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A B S T R A C T

This paper investigates digital data hiding schemes. The concept of information

hiding will be explained at first, and its traits, requirements, and applications

will be described subsequently. In order to design a digital data hiding system,

one should first become familiar with the concepts and criteria of information

hiding. Having knowledge about the host signal, which may be audio, image,

or video and the final receiver, which is Human Auditory System (HAS) or

Human Visual System (HVS), is also beneficial. For the speech/audio case, HAS

will be briefly reviewed to find out how to make the most of its weaknesses for

embedding as much data as possible. The same discussion also holds for the image

watermarking. Although several audio and image data hiding schemes have been

proposed so far, they can be divided into a few categories. Hence, conventional

schemes along with their recently published extensions are introduced. Besides, a

general comparison is made among these methods leading researchers/designers

to choose the appropriate schemes based on their applications. Regarding the old

scenario of the prisoner-warden and the evil intention of the warden to eavesdrop

and/or destroy the data that Alice sends to Bob, there are both intentional and

unintentional attacks to digital information hiding systems, which have the same

effect based on our definition. These attacks can also be considered for testing

the performance or benchmarking, of the watermarking algorithm. They are also

known as steganalysis methods which will be discussed at the end of the paper.

c© 2013 ISC. All rights reserved.

1 Introduction

The problem of embedding hidden messages has a his-
tory of thousands of years. By the development of the
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Internet and easy transmission of multimedia prod-
ucts, digital data hiding was reborn and became one
of the hottest research topics all over the world during
the late 90s and the first decade of the 21st century.
Among various fields of this topic, information hiding
in images gained more attention. However, the signifi-
cance of audio packets and their transmission gradu-
ally increased the importance of audio watermarking
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[1–3]. Owing to the interdisciplinary nature of the
subject, research enthusiasts of signal processing, im-
age, audio, and video processing, computer science,
and even applied mathematics were attracted to this
field. Early methods were proposed heuristically, but
the theoretical aspects of the schemes enhanced with
time and some data hiding articles were published in
the journals of Information Theory. It is worth noting
that data hiding systems improved very fast, which
was mainly due to employing existing experiences in
the field of data compression as well as using funda-
mentals of communications and coding theory [4, 5].

In fact, steganography or watermarking is embed-
ding an amount of data, called secret message or wa-
termark, into a cover medium, which may be audio,
speech, image or video signal in an imperceptible way.
In watermarking systems the focus is on the cover sig-
nal while in the steganography attention is paid to the
secret message and the cover is just regarded as a ca-
reer. The watermarking and steganography together
form the information hiding. It can be easily inferred
from the definition that imperceptibility is the first
principle of any data hiding systems. Considering the
requirements of an information hiding system, five sig-
nificant features can be listed [2]. There are also other
assortments, which may be found in some books [5].
These five principal traits are transparency, robust-
ness, capacity, security, and implementation complex-
ity that will be explained in detail in the next section.
From these mentioned features, the first three ones
are more important and their trade-offs have been
examined from information theoretical point of view.
Thus, it is not possible to improve all of them simul-
taneously. That is, to increase the transparency and
robustness, the embedding rate should decrease and
vice versa. In some papers, these three attributes have
been considered as the three vertices of a triangle [4].

Most of the materials explained above are true for
all signals. In order to design for instance an audio
watermarking system, besides general information
about data hiding, knowledge on audio and speech
signals as well as theirbiological models are required.
The same is true for the image watermarking and
the knowledge about human visual system (HVS). In
other words, a watermarking scheme will be efficient
only if it is designed with human auditory system
(HAS) or HVS in view. Since HAS is more sensitive
than HVS, audio watermarking poses more challenges.
In the next sections, we will briefly explain HAS and
HVS. For more explanation about HVS, the readers
may refer to [6–9].

Next, we will have a general review on digital data
hiding papers and divide the methods into seven cate-
gories based on their similarities. The pioneer scheme

of each class together with its improved descendants
will be examined, which includes the main idea, gen-
eral advantages and disadvantages of each method.
Apparently, several improved descendants have been
obtained by applying the original scheme to various
transform domains such as Discrete Fourier Transform
(DFT), Discrete Cosine Transform (DCT), Discrete
Wavelet Transform (DWT), and Cepstrum. Trans-
form domain methods are usually more robust at the
expense of more computational complexity. Robust-
ness is the second principal, after imperceptibility, in
data hiding systems. We consider any modification or
intrusion to a watermarked/stego signal as an attack,
which may be unintentionally made by the channel
or intentionally applied to the signal by an attacker.
It should be noted that in our literature, attack is
referred to modifications which are not much percep-
tible; in fact, alterations which destroy the signal will
also demolish the watermark. The latter is not the
focus of our discussion. Anyways, a robust method
should have sufficient resistance against attacks. On
the other hand, attacks can be employed to assay the
performance of data hiding systems. To this end, a
combination of attacks can be designed to benchmark
the proposed schemes in a standard way. Those inten-
tional attacks that aim to examine the existence of the
secret message in the stego signal are called steganal-
ysis which will be discussed in a separate section.

The rest of the paper is organized as follows. Section
2 includes preliminaries that go over the concepts, def-
initions and applications of information hiding. The
model used for human hearing and vision will be in-
troduced in Section 3. In Section 4, conventional data
hiding schemes along with their main characteristics
have been proposed. By considering the strength and
weak points of each technique, a general comparison
of all the techniques are made. The extension of each
pioneer method and its state of the art version are also
introduced. The counter-measure of data steganogra-
phy schemes called steganalysis has been introduced
in Section 5. The generic block diagram of a stegna-
lyzer will be discussed and explained in this section.
Finally, Section 6 finally concludes the paper.

2 Background

In this section, main characteristics of data hiding
systems are explained and general applications for
these systems, which determine the significance of each
requirement, will be expressed. As previously stated,
there are four properties of a digital information hiding
system, i.e., transparency, robustness, capacity, and
computational complexity. More explanation of these
attributes are given below.
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2.1 Data Hiding Attributes

2.1.1 Transparency

The primary requirement of a data hiding system, as
inferred from its definition, is the imperceptibility or
transparency of the watermark. In other words, there
should not be any perceptible difference between the
original and the watermarked/stego signals. Embed-
ding the watermark definitely makes some distortions
to the host signal; thus, a measure for evaluating the
fidelity of the watermarked/stego signal to the origi-
nal one is required. As men are the final users of the
digital signal, human’s ear and eye seem to be the
best measure. Assessment of the original and the dis-
torted signals has been considered in digital compres-
sion and codec problems. Data hiding and compres-
sion are indeed the two sides of the same coin. One
tries to compress the signal through removing the re-
dundancy while the other one attempts to embed the
watermark by making alterations to the redundancy.
In case of audio data hiding, subjective tests score
the audio signal between one (extremely annoying)
and five (imperceptible). In these tests, audio clips
of sufficient duration from various genres are audited
by several persons (usually with the ratio of two to
one for respectively men and women) and the mean
of their reported scores is obtained. This type of test
is called Mean Opinion Score (MOS) [10]. The same
can be done for image signals. After data embedding,
the closer is the score to five; the better is the per-
formance of the algorithm. To be more specific, any
score other than five, in case that the host signal is
absolutely clean, makes the embedding algorithm un-
acceptable. Another necessary test is distinguishing
the original signal from the distorted one. When the
two signals are very similar, which is often the case in
data hiding, this test is more revealing. In this assay,
clips or images are randomly played and the auditors
or visitors should discern the watermarked ones. The
closer is the test result to 50%, the more transparent
is the data hiding scheme [7–10].

Most subjective tests are costly and time-consuming.
Therefore, objective assays are usually employed. The
Mean Square Error (MSE) and Signal to Noise Ratio
(SNR) are the first objective measures; however, their
results are not much consistent with that of subjec-
tive tests. As a simple illustration, an audio signal
multiplied by -1 has a terrible MSE, while gaining
the highest score in MOS test. For this reason, au-
dio and image quality measurements which are highly
consistent with HAS and HVS standards have been
introduced. Spectral distance, Itakura distance [10],
Perceptual Evaluation of Speech Quality (PESQ) for
speech signals, and Perceptual Evaluation of Audio
Quality (PEAQ) [11], and parameters from Noise to

Mask Ratio (NMR) [12] for audio signals and Peak to
Signal Ratio (PSNR) and Structural Similarity Index
Measure (SSIM) [13, 14] for image signals are some
instances of these measures. It is worth noting that
in data hiding literature, PEAQ, NMR, PSNR and
SSIM have been more frequently used. Below is a brief
explanation of these standards.

PEAQ: In order to make the scoring procedure
easy, an algorithm has been proposed which assigns
a score between -4 and zero based on appropriate
features extracted from the original and the distorted
signals. The output is in fact the difference between the
MOS’s. Apparently, the closer the PAEQ value to zero
is; the more transparent is the watermark. PEAQ is a
freeware downloadable from [11]. More information
about the feature selection and the scoring methods
could be found in [15].

