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A B S T R A C T

A hybrid approach for intrusion detection in computer networks is presented
in this paper. The proposed approach combines an evolutionary-based fuzzy
system with an Ant Colony Optimization procedure to generate high-quality
fuzzy-classification rules. We applied our hybrid learning approach to network
security and validated it using the DARPA KDD-Cup99 benchmark data
set. The results indicate that in comparison to several traditional and new
techniques, the proposed hybrid approach achieves better classification
accuracies. The compared classification approaches are C4.5, Näıve Bayes,
k-NN, SVM, Ripper, PNrule and MOGF-IDS. Moreover the improvement
on classification accuracy has been obtained for most of the classes of the
intrusion detection classification problem. In addition, the results indicate that
the proposed hybrid system’s total classification accuracy is 94.33% and its
classification cost is 0.1675. Therefore, the resultant fuzzy classification rules
can be used to produce a reliable intrusion detection system.

c© 2010 ISC. All rights reserved.

1 Introduction

Intrusion Detection Systems (IDS) act as the “second
line of defense” placed inside a protected network,
looking for known or potential threats in network
traffic and/or audit data recorded by hosts [1].

The problem of intrusion detection has been stud-
ied extensively in computer security [2–5], and has
received a lot of attention in machine learning and
data mining [6–8].

Intrusion detection is classified into two types: mis-
use intrusion detection and anomaly intrusion detec-
tion.
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The misuse intrusion detection is a rule-based ap-
proach that uses stored signatures of known intrusion
instances to detect an attack [9–11]. This approach
is highly successful in detecting occurrences of previ-
ously known attacks. However, it fails to detect new
attack types and variants of known attacks whose sig-
natures are not stored. When new attacks occur, the
signature database has to be manually modified for
future use. In anomaly intrusion detection, usually a
profile for normal behavior is first established [12–14].
Then deviants from the normal profile are considered
as anomalies. In some cases, these anomalies may be
just normal operations that are exhibiting some be-
haviors adherent to unseen mode of operation. In such
cases, the anomalies may be showing false positives.
That is, classifying a normal behavior as abnormal,
and hence as possible attack instances.

The above discussion points out that the tradeoff
between the ability to detect new attacks and the
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ability to generate a low rate of false alarms is the
key point to develop an effective IDS. In this paper,
we exploit a new hybrid evolutionary fuzzy system to
develop an IDS based on misuse detection. The goal
of our algorithm is to find high quality fuzzy if-then
rules to predict the class of input patterns correctly.

The objective of this paper is to extract fuzzy clas-
sification rules for misuse intrusion detection in com-
puter networks. The presented learning system con-
sists of two stages. In the first stage, an iterative rule-
learning algorithm is applied to the training data to
generate a primary set of fuzzy rules. In this stage, the
fuzzy rule base is generated in an incremental fash-
ion, in that the evolutionary algorithm optimizes one
fuzzy classifier rule at a time. The second stage of the
algorithm employs an ant colony optimization proce-
dure to enhance the quality of the primary fuzzy rule
set from the previous stage. As our proposed classifi-
cation algorithm is a learning system that hybridizes
an Evolutionary Fuzzy System with an Ant Colony
Optimization procedure, for simplicity, through the
rest of paper we call it EFS-ACO.

The proposed hybrid evolutionary fuzzy system was
evaluated using the KDD-Cup99 benchmark dataset—
which contains information on computer networks,
during normal and intrusive behaviors. This dataset
is available at the University of California, Irvine web
site [15].

The rest of this paper is organized as follows: Re-
lated work on intrusion detection is introduced in
Section 2. Fuzzy rule base for pattern classification is
presented in Section 3. The first stage of the proposed
learning algorithm, which is an evolutionary fuzzy
system, is discussed in Section 4. Section 5 describes
the presented Ant Colony Optimization procedure as
the second stage of EFS-ACO in detail. Experimental
results are reported in Section 6, and in Section 7 we
will discuss about the main idea behind EFS-ACO.
Finally, Section 8 concludes the paper.

2 Related Work

There are several approaches for solving intrusion de-
tection problems. Lee [16] built an intrusion-detection
model using association-rule and frequent-episode
techniques on system audit data.

Neural networks have been extensively used to de-
tect both misuse and anomalous patterns [17–21]. An
n-layer network is constructed and abstract commands
are defined in terms of sequences of information units,
the input to the neural network in the training data.

Each command, together with some predefined com-
mands, is used to predict upcoming command ex-

pected from the user. After training, the system has
the profile of the user. At the testing step, the anomaly
is said to occur when the user deviates from the ex-
pected behavior [22, 23]. Short sequences of system
calls carry out the prediction process. In this system,
Hamming distance comparison with a threshold is
used to discriminate the normal sequence from the ab-
normal sequence [24, 25]. Some recent researches have
utilized Artificial Immune Systems to detect intrusive
behaviors in a computer network [26–28].

