 1. Parameters setting for GA-based experiment.

Parameter Value
Population size 20
Elitism rate 20%
Crossover rate 90%
Mutation rate 0.3%
Maximum number of generations 100
DR weighting factor (53) 40

5 Simulation Details and
Experimental Results

The proposed system was fully software-implemented
and has been tested on DWT-based image coding algo-
rithms. For the following presented experiments, the
standard images Boat and Gold-hill were used as test
images. The size of these images is 512 x 512 pixels.
The 9/7 taps filtering kernel [34] which is mainly used
in the wavelet-based image compression literature has
been used for computing the DWT. Table 1 shows the
parameter settings to run the GA to find nearly opti-
mal embedding positions. Figure 8 depicts the progress
of the adaptation process to find the nearly optimal
positions to insert watermark into Boat and Gold-hill
images. As described in Section 3 the fitness value for
each chromosome is composed of both transparency
and robustness factors. Therefore, chromosomes with
higher fitness warrant the transparency and robust-
ness for the watermarked image. As Figure 8 shows,
the average fitness of the population is in an increasing
mode during the evolution process. This fact implies
that the evolution process gradually discovers closer
to optimal positions to insert the watermark data.

The following subsections describe the results of
experiments carried out to test the various features
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of the proposed system and compare them with the
results in our previous algorithm [10].

5.1 Transparency

To test the transparency of the proposed method both
of Boat and Gold-hill images have been watermarked
in two sets of independent experiments, once by our
previous method [10] and once by the new proposed
method. To measure the quality of the watermarked
images, the PSNR (Peak Signal to Noise Ratio) and
MSSIM (Mean Structural SIMilarity) indexes were
used. The MSSIM index, which has been introduced
by Wang et al. in [36, 37], is a human visual system-
based index for measuring the similarity between two
images and is suitable for watermarking researches.
The maximum value for MSSIM index is 1 (when two
images are completely equal) and its minimum value is
0. To aim a suitable transparency in image watermark-
ing systems, the MSSIM value for the watermarked
image should be close to 1.

The watermarked images using our previously pro-
posed algorithm [10] are demonstrated in Figures 9(b),
and 10(b) with PSNR 47.63 dB, MSSIM 0.918 and
PSNR 45.89 dB, MSSIM 0.906. The GA-based al-
gorithm gradually pushes the position of the solu-
tion towards the nearly optimal embedding positions
and improves the quality of the watermarked image
shown in Figures 9(c), and 9(d) and Figures 10(c),
and 10(d). The quality of the watermarked images by
the GA-based algorithm are much better than the wa-
termarked images using previous algorithm and the
quality is being improved when the number of genera-
tions increases.

5.2 Robustness against DWT-Based
Compression and Multiresolution
Watermark Detection

To test the scalability feature and robustness of the
proposed watermarking approach against DWT-based
image compression, a scenario of once encoding, multi-
ple times decoding at various bit-rates (qualities) was
used. A 64 x 64 pixels binary pseudo-random image
was used as watermark. The watermarked wavelet co-
efficients of the test images were encoded by SPIHT.
The encoder was set to support maximum required
bit-rate. The encoded bitstreams were then decoded
at various bit-rates (qualities) and 3 spatial resolu-
tions (i.e., full, half and quarter) of the watermark
were extracted at each bit-rate.

Table 2 shows the results obtained for multireso-
lution watermark detection from SPIHT compressed
watermarked images for a wide range from very low
bit-rate to high bit-rate. The results for our previous
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(a) Average fitness of the chromosomes under different GA
generations to find nearly optimal positions in Boat.

(b) Average fitness of the chromosomes under different GA
generations to find nearly optimal positions in Gold-hill.

Figure 8. The progress of the adaptation process to find the
nearly optimal positions to insert watermark.

algorithm [10] is also provided for comparison.

The results in Tables 2 and 3 indicate that the quar-
ter resolution watermark is completely detectable at
very low bit-rates (e.g. 0.1 bpp for Boat and 0.075 bpp
for Gold-hill); whereas, the quarter resolution water-
mark in our previous algorithm [10] was detectable
at 0.4 bpp and above for Boat image and 0.2 bpp
and above for Gold-hill image. The half resolution
watermark is fully reconstructible by spending more
coding budget (e.g. at 0.2 bpp and above for both of
Boat and Gold-hill images). With the previous algo-
rithm, the half resolution watermark was detectable
at 1 bpp for Boat and 0.4 bpp for Gold-hill. Finally,
the full resolution watermark could be reconstructed
at higher bit-rates (e.g. at 0.5 bpp and above for both
images); whereas, in the previous algorithm it was de-
tectable at 2 bpp and above for Boat and 1 bpp and
above for Gold-hill. These results strongly prove that

Table 2. Results of multiresolution watermark detection for
lossy decoding of the watermarked Boat images by SPIHT.