NMRtotal: This quantity, presented in dB, is actu-
ally the average energy ratio of the difference signal
related to the signal that is just masked. The less the
value of NMRtotal is; the better is the quality of the
distorted signal. For data hiding systems, values less
than -8 dB are acceptable [12].

PSNR: This quantity is frequently used for evalu-
ating the performance of image data hiding systems,
and is the ratio between the power of an image with
maximum allowable pixel intensity (255 for 8-bit im-
ages) to the power of the noise. The noise power is
defined as the power the difference between original
and watermarked images.

SSIM: If we denote the original and the manipu-
lated watermarked images with o and m respectively,
the structural similarity index metric (SSIM) Q is
defined as: [13, 14]

Q =
(2ôm̂+ C1)(2σom + C2)

(ô2 + m̂2 + C1)(σ2
o + σ2

m + C2)
(1)

where ô, m̂, σ2
o and σ2

m are the mean values and
variances of o and m respectively, and

Q =
1

N − 1

NX
i=1

(oi − ô)(mi − m̂) (2)

where N is the number of samples. Moreover, pa-
rameters C1 and C2 are defined as:

C1 = (K1l)
2, C2 = (K2l)

2 (3)

where l is the dynamic range of the pixel values
(255 for 8-bit grayscale images) and K1,K21 are small
constants. The best value for Q is achieved if and only
ifmi=oi for all i=1,2,,N. Since image signals are gener-
ally non-stationary and image quality is often spatially
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varying, it is reasonable to measure statistical features
locally and then combine them together. For instance,
it is recommended to apply the quality measurement
to non-overlapping BB block segments of the image,
calculate a local index Qj for each block, and find
the overall quality index by arithmetic averaging over
Qj ’s from all blocks [13, 14].

2.1.2 Robustness

Robustness is the level of the watermark’s resis-
tance against modifications imposed on the water-
marked/stego signal. It is important to retrieve the
watermark or the secret message, intact as much as
possible. A watermarked/stego signal may experi-
ence some intentional or unintentional modifications
while transmitted over the channel. For example, a
watermarked audio signal passing through a phone
line (PCM channel) absorbs echo and some noise;
or an audio CD given to the customer may undergo
processing algorithms such as filtering, echo addition,
warping, etc. Evaluating the robustness of a water-
marking system is similar to the procedure we have
in communication systems. That is, the bits of the
message are embedded and the watermarked signal is
sent over the channel; at the receiver end, the signal is
examined to find out to what extent the message is re-
trievable. This reliability level is usually measured by
Bit Error Rate (BER) or Message Error Rate (MER).

It should be pointed out that based on the appli-
cation, e.g., copyright protection or for stgonagraphy,
there exist two sorts of embedded information [16]. An
embedded data belonging to the first category, which
is used for authentication, serves as the authentication
code (watermarking), while that of the second cate-
gory serves as the transmission code (steganography).
For the second type of the secret message, the perfor-
mance is evaluated through BER. For the first type,
the output of the decoder is the presence or absence of
the watermark, and as in hypothesis test, there exist
two kinds of error: the probability of lost watermark,
i.e., not detecting the presence of the watermark while
it is present, and the probability of false alarm, i.e.,
falsely detecting the presence of the watermark while
it is absent. The former error is shown by Pmissed
and Pfa presents the latter one.

A system may contain both kinds of watermarks.
As a case in point, a broadcast monitoring system re-
quires synchronization to discern watermarked frames;
that is, the beginning and the end of the watermarked
frames have to be specified. This is done using synchro-
nization codes embedded in the signal. In this case,
the decoder must detect the synchronization codes a
priori in order to recognize the watermarked frames,
and then, decode the frames. If the decoder misses

a synchronization code, it will miss some bits of the
secret message consequently. Similar situation is true
for false alarm. In such applications, Pmissed and Pfa
have to be very small (of the order of 10−5) [17].

Another point is that in some usages, the purpose
of data hiding is to distinguish any modification made
to the watermarked signal. Such applications, usually
belonging to signal authentication category, require
another kind of watermarking which not only is not ro-
bust, but is also very sensitive to any little alteration.
This sort of watermarking is called fragile watermark-
ing [18]. In this case, the algorithm is designed in such
a way that any intrusion breaks down the whole water-
mark and transforms it into some random bits, exactly
like what happens to an encrypted signal. The fragility
level can be adjusted in such a way that the watermark
is robust against specific alterations (which are not
intentional and take place throughout the channel)
and is broken down by other kind of modifications.
These algorithms are called semi-fragile [19, 20].

Sometimes both applications of watermarking, i.e.,
robustness against attacks and confidence that the
watermarked signal has not been tampered with are
required. In this situation, multi-purpose watermark-
ing is employed [21], in which a robust and a fragile
watermarking are perpendicularly and simultaneously
embedded in the host signal. For further information
about fragile and semi-fragile watermarking, refer to
[22–27].

2.1.3 Capacity

Another significant factor in digital data hiding is
capacity. Capacity is usually expressed in bits per
pixel in images or bits per second and sometimes bits
per sample in audio watermarking. Data hiding al-
gorithms with high capacity and low robustness are
called steganography techniques, while the general
term of watermarking usually refers to a low-capacity
robust data hiding scheme. There exist many image
steganography algorithms with adaptive varying ca-
pacities [6]. But due to the more sensitivity of HAS
compared to HVS, and because of one-dimensionality
of audio signals, embedding rate in these signals is less
than that of images and embedding information with
high bit rate is a challenging problem. For example,
in [28], a method with high capacity and acceptable
robustness against noise has been proposed. More-
over, in [29], a speech data hiding scheme with very
high capacity but low robustness has been introduced.
Data insertion in this method has been done on un-
voiced part of the speech signal. Pixel Value Difference
(PVD) methods are examples from high capacity im-
age steganography algorithms. These schemes aim to
embed most of the information, by hiding more bits
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in the sharper edges of the original image to be com-
patible with the HVS [30–33]. In [34], an approach
is suggested to reduce the capacity in exchange for
increasing the robustness of the watermark which is
suggested to be used for transmitting the flight infor-
mation within aviator’s conversation with a watch-
tower. In the field of image steganography, the Least
Significant Bit (LSB) algorithms which offer moderate
capacity of one bit per pixel via modifying the pixel
value by one have been thoroughly discussed [35–37].
In most applications of audio watermarking, where
the purpose is not covert communication, the common
rate is about a few bits per second, taking high robust-
ness against attacks into consideration [38]. In speech
signals, because of successive periods of silence, this
rate decreases substantially and sometimes becomes
one bit per second. In image signals, several methods
have been proposed to efficiently reduce the embed-
ding capacity in exchange of robustness. The matrix
embedding algorithms such as F5 [39] and nsF5 [40]
are examples from this group which can offer an al-
most unchanged image where the embedding rate is
very limited.

2.1.4 Security

The matter of security was at first a challenge among
researchers entering data hiding from the area of cryp-
tography or other fields of study. At the first glance,
according to Kerckhoffs’ principle, security should be
independent of the algorithm and has to be based
on the secret key. In this condition, embedding and
extracting algorithms can be publicly known. From
another point of view, data hiding was considered as
an art, the importance of which was lying in its covert-
ness and not catching attentions of others. For this
criterion, only the sender and the receiver are aware
of the algorithm. In general, it can be said that a data
hiding scheme is secure if the content of the water-
mark cannot be detected within a short time if the
embedding algorithm is known. To this end, water-
marks are usually embedded and extracted based on
a key and the malicious attacker will extract a set of
random bits if he does not have the key. From another
viewpoint, which is mostly discussed in covert com-
munication and steganography, security means that
steganalysis methods cannot detect the existence of
the secret message in the host signal. In this case, the
algorithm can be publicly known or unknown; in ei-
ther case, a steganalysis scheme should not be able to
distinguish a stego signal from a clean one. As the last
point, note that to increase the security, the secret
message is usually encrypted before being embedded
into the host signal [6].

2.1.5 Computational Complexity

The last criterion in digital data hiding is the com-
putational complexity of the algorithm and its im-
plementation on different hardware. The importance
of this factor is highly dependent upon the applica-
tion. As an illustration, in watermarking applications
such as copyright protection, the complexity of em-
bedding and extracting algorithms does not matter
much, whereas in steganography applications such as
data transmission or broadcast monitoring, real time
implementation is of high significance. In digital data
hiding, it is important that on what hardware with
how much processing power the algorithm is to be
implemented. Furthermore, transformations should
be carefully employed, since in some usages requiring
synchronization (broadcast monitoring) the load of
applying transformation has to be performed sample
by sample, which results in a high processing volume
[17].

2.2 Data Hiding Applications

After stating the requirements and attributes of digi-
tal data hiding, it is time to discuss its applications.
As mentioned before, by the development of the in-
ternet and digital broadcast, data hiding has become
popular. One of the most important topics in this field
is copyright protection, supporting authors and, the
producers of multimedia products. Before we enter
the details of data hiding applications, we should re-
mind again that the significance of the mentioned re-
quirements is determined by the application. In other
words, except for transparency, which has to be suffi-
ciently valued in all applications, the weight of other
criteria is dependent on the application. For instance,
in watermarking applications such as copyright pro-
tection, capacity is not that important and embed-
ding an identification number or a logo seems enough
recognition. In addition, the level of complexity, in
either embedding or detection stages, is insignificant
and the procedure may take several hours. Further-
more, robustness against processing manipulations is
very important. In contrast, for steganography appli-
cations such as covert data transmission, capacity is
very significant. Low complexity is also vital in cases
where online communication is necessary; however, ro-
bustness is unimportant, because the embedded data
is not supposed to confront anything other than the
channel.