Some other applied techniques on intrusion detec-
tion problem are Genetic Fuzzy Rule-Based Systems
[11, 12, 29], Bayesian parameter estimation [9] and
clustering [30–33].

This paper hybridizes an iterative evolutionary
fuzzy system with an ant colony optimization proce-
dure to extract fuzzy classification rules for intrusion
detection problem. Note that this hybridization is
the main contribution of this paper. In other words,
the use of hybrid nature-inspired heuristics to extract
fuzzy classification rules has not been investigated in
previous works.

3 Fuzzy Rule Base for Pattern Classifi-
cation

Let us assume that our pattern classification problem
is a c-class problem in the n-dimensional pattern space
with continuous attributes. We also assume that M
real vectors xp = (xp1, xp2, . . . , xpn), p = 1, 2, . . . ,M ,
are given as training patterns from the c classes (c�
M).

Because the pattern space is [0, 1]n, attribute val-
ues of each pattern are xpi ∈ [0, 1] for p = 1, 2, . . . ,M
and i = 1, 2, . . . , n. In computer simulations of this
paper, we normalize all attribute values of each data
set into the unit interval [0, 1]. This process is done
since we want to apply same membership functions to
all of the attributes in the intrusion detection classifi-
cation problem. The above mentioned normalization
will make our final classification system more compre-
hensive and interpretable.

In the presented fuzzy classifier system, we use fuzzy
if-then rules of the following form.

Rule Rj : If x1 is Aj1, and x2 is Aj2, . . ., and xn is
Ajn, then Class Cj with CF = CFj .

where Rj is the label of the jth fuzzy if-then rule,
Aj1, ... , Ajn are antecedent fuzzy sets on the unit in-
terval [0, 1], Cj is the consequent class (i.e., one of the
given c classes), and CFj is the grade of certainty of
the fuzzy if-then rule Rj . In computer simulations,
we use a typical set of linguistic values in Figure 1 as
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Figure 1. The antecedent fuzzy sets used in this paper. 1:
Small, 2: medium small, 3: medium, 4: medium large, 5: large,
and 0: don’t care.

antecedent fuzzy sets. The membership function of
each linguistic value in Figure 1 is specified by homo-
geneously partitioning the domain of each attribute
into symmetric triangular fuzzy sets. We use such a
simple specification in computer simulations to show
the high performance of our fuzzy classifier system,
even if the membership function of each antecedent
fuzzy set is not tailored. However, we can use any
tailored membership functions in our fuzzy classifier
system for a particular pattern classification problem.

According to Figure 1, the total number of fuzzy
if-then rules is 6n in the case of the n-dimensional
pattern classification problem. It is impossible to use
all the 6nfuzzy if-then rules in a single fuzzy rule
base when the number of attributes (i.e.n) is large
(e.g., intrusion detection problem which n = 41). Our
proposed hybrid system searches for a relatively small
number of fuzzy if-then rules (e.g., 50 rules) with high
classification ability.

The first stage of EFS-ACO that generates and
evolves a primary fuzzy rule set, performs its searching
process for each of the c classifiers independently. (c
denotes the number of classes in the classification
problem). Each classifier contains a subset of rules with
the same class labels. The proposed algorithm focuses
on learning of each class to improve the total accuracy
of the main classifier. Therefore, the proposed hybrid
system is repeated for each class of the classification
problem separately [34].

The second stage of EFS-ACO attempts to improve
the total accuracy of the primary fuzzy rule set. This
primary rule set is the result of searching process from

the first stage. In the second stage of EFS-ACO, an
ant colony optimization procedure is used to search
the neighborhood of the each fuzzy rule in the primary
fuzzy rule set and improves that rule according to the
total classification rate of the primary rule set.

Since the learning process of each class in the first
stage of the proposed hybrid system is independent
from the other classes, therefore the class label of each
fuzzy rule is determined according to its corresponding
learning process. In other words, we do not need to
compute the class label of each fuzzy if-then rule in
the first stage, because every rule in the population
would have the class label that the learning process
considers more fitness value to it.

The EFS-ACO applies the following steps to calcu-
late the certainty grade of each fuzzy if-then rule [34]:

Step 1 : Calculate the compatibility of each training
pattern xp = (xp1, xp2, . . . , xpn) with the fuzzy if-then
rule Rj by the following product operation:

µj(xp) = µj1(xp1)×· · ·×µjn(xpn), p = 1, 2, . . . ,m
(1)

where µji(xpi) is the membership function of ith at-
tribute of pth pattern and M denotes the total number
of patterns.

Step 2 : For each class, calculate the relative sum of
the compatibility grades of the training patterns with
the fuzzy if-then rule Rj :

βClass h(Rj) =
∑

xp∈Class h

µj

NClass h
, h = 1, 2, . . . ,m

(2)

where βClass h(Rj) is the sum of the compatibility
grades of the training patterns in Class h with the
fuzzy if-then rule Rj and NClass h is the number of
training patterns which their corresponding class is
Class h.