DR

Bit-rate (bpp) GA-based algorithm Previous algorithm

Quarter Half Full Quarter Half Full

05 05 05 05 05 05

1 0.5 05 0.5 0.5 05 0.24

0.5 05 05 0.5 0.5 0.19 0.04

0.4 0.5 05 044 0.5 0.13 0.03
0.3 05 05 040 005 O 0
0.2 05 05 037 005 O 0
0.1 0.5 0.36 0.27 0 0 0
0.075 0.48 0.42 0.08 0 0 0
0.0625 0.29 0.09 0.04 0 0 0

Table 3. Results of multiresolution watermark detection for
lossy decoding of the watermarked Gold-hill images by SPTHT.

DR

Bit-rate (bpp) GA-based algorithm Previous algorithm

Quarter Half Full Quarter Half Full

2 05 05 0.5 0.5 05 0.5

1 05 05 05 0.5 05 05

0.5 05 05 0.5 0.5 0.5 0.26

0.4 0.5 05 045 0.5 0.5 0.18

0.3 0.5 05 044 0.5 0.23 0.05

0.2 0.5 05 040 0.5 0.20 0.04
0.1 0.5 041 0.24 0 0 0
0.075 0.5 0.29 0.10 0 0 0
0.0625 0.31 0.12 0.03 0 0 0

the proposed GA-based multiresolution watermark-
ing approach is much more robust in dealing with
the wavelet-based image compression methods and
outperforms our previously proposed multiresolution
watermarking algorithm [10].

5.3 Robustness against Scalable
DWT-Based Compression

The proposed GA-based multiresolution watermark-
ing approach was tested against scalable image coding.
The watermarked Images were encoded by HS-SPIHT,
a highly scalable modification of SPTHT [38, 39] which
supports both SNR and spatial scalability for the en-
coded image. Tables 4 and 5 show the results for de-
coding the full spatial resolution (i.e. 512 x 512 pixels)
of the watermarked images from the compressed bit-
streams at various bit-rates. In Tables 6 and 7 similar
results for decoding the compressed watermarked im-
age at the quarter spatial resolution (i.e. 128 x 128 pix-
els) are shown. For both cases 3 resolutions of the wa-
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(a) The original Boat image (512 x 512  (b) The watermarked Boat using our previ-
pixels). ously proposed algorithm (PSNR is 47.63
dB and MSSIM is 0.918).

(c) The watermarked Boat using the best (d) The watermarked Boat using the best
chromosome in the 70th generation (PSNR  chromosome in the 100th (last) generation
is 48.69 dB and MSSIM is 0.962). (PSNR is 52.31 dB and MSSIM is 0.971).

Figure 9. Watermarking the Boat image using different algorithms and settings.

termark are extracted from the decoded watermarked
images.

At the same bit-rate, the DR results in Tables 4
and 5 are much better than the counterpart results in
Tables 6 and 7. The reason is that, when we target a
lower spatial resolution, the coding budget that was
spent for higher subbands coding at full resolution cod-
ing case, is now spent for the lower resolutions which
contain watermark information. Therefore, more bud-
get is spent for both lower resolution image and wa-
termark as well and consequently the quality of the
decoded watermarked image and the watermark in
this case is better. By comparing the corresponding
results in each row of Tables 4, 5, 6 and 7, it is clear
that the robustness of the GA-based approach is much
more than the previous approach. These results con-
firm that the use of GAs to find the nearly optimal
positions to insert watermark, improves the robust-
ness of the watermark against scalable DWT-based
image compression.

ISeGure@

Table 4. Results for lossy decoding of the compressed
HS-SPIHT Boat bitstreams at full spatial resolution (512 x 512
pixels).

DR

Bit-rate (bpp) GA-based algorithm Previous algorithm

Quarter Half Full Quarter Half Full

05 05 0.5 05 05 05

1 0.5 05 05 0.5 0.5 0.19

0.5 05 05 05 0.5 0.14 0.02

0.4 0.5 05 042 0.5 0.10 0.02
0.3 0.5 05 0.39 0 0 0
0.2 0.5 05 037 0 0 0
0.1 0.5 040 0.23 0 0 0
0.075 0.48 0.31 0.10 0 0 0
0.0625 0.26 0.09 0.06 0 0 0
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(a) The original Gold-hill image (512 x 512
pixels).

(b) The watermarked Gold-hill using our
previously proposed algorithm (PSNR is
45.89 dB and MSSIM is 0.906).

(¢) The watermarked Gold-hill using the
best chromosome in the 70th generation
(PSNR is 47.91 dB and MSSIM is 0.951).