2.2.1 Copyright Protection

One of the most substantial applications of data hid-
ing is copyright protection of digital products. For
this purpose, the name and the information of the
company as well as the identification number or logo
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are embedded in different parts of the digital signal.
In this usage, the algorithm is required to be robust
against all intentional and unintentional attacks and
the watermark has to be detectable with acceptable
accuracy. The logo and other information of the com-
pany should have been previously registered in a judi-
cial bar so that the probable criminal can be officially
accused when the copyright is violated. In copyright
protection, the watermark must be embedded in such
a way that there remains no space for extra embed-
ding. In other words, all available capacity should be
exploited so that embedding another watermark by
the probable attacker leads into the destruction of the
digital signal. Moreover, to prevent collusion attack,
using a constant watermark, especially one which is
independent of the host signal, must be avoided [6].

2.2.2 Authentication and Tamper Protection

In some applications, we need to be sure that the re-
ceived audio or image signal is from a specific person.
That is, we want to be certain of the senders authen-
ticity. For this criterion, a pre-determined watermark
(watchword) can assure the receiver from the senders
authenticity. For example, suppose that some radios
wish to talk and another radio tries to speak on the
same frequency while disguising itself as a member of
the friends group. Allocating a set of watermarks to
the groups members, the intruder will easily be recog-
nized. In this usage, robustness against the channel,
including compressor, channel fading, noise, andana-
log to digital convertor. along with instantaneous im-
plementation of the algorithm on the radios processor
are highly important. In another application, the pur-
pose of data hiding is to prevent any tamper to the
transmitted audio signal. In this case, not only the
watermark should not be robust, but also it has to
be fragile so that any alteration becomes completely
evident. In some usages, it is necessary that modifi-
cations caused by the channel are distinguished from
intentional intrusions and forgeries. In this situation,
the watermark is embedded in a way that is not frag-
ile against channel attacks. This type of data hiding
requires high capacity while security does not matter
[6].

2.2.3 Image Tampering Protection and
Self-Recovery

Although several primary data hiding algorithms were
designed to detect and locate the image tampering,
yet recovering the original data in the tampered area
is a very recent trend of image data hiding. These
self-recovery techniques aim to accomplish the task
of integrity verification, tampering localization and
data recovery using only a single watermark. In order

to fulfill this purpose, the self-recovery watermark-
ing algorithms usually conceal a representation of the
original image into itself. This watermark must be
fragile to enable the receiver to detect any malicious
modification when its integrity is violated. Moreover,
the extracted watermark helps the receiver to retrieve
the original image data in the lost area to an extent
depending on the amount of manipulation. The water-
mark bits used for the integrity verification are called
check bits, while the reference bits are exploited to re-
cover the lost data. In [41], DCT coefficient or reduced
color-depth version of the host image are embedded
in the LSB of the original image. This representation
of the original image can also be the first few DCT co-
efficients of each block [42], a binary image generated
from the difference between the host image and its
chaotic pattern [43], hash function of the original im-
age [44], watermark derived from approximation sub-
band coefficients of wavelet transform [45], a vector
quantized [46] or halftone [47] version of the original
image.

The problem of image self-recovery is about finding
appropriate trade-offs among these three parameters:
watermarked image quality, content recovery quality,
and tolerable tampering rate (TTR). The size of wa-
termark determines the amount of imposed distortion
and quality of watermarked image. On the other hand,
more watermark bits are required to achieve higher
TTR or better quality in the recovered area. As exam-
ples for this tradeoff, some methods provide almost
error free restoration at the expense of very limited
TTR [48–50] or very low quality of watermarked image
[49]. On the other side, some techniques sacrifice the
restoration quality to deal with high tampering rate
[51, 52]. Content adaptive methods have been recently
proposed to compromise between TTR and restora-
tion quality based on required application [53, 54].

Very recently in this field, the compressive sens-
ing techniques are used to retrieve a representation
of the original image from the embedded watermark
which is lost to some extent due to the image tam-
pering [55]. In [56], fountain codes [57] are applied to
protect the watermark against the image tampering.
Finally in [58], a set partitioning in hierarchical trees
(SPIHT) [59] is used to generate a compressed ver-
sion of the original image. After being protected by
Reed-Solomon (RS) channel codes [60] of long blocks
and over the large fields, this compressed version is
embedded in the original image itself.

2.2.4 Finger Printing and Traitor Tracing

In some applications, we need to trace the digital prod-
uct. In this condition, a particular watermark (for
instance, the customers identifier) is embedded in the
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signal. As a result, whenever an unauthorized copy
of the product is detected, it can be easily realized
who has done it. Here, the bit rate is not of much im-
portance, but rather the robustness against attacks,
especially collusion attack is substantial. In this kind
of attacks, a group of,K, colluders, who have digital
products of the same kind but with different water-
marks, try to obtain an average of the K products. In
this way, the watermark is almost removed and the
person or persons who start the unauthorized copy
procedure cannot be detected. Finding algorithms
robust against collusion attack (at least for up to a
determined number of colluders) is a hot and inter-
esting topic in data hiding. The general idea of such
algorithms is to prepare different positions for the wa-
termark and to embed the watermark in only some of
them (similar to PPM modulation) [6].

2.2.5 Broadcast Monitoring

An important application of digital data hiding is
broadcast monitoring. It happens many times that
we need to implement a new service on an old infra-
structure (for instance an analog one) without modi-
fying its basis. In this case, data hiding becomes help-
ful. Since it does not take any particular bandwidth,
there exists no need to change the facilities, and most
importantly, the quality of the signal is not affected.
One of such cases is broadcast monitoring, which is
employed by people who order radio/TV commercials,
and makes it possible to automatically monitor and
control the broadcasting of commercials. In this appli-
cation, a specific identification code is embedded in
the first (sometimes the last) second of the commer-
cial; broadcasted radio programs are automatically
scanned and by detecting the watermark, the number
of times that particular commercial is broadcasted, as
well as the time and the duration of those broadcasts
can be determined. In another usage, the lyrics of the
music or the subtitle of the movie can be broadcasted
along with the music/video itself so that the audience
can watch the lyrics or read the subtitle, some infor-
mation about the composer, singer, director, and even
some commercials on the monitor of their radios/TVs.
Using this technology, we can also obtain some statis-
tics on the listening rate of specific programs [6].

2.2.6 Other Applications

Generally, it is possible to embed some side infor-
mation in a digital signal, which may be later used.
For example, watermarks containing the production
number, time, etc., are useful in constructing and
sorting a database [61]. In another interesting appli-
cation, which has been recently proposed, the music
is recorded in stereo format and the information of

one channel is compressed and embedded in the au-
dio of the other channel. Wherever stereo playing is
possible, the information of the second channel is ex-
tracted from the existing audio and after decoding, it
plays simultaneously with the first audio (in stereo
format). Note that this usage is still at research stage
[62]. Another interesting application of the data hid-
ing has been found in the flight control. In this case,
the watchtower conceals the flight information into
the seemingly-normal conversation to the aviator. In
this way, the secret flight information is unnoticed or
inaccessible to the eavesdropper who wants to illegally
receive this information [34].

3 Human Perception Modeling

Digital data hiding is in fact manipulating a cover
signal such as adding pseudo random noise for data
embedding. The major principle in data hiding is im-
perceptibility of the watermark. In order to satisfy
the transparency condition and also to have the most
achievable power of watermark (for the sake of ro-
bustness), it is necessary to know human hearing and
visual structures.

3.1 Human Visual System

The HVS is too complex to be understood from all
aspects. The main interesting aspect of HVS in data
hiding is to find out whether or not a certain stimulus
is perceivable by HVS. As a generalization of the
regular observations, three rules of thumb are found for
HVS. First of all, it turns out that the highly textured
regions are the most suitable area of the images for
the watermarking purposes. The second rule states
that data embedding is much less perceivable on edges
than on flat areas. The third rule suggests that the
very bright or very dark areas of the image as the
proper candidates for data embedding.