Step 3 : The grade of certainty CFj is determined
as follows:

CFj =

(
βClass ĥj

(Rj)− β̄
)

∑c
h=1 βClass h(Rj)

(3)

where

β̄ =

∑
h 6=ĥj

βClass h(Rj)

c− 1
(4)

By the proposed heuristic procedure, we can specify
the certainty grade for any combination of antecedent
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fuzzy sets. Such a combination is generated by the
proposed hybrid system will be explained in the next
sections.

The task of our fuzzy classifier system is to generate
combinations of antecedent fuzzy sets for generating a
rule set S with high classification ability. When a rule
set S is given, an input pattern xp = (xp1, xp2, ..., xpn)
is classified by a single winner rule Rj∗ in S, which is
determined as follows [35]:

µj∗(xp) · CFj∗ = max {µj(xp) · CFj | Ri ∈ S} (5)

That is, the winner rule has the maximum product
of the compatibility and the certainty grade CFj .

The method of coding fuzzy if-then rules, which is
used in this paper, is the same as the method that we
employed in [10]. Each fuzzy if-then rule is coded as a
string. The following symbols are used for denoting
the five linguistic values: (Figure 1)

0: don’t care (DC), 1: small (S), 2: medium small
(MS), 3: medium (M), 4: medium large (ML), 5: large
(L).

As it is mentioned earlier, the proposed learning
algorithm combines an evolutionary fuzzy system with
an ant colony optimization procedure to generate its
final fuzzy rule set. We will discuss about each of these
two stages in the following sections.

4 Stage I: Evolutionary Fuzzy System

The first stage of EFS-ACO is an evolutionary fuzzy
system that learns fuzzy if-then rules in an incremental
fashion, in that the evolutionary algorithm optimizes
one fuzzy classifier rule at a time. The learning mech-
anism decreases the weight of those training instances
that are correctly classified by the new rule. There-
fore, the next rule generation cycle focuses on fuzzy
rules that account for the currently uncovered or mis-
classified instances. At each iteration the fuzzy rule
that can classifies the current distribution of training
samples better than other rules of the population is
selected out to be included in the final classification
fuzzy rule base. The idea behind using the boosting
mechanism is to aggregate multiple hypotheses gen-
erated by the same learning algorithm invoked over
different distributions of the training data into a single
composite classifier.

In the above learning framework, we have used
the fitness function, which is computed according to
equations (6) to (8).

fp =

∑
k|ck=ci

(
wk · µRi(x

k)
)∑

k|ck=ci
wk

(6)

fN =

∑
k|ck 6=ci

(
wk · µRi

(xk)
)∑

k|ck 6=ci
wk

(7)

fitness(Rj) = wpfp − wNfN (8)

where,

fp: rate of positive training instances covered by the
rule Ri (correct classification).

fN : rate of negative training instances covered by the
rule Ri (misclassification).

wk: a weight which reflects the frequency of the in-
stance xk in the training set.

wp: the weight of positive classification.

wN : the weight of negative classification (misclassifi-
cation).

Outline of the proposed iterative evolutionary fuzzy
system is presented as follows:

Step 1 : Generate an initial population of fuzzy if-
then rules based on weight of training samples. (Ini-
tialization)

Step 2 : Generate new fuzzy if-then rules by genetic
operations. (Generation)

Step 3 : Replace a part of the current population
with the newly generated rules. (Replacement)

Step 4 : Terminate the inner cycle of the algorithm
if a stopping condition is satisfied, otherwise return
to Step 2. (Inner Cycle Termination Test)

Step 5 : Terminate the outer cycle of the algorithm
if a stopping condition is satisfied, otherwise go to the
next step (Outer Cycle Termination Test)

Step 6 : Adjust the new weight of each training
sample that covers by the new added fuzzy rule. Go
to Step 1 (Weight Adjustment).

Each step of EFS-ACO is described as follows:

Step 1 : Let us denote the number of fuzzy if-then
rules in the population by Npop. To produce an ini-
tial population, Npop fuzzy if-then rules are generated
according to a random pattern in the train dataset
[36]. As it was mentioned in the previous section, the
proposed evolutionary fuzzy system is considered for
each of the classes of the classification problem sep-
arately. Therefore, the mentioned random pattern is
extracted according to the patterns of the training
dataset, which their consequent class is the same as
the class that the algorithm works on. Note that the
probability for each training pattern to be chosen in
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this step is proportional to its current weight. This
means that the algorithm considers a greater proba-
bility for those patterns that have not been learned
in previous iterations. Next, for this random pattern,
we determine the most compatible combination of an-
tecedent fuzzy sets using only the five linguistic values
(Figure 1). The compatibility of antecedent fuzzy sets
with the random pattern is measured by equation (1).
After generating each fuzzy if-then rule, the certainty
grade of this rule is determined according to the heuris-
tic method, explained in the previous section. After
generation ofNpop fuzzy if-then rules, the fitness value
of each rule is evaluated by classifying all the given
training patterns using the set of fuzzy if-then rules
in the current population. Each fuzzy if-then rule is
evaluated according to the fitness function, which is
presented in equation (8).