(d) The watermarked Gold-hill using the
best chromosome in the 100th (last) gen-
eration (PSNR is 49.72 dB and MSSIM is
0.961).

Figure 10. Watermarking the Gold-hill image using different algorithms and settings.

Table 5. Results for lossy decoding of the compressed
HS-SPIHT Gold-hill bitstreams at full spatial resolution
(512 x 512 pixels).

Table 6. Results for lossy decoding of the compressed
HS-SPIHT Boat bitstreams at quarter spatial resolution
(128 x 128 pixels).

DR

Bit-rate (bpp) GA-based algorithm Previous algorithm

Quarter Half Full Quarter Half Full

DR

Bit-rate (bpp) GA-based algorithm Previous algorithm

Quarter Half Full Quarter Half Full

05 05 05 05 05 05

1 05 05 0.5 05 05 05
0.5 05 05 0.5 05 05 05
0.4 0.5 0.5 045 0.5 0.5 0.19
0.3 0.5 0.5 0.39 0.5 0.5 0.13
0.2 0.5 0.5 037 0.5 0.20 0.05
0.1 0.5 040 0.23 0 0 0

0.075 0.5 031 0.10 0 0 0
0.0625 0.29 0.10 0.03 0 0 0

0.5 05 05 05 05 05 05
0.4 05 05 05 05 05 05
0.3 0.5 0.5 049 0.5 0.5 0.44
0.2 0.5 05 041 0.5 043 0.11
0.1 0.5 048 031 0.22 0.10 0.04
0.075 0.5 0.30 0.18 0 0 0
0.0625 0.5 0.21 0.09 0 0 0
0.05 0.45 0.10 0.06 0 0 0

5.4 Robustness against Other Attacks

The robustness of the proposed scalable image water-
marking algorithm is also tested against some attacks
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Table 7. Results for lossy decoding of the compressed
HS-SPIHT Gold-hill bitstreams at quarter spatial resolution
(128 x 128 pixels).

DR

Bit-rate

(bpp) GA-based algorithm Previous algorithm

Quarter Half Full Quarter Half Full

0.5 05 05 05 05 05 05
0.4 05 05 05 05 05 05
0.3 05 05 0.5 05 05 05
0.2 05 05 044 0.5 0.5 0.21
0.1 0.5 05 037 0.5 0.20 0.11
0.075 0.5 038 021 006 001 O
0.0625 0.5 025 0.11 0 0 0

0.05 0.5 0.17 0.07 0 0 0

(other than compression), including two models of me-
dian filtering (using 3 x 3 and 5 x 5 window sizes),
Gaussian filtering (mean = 0 and variance = 0.001),
adding salt and pepper noise (on and off pixels ratio
= 0.01) and cropping 25 percent of image’s center (see
Figures 11 and 12). Similar to the previous experi-
ments, a 64 x 64 pixels binary pseudo-random image
was used as watermark here. The watermarked Boat
and Gold-hill images were attacked and the water-
mark was extracted from attacked images in different
resolutions.

Table 8 shows the results obtained by this experi-
ment. The results clearly show that the proposed ap-
proach is robust against the attacks. According to this
table, in each row, the quality of the quarter resolution
watermark is the maximum value in the DRs and the
minimum value is for the full resolution watermark.
This results clarify the multiresolution watermarking
potential in the proposed algorithm again.

5.5 Comparisons with Other Wavelet-Based
Algorithms

To give a final assessment of the validity of our new
watermarking algorithm, some comparisons were per-
formed with some state-of-the-art algorithms oper-
ating in the wavelet domain. Since the main novelty
of our approach resides in the using GAs to increase
the transparency and robustness of our scalable wa-
termarking system against DWT-based image com-
pression algorithms, we compare our results with the
results in the papers which have introduced robust
watermarking algorithms against DWT-based image
compression. In this section, the results of the pro-
posed algorithm are compared to the results obtained
by the algorithms proposed in [206, 30, 31].

To compare the algorithms, the Boat and Gold-hill
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Table 8. Robustness of the watermark against some attacks
(other that compression).

DR
Image Attack type

Quarter Half Full

Median (3 x 3) filtering 0.46 0.46 0.42
Median (5 x 5) filtering 0.41 0.370.34

Boat Gaussian noise 0.5 049047
Salt and pepper noise  0.41 0.37 0.37
Cropping center 0.39 0.36 0.36

Median (3 x 3) filtering 0.49 0.47 0.42
Median (5 x 5) filtering 0.44 0.39 0.35
Gaussian noise 0.5 0.5 048
Salt and pepper noise  0.47 0.42 0.41
Cropping center 0.39 0.36 0.35

Gold-hill

images were watermarked with the algorithms using
a 64 x 64 pixels binary pseudo-random generated
watermark. Table 9 compares the transparency results
of the proposed GA-based algorithm with some state-
of-the-art watermarking algorithms.