Since every stimulus can be decomposed to a sum
of sinusoidal stimuli, we are interested to investigate
how sinusoidal stimuli are perceived. This quality is
measured by just noticeable difference (contrast), or
simply JND. Suppose that a uniform background of
luminance L0 is superimposed by a sinusoidal stimulus
of spatial frequency v, orientation θ and amplitude ∆L.
The spatial luminance of the image can be formulated
as:

L(x, y) = L0 + ∆L cos(2πv(x cos θ + y sin θ)) (4)

Then, the luminance of the sinusoidal is increased
until the observer perceives it. The value of the lumi-
nance of the sinusoidal stimulus which is just notice-
able is named as “just noticeable visibility threshold”
(∆Ljn). To achieve a measurement independent of the

ISeCure



12 A Survey on Digital Data Hiding Schemes — M.A. Akhaee and F. Marvasti

viewing distance, the angular frequency f = πd
180v is

defined which is expressed in cycles/degrees, where d
is the distance between the observer and the image.
The just noticeable difference or contrast is obtained
from just noticeable threshold according to the follow-
ing equation:

LCjn =
∆Ljn
L0

(5)

The application of the inverse of JND is also com-
mon and is called Contrast Sensitivity Function (CSF)
denoted by Sc. There are many analytical expressions
in the literature for the CSF; the one obtained by
Barten [6] is one of the most widely used:

Sc(f, L0,W, θ) =

a(f, L0,W )fe−r(θ)b(L0)f
È

1 + 0.06eb(L0)f

(6)

where

a(f, L0,W ) =
540(1 + 0.7

L0
)−0.2

1 + 12

W (1+ f
3 )2

b(L0) = 0.3(1 +
100

L0
)0.15

Γ(θ) = 1.08− 0.08 cos 4θ

(7)

where f measured in cycles/degree, is the angular
frequency of the stimulus, W is the observer viewing
angle in degree, L0 is the mean local background
luminance in cd

m2 , θ in radian is the orientation of the
stimulus.

In Figure 1, the plots of the CSF with respect the
angular frequency are presented for a horizontal stim-
ulus and for an observer viewing angle W = 180

(π
√

12)5
.

The eye exhibits the maximum sensitivity in the mid-
dle range of angular frequencies. It is also perceived
that the stimuli of higher frequencies are less perceiv-
able by HVS [6].

HVS modeling and JND information can be ex-
ploited for the sake of image data hiding. As an ex-
ample, discrete cosine transform decomposes the im-
age into a summation of sinusoidal signals. Therefore,
considering the JND information for all spatial fre-
quencies, the amount of modification tolerable by each
DCT coefficient can be determined. One can guaran-
tee an imperceptible data embedding with the highest
possible rate; as long as the modification is below the
JND for each DCT coefficient [63].

Figure 1. Plots of the CSF with respect to the angular

frequency for values of background luminance [6]

3.2 Human Auditory System

It is worth mentioning that audio data hiding is much
more challenging than image data hiding due to the
vast dynamic range of the HAS in terms of power and
frequency. A human being is able to hear signals of
power from 1 to 109 and of frequency ranges from
50 Hz to 20 KHz. A little amount of white Gaussian
noise (SNR=60 dB) is quite audible which makes data
embedding so difficult. On the other hand, the HAS
is not much sensitive to the phase and if the phase
continuity is maintained, its alteration will not be
noticed. An illustration is an audio signal multiplied
by -1 (phase change of 180?) which has no effect on
hearing. Moreover, the human auditory system has
a narrow differential range that masks low volume
sounds by the loud ones. Furthermore, some kind of
distortions sound natural to the HAS, owing to its
internal structure [2].

Investigations around the HAS indicates that hu-
man does not hear all frequencies in the same way. As
a matter of fact, it operates like a filter bank. A group
of bands towards which the HAS has the same sensitiv-
ity are called critical bands. The bandwidth of these
critical bands is about 100 Hz for low frequencies and
up to 5 KHz for high frequencies. Consequently, the
human auditory system can be considered as a non-
uniform filter bank. Generally, the whole frequency
range is divided into 26 bands, named bark. The trans-
formation from the frequency domain to the bark do-
main is nonlinear and is modeled as follows [10]:
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Figure 2. The sound pressure level in silence

Z(f) =

13arctan(7.6 ∗ 10−4f) + 3.5arctan((
f

7.5 ∗ 103
)2)

(Bark)

(8)

Another substantial parameter is the Sound Pres-
sure Level (SPL), i.e., the level which the HAS can
hear in silence. This threshold depends on the fre-
quency. Figure 2 shows this threshold. As shown, the
hearing sensitivity in the middle frequencies (2-4 KHz)
is more. Besides SPL, there is another concept, called
masking, which is used in speech coding systems [64].
This phenomenon occurs when a low level sound is
not heard in the presence of a stronger sound. There
exists a threshold for each audio signal up to which it
is inaudible in the presence of another signal. There
are two sorts of masking, the temporal masking and
the frequency ones, which are frequently exploited in
data hiding systems. Below is a brief explanation for
these types of masking.

3.2.1 Temporal Masking

Typically, in the HAS, a more powerful signal (masker)
can make a weaker signal (maskee) not to be heard.
In one case, the weaker signal is masked before the
powerful signal takes place (pre-masking) and in the
other case, the weaker signal is masked after the oc-
currence of the stronger signal (post-masking). This
phenomenon is often exploited in MP3 compression.
Whenever the Sound Pressure Level (SPL) of the mas-
kee is below the threshold depicted in Figure 2, no
sound is heard. According to this Figure, post-masking
has a longer duration than the pre-masking (almost
10 times); thus, a longer period is available for embed-
ding data after a loud sound rather than before it. In

Figure 3. The temporal masking phenomenon (both pre-mask-
ing and post-masking)[2]

audio data hiding, for the sake of transparency, both
of these periods should be used.

3.2.2 Frequency Masking

Similar to temporal domain, a stronger signal in the
frequency domain (such as a narrow-band noise or a
single sinusoidal) can mask a weaker signal within a
particular frequency band. Identical to what explained
in Figure 2, in the absence of any masker signals, a
signal with SPL below the absolute silence threshold
(AST) is inaudible. This threshold is variable by the
frequency. In the presence of a masker, the threshold
increases whose value depends upon the type of the
masker (narrow-band noise or single sinusoidal), the
SPL of the masker, and the frequency. Figure 3 shows
masking threshold for a single tone with SPL of 70
dB. It can be seen that masking threshold in low fre-
quencies decreases more rapidly to reach AST,which
implies that HAS is more sensitive in low frequencies.
Another point is that the masking power of a single
tone is more than a narrow-band noise; consequently,
more data (pseudo-noise) can be embedded after a
powerful sinusoidal signal. Generally, masking thresh-
old in the frequency domain, called just noticeable dis-
tortion, is created by a set of tones and narrow-band
noises of different powers. To calculate this threshold,
first, the sum of the masking thresholds of all single
tones and pseudo-noises is obtained for different fre-
quencies. The total masking threshold is the sum of
the effects of all the maskers and the AST. For more
information about the HAS, the reader may refer to
[64].

4 Data Hiding Schemes

In this section, well-known data hiding schemes are
explained, including the LSB coding, Quantization In-
dex Modulation (QIM), patchwork, phase coding, echo
hiding, and spread spectrum watermarking. Among
these schemes, phase coding and echo hiding are used
only in audio data hiding, whereas the others are ex-
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Figure 4. The frequency masking phenomenon [2]

ploited for both audio and image signals. It is worth
noting that for all the above-mentioned methods, if
the HAS or HVS is appropriately considered in data
hiding and the most possible amount of data is em-
bedded, the watermarked signal will be robust against
common attacks, while remaining transparent. An-
other point is the difference between the watermark
decoding and the watermark detection. Based on the
application, sometimes it is needed to decode the wa-
termark bit by bit to obtain the ultimate data; while
in other cases, it is enough to verify the existence of
the watermark. In this situation, observing the exis-
tence of the logo or the synchronization code suffices
and there is no need to decode binary stream.

Here, we only describe the main idea of embedding
procedures and detection methods. To learn more
about the schemes or to investigate the performance
of the algorithms, readers may refer to the appropri-
ate references. After reviewing different techniques
in this section, there exists a basic comparison of the
introduced methods. At the end, multiplicative water-
marking algorithms in particular are discussed as an
example of very efficient data hiding techniques.

4.1 LSB Coding

This method [65] is one of the first and simplest in-
formation hiding algorithms, which is employed for
various types of signals including audio, image, video
signals. In this scheme, the LSB of each sample of the
host signal is replaced by one bit of the secret massage.
For instance, when the host signal is audio, the LSB
of each sample of the audio, which has been digitized
with for example 16 bits, is replaced with one bit of
the secret binary sequence. This algorithm does not
make use of HAS or HVS to form the stego signal.
The detection is blind and is performed by reading
the LSB or LSBs of the received signal samples. It re-
quires precise synchronization of the watermarked sig-

nal. Image watermarking by LSB coding is performed
in a similar fashion.

Using this method, it is possible to embed a large
amount of data; however, it is not robust against vari-
ous attacks. By repeating the watermark and conse-
quently, reducing the embedding rate, robustness can
be increased to some extent. Owing to its simplicity
and high embedding rate, this type of data hiding al-
gorithms has become popular. Some versions of LSB
coding have been applied to transform domains such
as DFT, DCT, and DWT [66]. The most significant
one is JSteg, which embeds the bits in the JPEG co-
efficients of the image.