Step 2 : A pair of fuzzy if-then rules is selected
from the current population to generate new fuzzy
if-then rules for the next population. Each fuzzy if-
then rule in the current population is selected using
the tournament selection strategy. This procedure is
iterated until a pre-specified number of pairs of fuzzy
if-then rules are selected. A crossover operation is
then applied to a selected random pair of fuzzy if-then
rules with a pre-specified crossover probability. Note
that the selected individuals for crossover operation
should be different. In computer simulations of this
paper, we have used the uniform crossover. With a pre-
specified mutation probability, each antecedent fuzzy
set of fuzzy if-then rules is randomly replaced with
a different antecedent fuzzy set after the crossover
operation. Note that the probability of changing to
don’t care value is more than the other five linguistic
values. We call this probability PDC . After performing
selection, crossover and mutation steps, the fitness
value of each of the generated individuals is evaluated
according to equation (8).

Step 3 : A pre-specified number of fuzzy if-then
rules in the current population are replaced with the
newly generated rules. In our fuzzy classifier system,
PR percent of the worst rules with the smallest fit-
ness values are removed from the current population
and (100− PR) percent of the newly generated fuzzy
if-then rules are added. (PR is the replacement per-
centage) After performing the mentioned replacement
procedure, the fitness value of each of the individuals
is evaluated according to equation (8).

Step 4 : We can use any stopping condition for ter-
minating the inner cycle of the IRL-based fuzzy rule
learning algorithm. In computer simulations of this
paper, we used the total number of generations as a
stopping condition.

Step 5 : After termination of the inner cycle of EFS-

ACO, the algorithm adds the best fuzzy rule of the
evolved population to the final classification rules
list and checks if this added fuzzy rule is capable of
improving the classification rate of final classification
system. If the classification rate is not improved the
algorithm removes the added fuzzy rule from the final
classification rules list and terminates. Otherwise, it
goes to the next step.

Step 6 : At each iteration of the main evolutionary
process, rule Rt with the best fitness value is inserted
into the primary fuzzy rule base. After each rule ex-
traction process, instances that are misclassified will
end up having the same weight. The weight of those
instances that are classified correctly will be became
zero. Note that initially wk = 1. After this step, the
algorithm jumps to step 1.

5 Stage II: ACO Meta-Heuristic

ACO is a stochastic approach that has been proposed
to solve different hard combinatorial optimization
problems such as traveling salesman problems [37–39]
graph coloring problems [40], quadratic assignment
problems [41, 42] and vehicle routing problems [43, 44].
The main idea of ACO is to model the problem as the
search for a minimum cost path in a graph. Artificial
ants walk through this graph, looking for good paths.
Each ant has a rather simple behavior so that it will
typically only find rather poor-quality paths on its
own. Better paths are found as the emergent result
of the global cooperation among ants in the colony.
This global cooperation is performed using pheromone
trails, which ants deposit whenever they travel, as a
form of indirect communication.

The behavior of artificial ants is inspired from real
ants [45]: they lay pheromone trails on the graph edges
and choose their path with respect to probabilities
that depend on pheromone trails and these pheromone
trails progressively decrease by evaporation. In addi-
tion, artificial ants have some extra features that do
not find their counterpart in real ants. In particular,
they live in a discrete world (a graph) and their moves
consist of transitions from nodes to nodes. In addi-
tion, they are usually associated with data structures
that contain the memory of their previous actions. In
most cases, pheromone trails are updated only after
having constructed a complete path and not during
the walk, and the amount of pheromone deposited is
usually a function of the quality of the path. Finally,
the probability for an artificial ant to choose an edge
often depends not only on pheromones, but also on
some problem-specific local heuristics.

In order to improve the classification rate of the
resulted fuzzy rule set from the first stage of EFS-
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ACO, a secondary stage is considered. In this stage,
an ant colony optimization procedure is applied on
the primary fuzzy rule set from the first stage of
EFS-ACO. This secondary stage of EFS-ACO acts as
a local search procedure in that the ACO improves
one fuzzy rule from the primary rule set at a time.
The so-called improvement is done by modifying at
most M antecedents of the candidate fuzzy rule from
the primary rule set. M denotes maximum allowed
possible modifications to the candidate fuzzy rule. The
mentioned candidate rule from the primary rule set is
selected according to a selection strategy. Outline of
this selection strategy is as follows:

Step 1 : Sort the rules of primary fuzzy rule set ac-
cording to their class and their sequence of genera-
tion in the first stage of EFS-ACO. In other words,
the rules of each class should be followed with one
another according to their generation sequence.

Step 2 : t = 1.

Step 3 : Perform the ACO-based local search proce-
dure on Rt. If after updating Rt, the resulted rule
set has a higher classification rate than the primary
rule set then accept the new Rt and update the
primary rule set. Otherwise, reject the new Rt.