To compare robustness of the algorithms, the water-
marked images were encoded by SPTHT. The encoder
was set to support the maximum required bit-rate.
The encoded bitstreams were then decoded at various
bit-rates (qualities) and the watermark was extracted
from the decoded images. Taking into account the fact
that none of the algorithms in [26, 30, 31] supports
scalability for watermark extraction (the algorithms
only detect a full resolution watermark), in this sec-
tion, only the full resolution extracted watermark of
the proposed algorithm is compared to the other algo-
rithms’ results.

Tables 10 and 11 show the results of detecting water-
mark from watermarked images using our algorithm
and state-of-the-art algorithms with various bit-rates.

The results in Tables 9, 10 and 11 clearly demon-
strate that the overall performance of the proposed
GA-based approach is better than the other state-of-
the-art algorithms. This improvement is the result
of using GAs to find the nearly optimal positions to
insert watermark to reach higher transparency and
robustness.

6 Conclusions

An intelligent, scalable, robust and blind watermark-
ing approach for scalable wavelet-based image com-
pression was introduced. A multiresolution decompo-
sition of the binary watermark image was performed
by applying 2 levels of 2D down-sampling. The decom-
posed watermark subbands were inserted into their
counterpart subbands of the wavelet decomposed im-
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(a) 3 x 3 median filtering. (b) 5 x 5 median filtering.
(c) Gaussian filtering. (d) Salt and pepper noise. (e) Cropping 25 percent of image’s
center.

Figure 11. Attacked watermarked Boat image using different filterings.

(a) 3 x 3 median filtering. (b) 5 x 5 median filtering.
(¢) Gaussian filtering. (d) Salt and pepper noise. (e) Cropping 25 percent of image’s
center.

Figure 12. Attacked watermarked Gold-hill image using different filterings.
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Table 9. Transparency comparison of the proposed algorithm against the other state-of-the-art algorithms.

PSNR (dB)
Image

MSSIM

The proposed algorithm [31] [

]

[

] The proposed algorithm [31] [26] [30]

52.31
49.72

Boat
Gold-hill

42.06 37.41 41.63
38.27 35.76 42.11

0.971 0.926 0.8740.943
0.961 0.911 0.857 0.946

Table 10. Results for detecting watermark from watermarked
Boat image.

DR
Bit-rate (bpp)

The proposed algorithm |

] [26] [30]

2 0.5 0.5 0.5 0.5
1 0.5 0.5 0.5 0.5
0.5 0.5 0.48 0.5 0.44
0.4 0.44 0.410.140.36
0.3 0.40 0.33 0 0.32
0.2 0.37 0.21 0 0.23
0.1 0.27 005 0 O
0.075 0.08 005 0 O
0.0625 0.04 0.06 0 O

Table 11. Results for detecting watermark from watermarked
Gold-hill image.

DR
Bit-rate (bpp)

The proposed algorithm |

] [26] [30]

2 0.5 0.5 0.5 0.5

1 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.48
0.4 0.45 0.470.390.41
0.3 0.44 0.390.140.37
0.2 0.40 0.28 0 0.33
0.1 0.24 0.13 0 0.20
0.075 0.10 0 0 0.09
0.0625 0.03 0 0 0

age. A GA was used to find the nearly optimal posi-
tions to insert watermark into the coefficients of the
wavelet pyramid. The embedding positions were coded
as GA chromosomes and the GA operators were used
to evolve a population of chromosomes. The PSNR re-
sults obtained for test images proved the transparency
of the approach. The scalability feature and robust-
ness of the proposed approach against DWT-based im-
age compression, was evaluated by lossy compression
of the watermarked image by the SPIHT algorithm.
The compressed bitstream was decoded at different
bit-rates. While at high bit-rates, full resolution water-
mark was completely detectable, at very low bit rates
(e.g., 0.1 and 0.075 bpp) still a lower resolution of the
watermark was preserved, which could authenticate
the host image. To test the robustness of the proposed
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method against scalable DWT-based compression, the
watermarked image was encoded by HS-SPIHT and
decoded at different qualities and spatial resolutions.
The results showed that at the same bit-rate, the qual-
ities of the detected watermarks from decoded image
at quarter spatial resolution are much better than
the qualities of detected watermarks from decoded
image at full spatial resolution. Inserting watermark
into nearly optimal positions, high transparency and
robustness against DWT-based image compression in
conjunction with multiresolution watermark detection
feature, make it attractive for secure image transmis-
sion applications especially over heterogeneous net-
works where different qualities of services need to be
provided for end users.
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