By the extension of LSB-based schemes, the meth-
ods analyzing them have been improved, as well. Most
of them have the LSB drawback which makes each
pair of adjacent values have close occurrence frequen-
cies in the stego signal [67, 68]. In order to tackle
this problem, several versions of JSteg algorithm, in-
cluding JPHide, F5, and nsF5, were proposed [69–71].
Another improvement to LSB method are approaches
to reduce the embedding distortion [35, 36, 72]. In
[35], instead of embedding one bit in the LSB of one
sample, two bits are embedded in the LSBs of two
samples, where the replacement of the second bit de-
pends on whether the first bit is 0 or 1. In this way,
the probability of changing the LSB of each sample
decreases from 50% to 37.5%, which results in less
distortion and makes the analysis harder. In another
algorithm, the replacement is performed on a set of
samples with module four. This also leads to less wa-
termarking distortion [72]. The probability of change
per sample further decreased to 33% in one-third prob-
ability embedding [36]. In 2009, Li et al., proposed a
generalized version of the LSB algorithm [37]. It was
shown that working on the groups of two or three
pixels can decrease the percent of changed pixels to
37.5% and 33%. In this Generalized LSB Matching
Method (GLSBM), it was shown that increasing the
size of pixels used as a group for embedding algorithm,
the probability of changing the LSB of each sample
can be further decreased up to about 22%.

The embedding rate is not limited to one bit per
pixel, unlike the above examples, for all the methods
categorized as LSB coding. The capacity of LSB coding
can be increased by replacing more LSBs of each
sample with more secret bits. For instance, suppose
that the sample value of seven (0111 in binary) is
supposed to carry two secret bits which are both
zero. Replacing the last two bits of the sample with
secret bits, one gets the output sample value of four
(0100 in binary). But one can reduce the distortion
in the host sample by changing the sample value to
eight (1000 in binary) carrying the same message bits.

ISeCure



January 2013, Volume 5, Number 1 (pp. 5–36) 15

Rounding the sample value to the nearest value with
LSBs is called the Optimum Pixel Adjustment Process
(OPAP) [73, 74].

The OPAP method increases the capacity of the
LSB technique, but it does not consider the HVS
structure. Human vision is more sensitive to changes
in smooth areas of an image thus the edges and the
textured regions of image are more suitable to embed
secret data. The Pixel Value Difference (PVD) method,
embed the capacity of more than one bit per pixel in
the host image in textured or edge regions of [30–33].
The criterion for detecting the edges of the host image
is to compare the difference of adjacent pair of pixels
with a certain threshold. The further the value of the
difference between adjacent pairs of pixels, the more
secret bits can be embedded.

Another group of recently proposed LSB techniques
are those based on Exploiting Modification Direction
(EMD) method introduced in 2006 [75]. While working
on a group of n pixels in the previously discussed
method, all of n pixels could be increased or decreased
by one to embed n secret bits. Now suppose that
only one pixel can be added or subtracted by one
at the most. We have n pixels and two possibilities
for changing each one which results in 2n+1different
cases. Therefore, a digit from 2n+1 notationary system
(from 0 to 2n) can be embedded in a set of n pixels
with changing at most one of them. EMD proposes
a scheme to realize this purpose. Diamond encoding
(DE) is an extension to EMD [76]. DE works only on
a pair of pixels and these pixels can be increased or
decreased by k at most to embed a digit in 2k2+2k+1
notationary system. Adaptive Pixel Pair Matching
(APPM) improves the performance of DE by altering
the pixels in pixel pair in an optimum way in terms of
MSE [77].There are more proposed algorithms based
on EMD to improve either its embedding rate [78, 79]
or imperceptibility [80].

4.2 Quantization Index Modulation (QIM)

This method was first proposed by Chen and Wornell
[81]. In this scheme, the host signal is quantized with
two or more quantizers based on the watermark. Each
quantizer has its own index. QIM watermarking can
be expressed via the following equation:

S(x,m) = Qm(x) (9)

where m is the watermark and Qm(x) is the func-
tion which quantizes the original signal regarding the
watermark m. As an illustration, when the watermark
is binary, 2-level quantizer is employed, which is shown
in Figure 5.

Each sample is quantized to one of the crossed or

Figure 5. QIM Watermarking

circled values, which respectively implicate a 1 or 0
watermark bit.

This method, is not appropriate for watermarking,
by itself because the attacker can realize the quanti-
zation pattern with a little effort. Below we will ex-
plain the embedding and the extraction algorithms of
a QIM scheme called the Dither Modulation.

4.2.1 Watermark Embedding

Suppose that x is the original signal with N samples.
Every L samples will carry one bit of the watermark.
To this end, two vectors are defined as follows:

d[k, 1] =

¨
d[k, 0] + ∆

2 d[k, 0] < 0

d[k, 0]− ∆
2 d[k, 0] > 0

(10)

k=1,2,..,N/L

d[k,0] can be selected as a pseudo-noise with uniform
distribution in [−∆

2 ,
∆
2 ] where ∆ is the quantization

step. The length of dither vectors is N
L , which is equal

to the number of the watermark bits. d[k,0] and d[k,1]
are exploited to embed, respectively, zero and one bits
in the host signal. The original signal is quantized using
the above-mentioned two vectors and the following
equation:

S(x;mk) = q∆(x+ d[k,mk])− d[k,mk] (11)

where q∆(.) is the quantization function with step
size of ∆, which is defined as follows:

q∆(x) = ∆ ∗ round(
x

∆
) (12)

Function round(.) in this equation rounds its argu-
ment into the nearest integer.

4.2.2 Detection

In the detector, two vectors S0(k) and S1(k) are ob-
tained by embedding respectively zero and one in the
received vector Ŝ(k) and their Euclidean distances
from Ŝ(k) are calculated. The index of the vector with
smaller distance is considered as the embedded bit.
In case where each bit of the watermark is embedded
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in one sample of the host signal (L=1), the following
equation states the detection procedure:

m̂k = arg min
i∈{0,1}

(Ŝ(k)− Si(k))2 (13)

when the embedder inserts each bit of the message
in L samples of the host signal, the detection is based
on the sum of the L samples of the vectors S0(k), S1(k)
and Ŝ(k); i.e.,

m̂k = arg min
i∈{0,1}

kLX
n=(k−1)L+1

(Ŝ(n)− Si(n))2

k = 1, 2, , N/L

(14)

where m̂k is the kth extracted bit of the message.

4.2.3 Projection Quantization

Geometric representation of this method is depicted
in Figure 6 [81], [82]. Suppose that ṽ = [ṽ1, , ṽN ]T is
the vector in which the watermark has been embedded
and v is the vector of the original signal. The relation
between ṽ and v is expressed as:

ṽ = v − Pv +B∆Qi(
BHv

∆
)) (15)

In this expression, Qi(p) = ∆Qi(B
Hv/∆) and is

equal to p+ ∈p,where ∈p is a random variable uni-
formly distributed within b−∆,∆c. i is the watermark-
ing index and Q0 and Q1 are even and odd quantizers.
B is the unitary projection vector and P is the pro-
jection matrix for the subspace of B. Inserting p+ ∈p
into (15), we will have:

ṽ = (I − P )v +B(p+ ∈p) = v+ ∈p B (16)

As implicated in Figure 6, in order to detect the
watermark, the projection procedure is applied on the
received vector and the embedded bits are extracted
in a way similar to (14).

This block method has priority over the one-sample
scheme, since in the former method; the distortion is
distributed among the samples and becomes imper-
ceptible. Moreover, it gets difficult for the attacker to
recognize the quantization pattern in the samples of
the signal. Indeed, the projection vector plays the role
of secret key here.

QIM scheme, especially its distortion compensated
version [83], is one of the most popular watermarking
methods. It has been proved in [84] that dither quan-
tization can achieve the capacity by employing lattice

Figure 6. Geometric representation of projection quantization

method

quantization in higher dimensions [84–87]. Further-
more, QIM method can be applied to the angle of the
vectors [88], or dithers adapted to the host signal can
be exploited [89]. A weakness of QIM scheme is its
vulnerability to gain attack, which may occur in com-
munication channels. Several solutions have been pro-
posed to tackle this problem; some of which use pilot
signal [90], employing conical codes with similarity-
based receivers [91], and exploiting Rational Dither
Modulation (RDM) [92]. There are several versions
of RDM Scheme. For instance, by combining chan-
nel coding methods and choosing appropriate code
words, one may achieve very good robustness [93]. In
addition, by properly applying this scheme to trans-
form domains, the QIM method can become resistant
against exponential and filtering attacks [94, 95]. The
main weakness of RDM method is the sub optimality
of its rational function. In [96], the optimal rational
function for specific conditions has been given. Be-
sides, the QIM is not well compatible with HVS and
HAS, athough several attempts are made in this di-
rection [97-98]. The capacity of QIM is also discussed
in [99–102].We now present a recent work in the field
of QIM data hiding.