Step 4 : If the new Rt is accepted then:

Step 4.1 : b = t.

Step 4.2 : Go to step 3 (Since the local search
procedure has been successful on Rt, there-
fore the selection mechanism repeats the lo-
cal search procedure for Rt).

Step 5 : t = t+ 1. If t > primary rule set size then
t = 1.

Step 6 : If |b− t| = S then terminate the algorithm.
S denotes the size of primary fuzzy rule set (number
of rules in it).

Step 7 : Go to Step 3.

The operation of ACO-based local search proce-
dure, that searches the neighborhood of the current
candidate rule and finds a proper modification for it,
is as follows:

The ACO-based local searcher employs a popula-
tion of ants to perform its local search process. This
population will searches the neighborhood of the can-
didate rule and improves it according to the best-
discovered modification. Since we are using the ACO
as a local search procedure, the representation of ants
pheromone trails (paths) must be of a form that can
show an instruction of how to change the candidate
rule to improve the total accuracy (classification rate)
of the primary rule set. Hence, each path is a string
of characters that shows those parts of the candidate

rule that should be modified. Note that the above
discussion implies that the evaluation of each path is
done according to the amount of improvement of the
primary rule set classification rate.

The detail of ACO-based local search procedure is
as follows:

Step 1 : Initiate the pheromone trails and parameters
(e.g. iteration = 0). Note that in this initiation the
amount of initial pheromone is τ0 = 0.004. This value
for the initial pheromone is considered according to
(9) [46]:

τij(t = 0) =
1∑a

i=1 bi
(9)

where a is the total number of attributes (e.g. a = 41)
and bi is the number of possible values that can be
taken on by attribute Ai (e.g. bij = 6).

Step 2 : Each ant in the ACO-based local search
procedure generates a modification sequence according
to M (maximum allowed possible modifications to the
candidate fuzzy rule). The desirability of each ant for
changing the ith antecedent of the candidate rule RC

to Aj is given by (10).

pa(RC ,i, Aj) = (10)
[τ(RC , i, Aj)] [η(RC , i, Aj)]∑5

u=0 [τ(RC , i, Au)] [η(RC , i, Au)]

In this equation τ is the pheromone and η is a heuristic
probability, which is 0.5 for Aj = DC and 0.1 for each
of the other linguistic values in Figure 1. Therefore
the tendency of ants to generate “don’t care” is high
specifically at the first iterations of the local search
procedure.

Step 3 : When each ant in the colony generates a
modification, the fitness of each modification is calcu-
lated and the best so found modification in the local
search procedure is updated if a better modification is
found. The fitness of each modification is calculated
according to the improvement of the classification
rate of the original rule set. Note that if the classifi-
cation rate of the original rule set decreases then the
fitness value would be negative. In this situation, the
algorithm assigns a zero value for the fitness.

Step 4 : Increasing the amount of pheromone of used
antecedent values according to (11).

τ(RC , i, Aj)← τ(RC , i, Aj)·[1 + ·f(RC , i, Aj)] (11)

where f(RC , i, Aj) denotes the fitness of modification
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that changes ith antecedent part of RC to Aj .

Step 5 : Decreasing the amount of pheromones of
unused antecedent values to simulate pheromone evap-
oration in real ant colonies. In the ACO-based local
search procedure, pheromone evaporation is imple-
mented in a somewhat indirect way. More precisely,
the effect of pheromone evaporation for unused terms
is achieved by normalizing the value of each pheromone
τ(RC , i, Aj). This normalization is performed by di-
viding the value of each τ(RC , i, Aj) by the summa-
tion of all τ(RC , i, Aj), ∀i, j.

Step 6 : If the maximum number of iterations is
reached then return the best so found modification
and terminate the local search procedure.

Step 7 : iteration = iteration +1. Go to Step 2.

In the next section, we will investigate the perfor-
mance of proposed hybrid system according to intru-
sion detection classification problem.

6 Experimental Results

Experiments were carried out on a subset of the
database created by DARPA in the framework of the
1998 Intrusion Detection Evaluation Program [47].
We used the subset that was pre-processed by the
Columbia University and distributed as part of the
UCI KDD Archive [15]. The available database is
made up of a large number of network connections re-
lated to normal and malicious traffic. Each connection
is represented with a 41-dimensional feature vector.
Connections are also labeled as belonging to one out
of five classes. One of these classes is the normal class
and the rest indicates four different intrusion classes:
U2R, R2L, DOS and PRB. These intrusion classes
are a classification of 22 different types of attacks in
a computer network. Table 1 presents the classifica-
tion of different types of attacks in the four different
intrusion classes and the distribution of each class in
the 10% of the KDD-Cup 99 data set.

As shown in Table 1, the number of records in
the 10% data set is very large (494021). Also, the
proportion of samples per class is not uniform, for
example from class U2R the number of samples in
the training dataset is 52 while from class DOS the
number of samples is 391458. According to this fact
we have used a subset of this large dataset as our
train dataset, hence the training data set contains
752 randomly generated samples. The KDD-Cup99
independent test data (311029 records) with different
class probability distribution and new attacks is used
for test set and evaluation of the EFS-ACO with other
algorithms. The distribution of different classes in the
train and test datasets is presented in Table 2.

Table 1. Classes in the 10% of the KDD-Cup 99 Dataset

Class Sub-Classes Samples

NORMAL 97278 (19.6911%)

U2R buffer overflow,

loadmodule, multihop,
perl, rootkit

52 (0.0105%)

R2L ftp write, guess passwd,

imap, phf, spy, warezclient,

warezmaster

1126 (0.2279%)

DOS back, land, neptune, pod,
smurf, teardrop

391458 (79.2391%)

PRB ipsweep, nmap, portsweep,

satan

4107 (0.8313%)

Table 2. Distribution of Different Classes in the Train and

Test Datasets

Class Train Test

NORMAL 100 60593

U2R 52 228

R2L 200 16189

DOS 300 229853

PRB 100 4166

We normalized the train and test data sets, where
each numerical value in the data set is normalized be-
tween 0.0 and 1.0 according to the following equation:

Xnormalized =
X −Xmin

Xmax −Xmin
(12)

Hence, 41 numeric features are constructed and nor-
malized to the interval [0, 1]. They are given in Table
3. This section consists of two subsections. First we
present some experiments of applying proposed EFS-
ACO to the intrusion detection classification problem.
In the next subsection, we compare the performance of
our classifier to several traditional and new classifica-
tion systems for the intrusion detection classification
problem.

6.1 Experiments using EFS-ACO

This subsection presents the experiments of applying
EFS-ACO on the intrusion detection dataset. Table 4
shows parameter specification that we have used in
our computer simulations for EFS-ACO.

Table 5 is the confusion matrix of EFS-ACO. The
top-left entry of Table 5 shows that 57990 instances
of the actual NORMAL test set were detected to be
normal; the last column indicates that 96% of the ac-
tual NORMAL samples were detected correctly. In
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Table 3. Feature Set of the Preprocessed KDD-Cup99 Dataset. Feature Type: ‘S’ For Symbolic Feature and ‘C’ for Continuous.

# Feature Name Type # Feature Name Type

1 Duration C 22 is guest login. S

2 protocol type S 23 Count C

3 service S 24 srv count C

4 flag S 25 serror rate C

5 src bytes C 26 srv serror rate. C

6 dst bytes C 27 rerror rate C

7 land C 28 srv rerror rate. C

8 wrong fragment C 29 same srv rate. C

9 urgent C 30 diff srv rate C

10 hot C 31 srv diff host rate C

11 num failed logins C 32 dst host count. C

12 logged in S 33 dst host srv count C

13 num compromised C 34 dst host same srv rate C

14 root shell C 35 dst host diff srv rate C

15 su attempted C 36 dst host same src port rate C

16 num root. C 37 dst host srv diff host rate C

17 num file creations C 38 dst host serror rate C

18 num shells C 39 dst host srv serror rate C

19 num access files C 40 dst host rerror rate C

20 num outbound cmds C 41 dst host srv rerror rate C

21 Is host login C

Table 4. Parameters Specification in Computer Simulations

Parameter Value

population size (Npop) 100

don’t care replacement rate (PDC) 0.5

crossover probability (PX) 0.9

mutation probability (PM ) 0.4

fitness positive weight (WP ) 0.1

fitness negative weight (WN ) 0.9

number of local search iterations 10

number of ants (Nant) 50

maximum allowed modifications to the primary rule 5

replacement percentage (PR) 10

maximum generations of the main algorithm 50

the same way, for R2L, 5414 instances of the actual
’attack’ test set were correctly detected. The last col-
umn indicates that 33.45% of the actual R2L samples
were detected correctly. The bottom row shows that
83.46% of the test set said to be NORMAL indeed
were NORMAL and 80.42% of the test set classified,

Table 5. Confusion Matrix of EFS-ACO.
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as R2L indeed belongs to R2L. The bottom-right entry
of the Table 5 shows that 94.33% of the all patterns
in the test dataset are correctly classified.

Table 6 represents the cost matrix that defines the
cost for each type of misclassification [48].

We aim at minimizing that cost function. Given the
confusion and cost matrixes, we calculated the cost
of EFS-ACO for the intrusion detection classification
problem as shown in Table 7.
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Table 6. Cost Matrix Used to Evaluate the Confusion Matrix

Related to EFS-ACO [31].

�

� ����������	
���

����������� 	
���
� ���� ��
� �
�� ����

	
���
� �� �� �� �� ��

���� �� �� �� �� ��

��
� �� �� �� �� ��

�
�� �� �� �� �� ��

���� �� �� �� �� ��

Table 7. Cost-Based Scoring of the EFS-ACO.