4.2.4 Logarithmic QIM Using µ-law
Standard

A novel QIM data hiding framework called LQIM us-
ing the µ-law standard is proposed in [103]. In this
work, the arrangement of the quantization levels has
been designed using a novel approach. The logarith-
mic quantization is chosen due to its perceptual ad-
vantages; while the compression function of the µ-Law
standard is applied in order to solve the problems
of a previous logarithmic quantization-based method.
For this purpose, the µ-Law compression function
is applied to the host signal at first to transform it
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into the logarithmic domain. After data embedding in
this domain, the watermarked and transformed data
is quantized uniformly and the inverse compression
function is applied to transform the result back to
the original domain. Due to the use of logarithmic
function, smaller step sizes are devoted to smaller
amplitudes and larger step sizes are associated with
larger amplitudes. Therefore, in comparison with the
previous logarithmic QIM techniques such as UQIM,
this method poses perceptual advantages that lead
to stronger watermark insertion. The scalar method
is then extended to a vector quantization scheme, by
quantizing the magnitude of each host vector on the
surface of hyper-spheres with logarithmic radii. the
optimum parameter µ for both the scalar and vec-
tor quantization is found according to the host sig-
nal distribution. Furthermore, in order to increase
the security of algorithm, a secret key similar to the
dither modulation in QIM is included. For the de-
signed framework, the performance is analyzed and
analytical results are verified through simulations on
artificial and real signals. The performance of this µ-
law-based logarithmic QIM is also compared to equiv-
alent QIM techniques. The results demonstrate that
this algorithm outperforms the conventional and loga-
rithmic QIM techniques by removing their drawbacks
such as vulnerability against scaling attacks and the
performance drop for small amplitudes.

4.3 Patchwork Method

4.3.1 Primary Patchwork Algorithm

Patchwork is a statistical method proposed in 1996
[104]. The major application of this scheme is in audio
watermarking for copyright protection, but later was
extended to the audio applications [105]. In the pri-
mary patchwork method, two sets of samples, named
A and B, are randomly selected from one block. The
constant value d is added to the samples of one set
and is subtracted from those of the other one.

a∗i = ai + d. b∗i = bi − d (17)

In this way, the original signal is not required to
detect the message and by knowing the location of the
two sets, which can be determined by a shared key and
a pseudo-random sequence generator, the existence of
the hidden message can be revealed.

Ebā∗−b̄∗c = Eb(ā+d)−(b̄−d)c = Ebā−b̄c+2d (18)

Supposing the distribution of the chosen coefficients
to be Gaussian (which is true about DCT coefficients
used in modified Patchwork mentioned successively),
the difference between the averages of the two sets has

zero mean Gaussian distribution before embedding,
while the distribution is shifted by 2d after Patchwork
watermarking.

Setting the detection threshold to zero, the proba-
bility of missing the watermark is equal to the area
under the shifted Gaussian curve in the left half-plane.
The first solution to reduce this error is increasing d;
however, d affects the imperceptibility directly and
its increase decreases the quality of the signal.

Various improvements have been made to the classic
Patchwork method. Among these improved schemes
are the application of the Patchwork to the DCT co-
efficients, the use of the variance besides the mean
in the detection procedure, and adaptive watermark-
ing. In adaptive watermarking, the value of d is not
the same for all the samples of the signal and is pro-
portional to their magnitude. That is, the more the
energy of a sample, the more capacity it has for em-
bedding data. Consequently, dtimes of each sample
magnitude is added to or subtracted from the sample.

a∗i = ai(1 + d). b∗i = bi(1− d) (19)

And in detection stage, we have:

Ebā∗−b̄∗c = Ebā(1+d)−b̄(1−d)c = Ebā−b̄c+dE(ā+b̄)
(20)

In this case, the center of the distribution for the
difference of the two averages is shifted by dE(ā+ b̄)
and consequently, the distribution apexes will remain
close only whenE(ā+b̄) is small, which rarely happens.

4.3.2 Modified Patchwork Algorithm (MPA)

Here we briefly discuss the MPA [106]. First of all,
two sets of indices are selected, one for embedding 1
(I1) and the other for embedding 0 (I0). Each set of
indices represent 2n of DCT coefficients. The indices
are chosen from [K1,K2], which affects the robustness
and imperceptibility of the watermark. Each Ii is
broken in half producing two subsets of indices, which
give two sets of n coefficients; Ai and Bi. The pooled
standard deviation Ai and Bi is computed as follows:

S =

Í
nP
i=1

(ai − ā)2 +
nP
i=1

(bi − b̄)2

n(n− 1)
(21)

The greater the value of S, the more dispersed are
the samples of Ai and Bi and consequently, the more
is the difference of the averages and potential for data
hiding. The two sets are modified by a multiple of
S in a way that the samples of the set with smaller
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Figure 7. Modified patchwork watermarking algorithm

average are decreased and the samples of the other set
are increased such that the difference of the averages
in retrieval stage is always positive and the left half
of the distribution is placed on its right half. Figure 7
states the embedding algorithm.

A required feature of a watermarking system is its
capability to re-mark a watermarked signal. A point
in case is when the allowed times of copying has been
implicated to be one through a watermark. When the
signal is copied one time, the watermark should be
changed to zero. The previous watermark is removed
via the following equation:

ai = a∗i − sign(ā∗ − b̄∗)
√
C
S∗

2

bi = b∗i + sign(ā∗ − b̄∗)
√
C
S∗

2

(22)

which is the inverse of the embedding procedure.
Regarding the fact that watermarking has been per-
formed by adding and subtracting, the pooled stan-
dard deviation of the two sets remains unchanged,
i.e., S and S∗ are the same. In order to retrieve the
watermark, the two sets of indices are re-generated
using the shared key and the coefficients belonging
to A0, B0, A1, and B1 are extracted. Then, the two
pooled standard deviations S0 and S1 are computed
and the following statistics are calculated:

T 2
0 =

(ā0 − b̄0)2

S2
0

T 2
1 =

(ā1 − b̄1)2

S2
1

(23)

and T 2 is considered as max(T 2
0 , T

2
1 ). If T 2 is greater

than the threshold M , the watermark exists and the
index of the greater statistic is the embedded bit.

The GPA method is a more general scheme which
exploits additive and multiplicative embedding rules in

a way similar to MPA [107]. Overall, the weakness of all
the above mentioned methods is their assumption on
the two sets of coefficients to have the same statistical
behavior, which is compensated by allocating a large
number of samples to each set; however, this reduces
the data rate of the watermarking system. Moreover, in
MPA, the amplifying factor has been chosen regardless
of HAS.

4.3.3 Multiplicative Audio Patchwork
Watermarking

In order to embed the watermark data, two index sets
are randomly generated using a secret key [38]. In
this manner, two non-overlapping index sets, IA =
iA1, , iAM and IB = iB1, , iBM , which define two
equally sized sub-sets of the host signal features are
generated. Here, DWT is applied to each frame of
the audio signal and coefficients of the approximation
band are used as the host signal features. Generally,
2M can be equal or less than the number of host signal
features (N). We have used 2N in all of our experi-
ments. By using these two subsets, the watermark sig-
nal is embedded through the following multiplicative
rule:

s′Ai = γsAi to embed 1

s′Ai = γ−1sAi to embed 0

(24)

where sAi is the sample of the subset which is
represented by IA, and γ is the watermark strength
factor which has a value slightly larger than one. In this
way, the watermark data is embedded by modifying
the amplitude of one subset and leaving the other
subset unchanged. The watermark strength factor is
adaptively changed with an iterative scheme in order
to reach a desired quality. Quality assessment is carried
out using PEAQ algorithm.

The decoder extracts the watermark data by com-
paring the ratio of energies of two subsets with a de-
fined threshold. According to the embedding function,
presented in (24), the decoder can extract the water-
mark data perfectly provided that the energies of the
two subsets are equal. Unfortunately this assumption
is not correct in real audio signals. Therefore, we need
to embed the watermark data in the selected frames of
the host signal which satisfy the following condition:

((γmin − 1)(1−G) + 1)−2 < f

=

P
i∈IA

s2
iP

i∈IB
s2
i

< ((γmin − 1)(1−G) + 1)2

(25)
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where γmin is the minimum allowable value for
γ. G is named as Confidence Guard Factor (CGF)
which varies between zero and one. CGF affects the
performance of the system when the attack is low
in power. By using this structure, the decoder can
perfectly extract the watermark data in the absence
of attacks even for small subsets.

According to the embedding functions presented in
(24), and due to multiplication, the variance of the
subset is changed. Thus, the variance ratio of two
subsets should be compared with a threshold in order
to extract the watermark data. In this regard, two
index sets are generated using the same secret key
used in the embedding process. Then, DWT is applied
and from the coefficients of the approximation band,
two subsets according to the two index sets are formed
for each frame. The watermark data is extracted from
the received signal using the following hypothesis test:

r =

P
i∈IA

v2
iP

i∈IB
v2
i

?T (26)

where v is the received noisy signal and T is the
threshold value which is set to be equal to 1. Data is
embedded in selected frames according to the condi-
tion presented in (24). Thus, in the decoding process
we need to know which frames contain the watermark
bits.