 Detected Class  

Real Class NORMAL U2R R2L DOS PRB  

NORMAL 0 2770 896 220 473  

U2R 15 0 64 0 50  

R2L 41276 498 0 242 162  

DOS 1808 494 1646 0 702  

PRB 257 64 30 432 0  

      0.1675

The bottom-right entry of the Table 7 shows that
the classification cost of our algorithm is 0.1675.

The classification rate progress for the whole classi-
fication system during several iterations of EFS-ACO
is investigated in Figure 2. According to this figure, we
can comprehend that our proposed learning algorithm
is capable of evolving fuzzy if-then rules that cooper-
ate and compete with one another efficiently. More-
over, the ACO-based local search procedure, which
is the secondary stage of EFS-ACO, continues the
learning process of the first stage of the main hybrid
system efficiently.

6.2 Comparison of EFS-ACO with Other Al-
gorithms

This subsection will compare the performance of EFS-
ACO on the intrusion detection classification problem
with several traditional and new classification systems.
Classification performance of EFS-ACO is measured
and compared with that of different baseline classifiers
including pruning C4.5, Nave Bayes (NB), k-Nearest
Neighbor (k-NN), Support Vector Machine (SVM),
Ripper, PNrule and Multi-Objective Genetic Fuzzy
Intrusion Detection System (MOGF-IDS) [29]. In k-
NN parameter k is set to 5, and the SVM is trained
using the well-known fast sequential minimal optimiza-

Table 9. Accuracy and Classification Cost of Different Classi-

fiers.

Algorithm Accuracy Classification Cost

C4.5 92.04 0.2480

NB 76.45 0.4965

5-NN 91.83 0.2458

SVM 92.54 0.2457

MOGF-IDS [29] 92.77 0.2317

Winner Entry [48] 92.71 0.2331

EFS-ACO 94.33 0.1675

tion method with a polynomial kernel. The results
are also compared with the winner of KDD-Cup99
contest [48], RIPPER and an improved PNrule [49]
classifier recently proposed in the literature. Table 8
shows the results of Recall, Precision, and F-measure
of different classifier for each class and Table 9 rep-
resents the accuracies and classification costs of the
above algorithms.

Table 8 shows that for the normal traffic recognition
EFS-ACO obtains better Precision and F-measure
rates than other classifiers. For the class of U2R at-
tacks EFS-ACO outperforms other classifiers in term
of Recall. Considering the major class, which is the
DOS attacks, the proposed algorithm can achieve the
highest Recall and F-measure rates. Regarding the
R2L class that is the most important attack according
to Table 6, EFS-ACO obtains acceptable Recall and
F-measure rates.

According to the Table 9, the EFS-ACO obtains
the highest accuracy and the lowest classification cost
among other classifiers. This is because of that the
EFS-ACO explores the high-dimensional search space
of the intrusion detection classification problem more
efficiently than other algorithms.

7 Discussion

In this section we discuss about the main idea behind
our new hybrid classification system. As it was men-
tioned in the previous section, EFS-ACO outperforms
several well-known classification systems. The main
reason to this fact is that we have separated the two
important problems in the intrusion detection classifi-
cation problem which are: finding accurate classifica-
tion rules (competition) and tuning the learned rules
for better classification accuracy for the whole rule
set (cooperation). Since our main idea that led us to
EFS-ACO depends strongly on our previous works on
the use of evolutionary fuzzy systems in the intrusion
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Figure 2. Classification rate progress for the whole classification system during several iterations of EFS-ACO. (a) Classification
rate progress during the evolutionary fuzzy rule learning stage (first stage of EFS-ACO). (b) Classification rate progress during the

ACO-based local search procedure (second stage of EFS-ACO).

Table 8. Recall, Precision, and F-Measure for Different Classifiers. The Best Values are Bold-Underlined, The Second Bests are
Bold, and the Third Bests are Underlined.

Algorithm C4.5 NB 5-NN SVM
MOGF-
IDS [29]

Winner
Entry [48]

Ripper
[49]

PNrule
[49]

EFS-
ACOAlgorithm C4.5 NB 5-NN SVM MOGF- 

IDS [29] 
Winner

Entry [48] 
Ripper

[49] 
PNrule

[49] 
EFS-
ACO

          

Class          

NORMAL
Recall 98.38 55.47 95.89 97.99 98.36 99.50 N/A N/A 96 
Precision 74.75 43.33 74.15 73.42 74.74 74.61 N/A N/A 83.46
F-measure 84.96 48.65 83.63 83.94 84.94 85.28 N/A N/A 89.29
      
      

U2R
Recall 14.47 13.16 14.91 10.09 15.79 13.20 11.84 11.40 72.8
Precision 9.35 2.05 5.47 53.49 61.02 71.43 55.10 53.06 7.98 
F-measure 11.36 3.54 8.00 16.97 25.09 22.28 19.49 18.77 14.38 
        
        