In comparison with previous patchwork methods,
this algorithm provides some advantages. First, due to
the use of multiplicative rule for embedding, stronger
watermark insertion with less audibility is achieved.
Second, as a result of data embedding in selected
frames, the watermark data can be extracted without
error in the case where the watermarked signal has
not undergone any attack, whereas previous methods
suffered from this error. This allows decreasing the
frame length which results in higher data rate (approx-
imately 2.5 times greater than the data rate of MPA).
Third, the watermark strength is controlled locally to
reach a desired quality of the watermarked audio. To
control the quality an iterative approach is employed
which evaluates the quality of the watermarked audio
in each iteration aided by the PEAQ algorithm. Using
this approach, more robustness is achieved whereas
the quality of the watermarked audio is kept at an ac-
ceptable level. Probability of error for this method is
also derived by modeling the host signal distribution
with GGD and is verified by simulations. Simulation
results show that this decoder is robust to the com-
mon audio watermarking attacks such as noise addi-
tion, MP3 compression, and resampling; this decoder
is more robust than the previous patchwork [38].

4.4 Phase Coding

In this method [104], the signal is divided into blocks
of N samples; thus, there are M = b LN c blocks, where
L is the number of the original samples. Each block
Xj is transformed into frequency domain via N-points
DFT and the phase matrix φj [ωk] and magnitude
matrix Aj [ωk] are constructed (0 ≤ k ≤ N −1). Then,
the difference of the phase matrices of adjacent blocks
is calculated. This matrix will be used at the retrieval
stage.

∆φj+1[ωk] = φj+1[ωk]− φj [ωk] (27)

If we show the phase of the jth block in the water-
marked signal with φswj , the watermark m is embed-
ded into the phase of the first block as shown below:

φw0[ωk] = (−1)m[k]+1.π/2

m[k] ∈ {0, 1}, 0 ≤ k ≤ N

2
− 1

(28)

To guarantee the inaudibility of the modification
made to the phase of the first block, the phase of other
blocks should be altered consecutively in the following
manner:

φωj+1[ωk] = φωj [ωk]−∆φj+1[ωk] ∀j, k (29)

By applying the inverse DFT to the original mag-
nitudes and the new phases, the watermarked signal
is obtained in the time domain. To extract the water-
mark, the received signal is divided into blocks of N
samples. Applying DFT on the first block, the phase
of this block is computed, which contains the bits
of the watermark. This watermarking scheme takes
HAS characteristics into consideration and makes use
of its insensitivity to the phase of the audio signal.
A disadvantage of this method is that it embeds the
watermark in the first block and in case of cropping
attack, the watermark is easily lost. Phase coding wa-
termarking can also be done in other ways. In [108],
speech signals are watermarked using all-pass filters.
This scheme has very good robustness against noise.
To get more information on phase coding methods,
you may refer to Takahashis paper [109].

4.5 Echo Watermarking

In this method, data is embedded by adding echo to
the audio signal [110]. That is, different delays are
used to embed watermark bits.

Xw(t) = X0(t) + αX0(t−∆t) (30)
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In this equation, ∆t is the used data insertion. ∆t
and α can be adjusted in a way that the inaudibility
of the echo is guaranteed. The above equation can be
generally written as follows:

Xw(t) =
NX
k=0

αkX0(t−∆tk) (31)

where ∆t0 = 0, α0 = 1 , and N is the number of
added echoes. By using weighted impulse sequence

h(t) =
NP
k=0

αkδ(t−∆tk), equation (31) can be stated

as:

Xw(t) = X0(t) ∗ h(t) (32)

Transforming this equation into the frequency do-
main, we get:

Xw(ω) = X0(ω)H(ω) (33)

In the detection stage, h(t) should be determined
in order to obtain ∆tk and successively, extract the
embedded bits. According to equation (33), H(ω) is
obtained by dividing Xw(ω) by X0(ω) and (ω); by ap-
plying the inverse Fourier transform yields h(t). In this
way, the original signal is required for the watermark
detection. The detection procedure can also be per-
formed via homomorphic de-convolution so that the
original signal is not needed to separate the echo. This
method converts the multiplicative equation (33) into
an additive equation, which is a function of quefrency,
by employing logarithmic multiplication function:

Xw(q) = IFFT (log |X0(ω)H(ω)|) = X0(q) +H(q)
(34)

According to this equation, the original signal and
the echo have been separated on the quefrency axis.

To embed the watermark, at the first step, the orig-
inal signal is divided into M blocks. In each block
Xj , 0 ≤ j ≤M−1, one bit of the watermark is embed-
ded. To this end, for each block, an echo is generated;
the delay and decay rate of which is determined by
the watermark bit:

wk(t) = αkX0(t−∆tk) k = 0, 1 (35)

The two modulating signals are produced for bits
zero and one:

m1(t) =
M−1X
j=0

bjrectj(t)

m0(t) =
M−1X
j=0

(1− bj)rectj(t)

bj(t) =

¨
(m(j) tj < t < tj+1

0 otherwise

rectj(t) =

¨
1 tj < t < t(j + 1)

0 otherwise

(36)

Using the above signals, the watermarked signal is
obtained as follows:

Xw(t) = X0(t) +m0(t)w0(t) +m1(t)w1(t) (37)

To detect the watermark, each block is transformed
to the Cepstrum domain at first:

Cw = IFFT (log|FFT (Xw)|) (38)

The autocorrelation, Cw, is calculated in this do-
main. ∆t and the embedded bit is determined using
the apex of Cw. Various methods have been devised
based on echo hiding [111–114]. By combining spread
spectrum and echo hiding schemes, a secure water-
marking method is obtained [115]. In addition, a ro-
bust and secure watermarking algorithm has been
designed using the hearing characteristics and filter
bank structure of HAS [114].

4.6 Spread Spectrum Watermarking

4.6.1 Additive Method

A simple method of watermarking is the additive
scheme. This approach was first introduced by Cox
[115]:

fw,i = fi + γwi (39)

where fi is the ith sample of the host signal, γ is the
power factor, andwi is the ith sample of the watermark
signal. wi may be the samples of an arbitrary vector
or a pseudo-random sequence. As a matter of fact, the
additive method was first proposed in the block form
where the spectrum of the watermark signal was spread
using a pseudo-random sequence, PN, and was added
to the host signal with a very small coefficient. The
longer the sequence, the more the spectrum is spread
and the less the summation coefficient. To detect the
watermark, it is enough to compare the received signal
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Figure 8. Additive spread spectrum watermark embedding

Figure 9. Additive spread spectrum watermark extraction

with the pseudo-random code. When all the bits of
the code are the same as their corresponding bits
embedded in the watermarked signal, there is a peak,
which can be detected using a proper threshold. In
fact, the receiver is a match filter. Generally, when
the samples of the signal and the noise are modeled as
Gaussian, all error expressions and the capacity can
be obtained via the equations of information theory
and communications. Figures 8 and 9 show a simple
additive watermarking scheme.

To improve the additive method, the amplification
factor can be adaptively selected according to the
signal characteristics such that the watermark power
can be maximized without losing transparency. As
a case in point, equation (39) may be modified as
follows:

fw,i = fi + γi(f)wi (40)

where γ is a function of f and is determined based on
the cover features. It has been selected sub-optimally
according to [116] and [117] for the DCT coefficients
and the DWT of the image, respectively. The optimal
receiver of the additive watermarking is implemented
as follows:

b̂ = arg max
b∈{−1,1}

rY
i=1

1È
2π(σ2

f + σ2
n)

×exp(− (f ′i − µf − γbwi)2

2(σ2
f + σ2

n)
)

(41)

where f ′is are the watermarked coefficients, µf and
σ2
f are the mean and variance of the host signal coeffi-

cients, respectively.

Additive watermarking can be easily implemented.
The only problem is that in case the sequence is not
long enough, the interference terms resulted from the
overlapping of the original signal and the sequence
will become large and may go beyond the threshold.
To solve this problem, the received signal is passed
through a high-pass filter so that the majority of its
power is removed. Since the pseudo-random sequence
is intrinsically high-pass, it passes through the filter
without any modification; thus, there will be no loss
in detecting the watermark. Figure 9 implicates the
application of pre-processing filter before the overlap-
ping.

Different implementations of additive watermark-
ing have been described in [118–121]. In [118], Modu-
lated Complex Lapped Transform (MCLT) has been
used and the embedding has been done by altering
the amplitude of MCLT coefficients in dB. The spread
spectrum technique can also be exploited to synchro-
nize the watermarked and original signals. In some
methods, it is necessary to specify the beginning of the
frame or the block. Regardless of the watermarking
scheme, the synchronization can be done by adding a
pseudo-random code with a small gain factor to the
watermarked signal in spatial or temporal domain.
When the pseudo-random code matches its peer in the
watermarked signal, an apex appears, and that time
is the beginning of the frame. Fore more information,
please refer to [118–123].