R2L
Recall 1.45 62.74 6.90 3.55 11.01 8.40 8.33 13.05 33.45 
Precision 30.32 42.70 66.97 62.39 68.39 98.84 81.85 82.37 80.42 
F-measure 2.77 50.82 12.51 6.71 18.97 15.48 15.12 22.53 47.24 
        
        

DOS
Recall 96.99 82.75 97.00 97.56 97.20 97.10 22.06 21.74 98.83
Precision 99.69 94.00 99.42 99.86 99.90 99.88 95.75 96.68 99.8 
F-measure 98.32 88.02 98.19 98.70 98.53 98.47 35.86 35.50 99.31
        
        

PRB
Recall 81.88 90.45 81.61 86.27 88.60 83.30 81.16 89.01 86.25 
Precision 52.20 64.16 55.46 77.72 74.40 64.81 77.92 82.11 71.8 
F-measure 63.76 75.07 66.05 81.77 80.88 72.90 79.51 85.42 78.36 

detection classification problem, therefore we will first
review our past works on this field and afterwards
present our main idea behind EFS-ACO.

We have previously worked on the well-known intru-
sion detection problem using the evolutionary fuzzy
system approach [10, 34]. However, none of our past
works were comparable to EFS-ACO. SRPP [10] was

our first research activity in the field of utilizing evolu-
tionary fuzzy systems to solve intrusion detection clas-
sification problem. In that paper we proposed a new
fitness function for intrusion detection that its results
were presented using a simplified and limited version
of the train dataset which we have used in this paper.

The relation between [34] and EFS-ACO is that
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Table 10. Comparison of Two Hybrid Evolutionary Fuzzy

Systems for Intrusion Detection Classification Problem.

Algorithm Time Complexity

EFS-ACO O(C ×R× F × S + A× S)

Hybrid-EFS O(C ×R× F ×A× S2)

C: Number of Classes in the classification problem

R: Number of Rules in the main population of the algorithm

F: Number of Features of the classification problem

S: Number of Samples of the dataset

A: Number of Ants in the local search algorithm

[34] holds an old idea which hybridizes ACO and GA
by embedding a boosting local searcher to the main
structure of the evolutionary process of GA. Although
this type of hybridization seemed to be interesting,
nevertheless it wasn’t successful when we test the final
classifier with the well known KDD-Cup 99 test data
that has more than 300000 records. The new idea in
EFS-ACO has solved this problem by linking the local
searcher (instead of embedding it) to the structure of
the evolutionary process of GA.

According to the above discussions, the main dis-
advantage of our previous works was that we have
not emphasized on the main challenge of the intru-
sion detection problem which is finding accurate rules
and making a suitable cooperation between them con-
currently. In [10] we have only presented a new and
albate simple one-phase algorithm named SRPP that
was only capable of detecting simple intrusive behav-
iors. The new improved Hybrid-EFS [34] was a more
accurate classification system which was tested on a
5 class intrusion detection problem (like EFS-ACO)
but the used dataset for evaluating results was not
the same as EFS-ACO since Hybrid-EFS was a time
consuming approach and could not address complex
intrusive behaviors. This disadvantage was because
of its bad hybridization which was discussed earlier.
In EFS-ACO we have linked the ACO local searcher
to the main evolutionary fuzzy system (instead of em-
bedding it like [34]). Using this kind of hybridization
makes EFS-ACO much faster as mentioned in Table
10.

According to Table 10, we can see that the time
complexity of EFS-ACO is O(C×R×F ×S+A×S)
which means that since the hybridization of EFS-
ACO links the ACO-based local searcher to the main
evolutionary process of the learning system, its time
complexity decreases significantly comparing with
Hybrid-EFS in which the ACO-based local searcher
is embedded in the main structure of the learning
algorithm.

8 Conclusions

In this paper, a novel two-stage learning algorithm to
extract fuzzy classification rules is introduced. The
proposed learning algorithm hybridizes an evolution-
ary fuzzy system with an ant colony optimization
procedure to find a suitable classification system for
misuse intrusion detection. The capability of the re-
sulting hybrid fuzzy system is investigated according
to the well-known KDD-Cup99 benchmark dataset.
Computer simulations on this dataset demonstrated
that the added ACO-based local search stage would
continue the learning process of the primary evolu-
tionary fuzzy system efficiently. Moreover, the results
indicate that in comparison to several traditional and
new techniques, such as C4.5, Nave Bayes, k-NN and
SVM and MOGF-IDS the proposed hybrid approach
achieves higher classification accuracy and lower clas-
sification cost for the intrusion detection classification
problem. Therefore, the resulted fuzzy classification
rules can be used to produce a reliable intrusion de-
tection system.

It would be interesting to investigate the hybridiza-
tion of other meta-heuristics like artificial immune
system and particle swarm optimization on the perfor-
mance of evolutionary fuzzy systems. Moreover, the
use of multi-objective evolutionary fuzzy systems to
extract a comprehensible fuzzy classifier for classifi-
cation problems is another interesting investigation
topic, which is left for our future work.
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