4.6.2 Multiplicative Method

It seems that greater and more substantial coefficients
have more capacity to carry the watermark. Indeed,
several experiments on HAS and HVS have proved that
the largest threshold of alteration imperceptibility is
obtained when the interfering signal (the watermark
signal in our discussion) has the same frequency as the
host signal. In order to achieve this goal, multiplicative
method has been proposed:

fw,i = fi(1 + γwi) (42)

By this approach, we can make more use of the char-
acteristics of HAS and HVS in DCT, DWT, and DFT
domains and better adjust the power of the watermark
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[104]. This has made multiplicative algorithm more
successful than its additive counterpart. The only neg-
ative point about multiplicative method is that opti-
mizing the parameter γ and obtaining equations for
probability of error and capacity is not as easy as the
additive scheme, and we can hardly make use of the
information and communication theories. However, it
leads to more open research topics on this algorithm.

In [3] and [119], similarity-based receivers have been
proposed for multiplicative watermarking. Since these
receivers are suboptimal for transform domains, vari-
ous locally optimal detector have been investigated in
[124–129]. Optimal ML receiver has been suggested
in [125] for DCT, DWT, and DFT domains. In that
paper, generalized Gaussian distribution has been con-
sidered for high-frequency DCT and DWT coefficients,
while the amplitude of DFT coefficients has been as-
sumed to meet Weibull distribution. It should be noted
that in all cases except for the Gaussian one, the re-
ceivers have been examined without noise. Analyzing
the performance of such receivers in the presence of
noise are open research problems. For instance, the
ML receiver with generalized Gamma distribution for
multiplicative methods has been partly investigated
by [127]. The authors of [128] have carefully computed
the distribution of DFT coefficients and have shown
that it does not exactly obey the Weibull model. More-
over, by applying HVS to the high frequency wavelet
coefficients, locally optimal detector for Barnie mul-
tiplicative method discussed in [128, 130] is designed
and analyzed in [129].

Multiplicative watermarking method has been ex-
tended to various transform domains other than the
wavelet transform. One of the advantages of the mul-
tiplicative watermarking is its improved performance
for the transforms which exhibit a sparser presenta-
tion of the host image. Therefore, the performance of
the multiplicative watermarking is significantly im-
proved when is applied to the multiresolution nonsepa-
rable transforms such as contourlet [130] and discrete
ridgelet transforms [131].

4.7 Comparison among Various Data Hiding
Techniques

In this part, we wish to briefly compare the various
watermarking schemes. This comparison is summa-
rized in Table 1. It is noteworthy that comparing var-
ious categories is not completely fair because of the
differences in the type of signal and target applica-
tion. Moreover, “low” or “high” do not mean “bad”
or “good” here; both can be “good” depending upon
the required application.

In this table, “open problems” column is an estima-
tion of how much developed the theories are in each

field and how many unsolved problems are left to be
worked on. It is inferred from the Table that the LSB
coding provides the most possible capacity. This fea-
ture makes it the choice of interest for the steganogra-
phy applications, where high capacity algorithms are
required to fulfill the covert communication necessi-
ties. The LSB schemes are also imperceptible enough
and their robustness and security issues high vulner-
ability to the noise, and compression are not of much
importance in the steganography application. These
properties along with low complexity have attracted a
lot of interest to the LSB steganography. By the way,
it seems there is no significant improvement left to be
made in this field. The QIM data hiding algorithms
show similar properties to the LSB ones. However,
the security issues are improved in QIM techniques
considering the dither modulation idea.

Capacity decreases for the other five categories in
the Table which make them applicable for the water-
marking demands. Among them, phase coding and
echo hiding are especially designed for the audio water-
marking. By decreasing the capacity, these methods
are expected to offer significant performance in other
aspects, as a consequence of the principal data hiding
trade-off. By the way, it is inferred from this table
that the patchwork and the echo hiding techniques
suffer from security problems, while the phase coding
has the robustness issues.

Additive algorithms are outperformed by multiplica-
tive ones, which efficiently improve the other data
hiding issues in exchange of losing capacity. Multi-
plicative algorithms are also compatible to human
visual and auditory systems. According to these prop-
erties, this group of data hiding techniques seems to
be a suitable choice to answer the watermarking de-
mands. Thus; in the remaining of this section, we will
focus on the multiplicative schemes in particular the
scaling based algorithms as one of the most efficient
watermarking tools and investigate the performance
of these algorithm from this category in more details.

4.8 State of the Art Multiplicative
Watermarking

In the previous section, different categories of data
hiding schemes were compared. Among them, multi-
plicative schemes were shown to be very efficient in
terms of imperceptibility, robustness, complexity and
security requirements. The only drawback of multi-
plicative techniques is their low capacity that makes
them not to be a proper choice for the steganography
demands. However, these methods seem to be the best
choice for setting up a watermarking system. Here,
we will discuss about a special case of multiplicative
schemes which is called the scaling-based method. Al-
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Table 1. Comparison of primitive watermarking schemes

XXXXXXScheme
Factor

Imperceptibility Bit Rate Robustness Complexity Security Open Problems

LSB Good Very high Very low Low Low Few
QIM Good High Low Low High Some
Patchwork Moderate Low High Low Low Few
Phase Coding Very good Average Low Average — Few
Echo Moderate Low Average Average Low Few
Additive Good Low High Low High Few
Multiplicative Very good Low Very high High High Many

though the method was first developed for image sig-
nals, similar concepts are extended to the audio and
speech signal in [38, 132], and [133].

In [134], a scaling-based semi-blind image-adaptive
watermarking system has been presented, which ex-
ploits HVS for adapting the watermark data to lo-
cal properties of the host image. To have a better
robustness, this algorithm is implemented on the low-
frequency coefficients of the wavelet transform. The
scaling-based embedding process is implemented by
the following rule:

W ′i =

¨
Wi.α For embedding 1
Wi

α For embedding 0
(43)

Wi and W ′i are the wavelet coefficients before and
after embedding. α is the strength factor which con-
trols the watermark power and is optimally selected,
regarding the invisibility of the algorithm. To extract
the watermark data, the Maximum Likelihood (ML)
estimator is used. Experimental results confirm the
imperceptibility of this method and its high robust-
ness against various attacks such as JPEG compres-
sion, noise addition, and filtering compared to other
similar methods [134].

The idea of multiplicative data hiding in the trans-
form domain is also extended to the contourlet domain
[135]. The contourlet transform [130] is designed to
model singularities, high-dimensional discontinuities
and edges in a more efficient way than the wavelet
transform. Since HVS is less sensitive to the image
edges, the contourlet transform which represents the
image edges more sparsely seems to be an interesting
choice for watermarking application. In the presented
scheme, watermark is embedded in the most energetic
directional subband using the following multiplicative
rule:

wi =

¨
xi.f1(xi) For embedding 1

xi.f0(xi) For embedding 0
(44)

where f1(x) and f0(x) are strength functions which
are chosen to be monotonous exponentially functions.
To achieve the best performance, these functions are
defined as follows:

f1(x) = −0.3e−0.2|x| + 1.65

f0(x) = 0.15e−0.2|x| + 0.65
(45)

These functions are chosen exponentially in order
that larger coefficients changes more than smaller
ones during the watermarking process since the larger
coefficients are related to the strong edges in the
supposed directional subband. These functions are
also defined in a way that the monotony of xf(x) is
satisfied for the practical range of x.

In this work it is also shown that the Generalized
Gaussian Distribution (GGD) efficiently models the
histogram of the contourlet coefficients:

GGσx,β(x) = C(σx, β)e−[α(σx,β)|x|]β

−∞ < x <∞, σx > 0, β > 0

C(σx, β) =
βα(σx, β)

2Γ( 1
β )

α(σx, β) = σ−1
x

Ì
Γ( 3

β )

Γ( 1
β )

(46)

where σx is the standard deviation of x, β is the
shape parameter and Γ is the Gamma function.

By modeling the General Gaussian Distribution
(GGD) for the contourlet coefficients, the distribution
of the watermarked noisy coefficients is analytically
calculated. At the receiver end, based on the ML de-
cision rule, the optimal detector is proposed. Since
the contourlet transform concentrates the image en-
ergy in the limited number of edge coefficients, using
multiplicative approach in this domain yields high
robustness accompanied by good transparency. Ex-
perimental results show the imperceptibility and high
robustness of this method against Additive White
Gaussian Noise (AWGN) and JPEG compression at-
tacks [135]. The same idea of multiplicative embed-
ding in the transform domain has been extended to
the Ridgelet transform [131], where universally opti-
mal decoder has been presented based on ANOVA
(Analysis of Variances) [136].
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In a similar work, the performance of the multi-
plicative scheme is investigated when the host signal
is assumed to be stationary Gaussian with first-order
autoregressive (AR) model [137]. Partitioning the host
signal into two separate parts, the watermark is em-
bedded in one part using a multiplicative rule similar
to (5-16) and the other is kept unchanged for blind
parameter estimation. To drive the distribution of
the decision variable, the ML decoding algorithm is
suggested which is independent of the host signal dis-
tribution. This makes the algorithm suitable for any
transform domains. The detector uses a decision vari-
able resulting from the sum of samples, which due to
the Central Limit Theorem converges to a Gaussian
variable. Under this assumption, a Distribution In-
dependent Optimum Decoder (DIOD) is introduced
that works for any kind of distribution model such as
Gaussian and GGD and in any transform domain such
as wavelet, contourlet, ridgelet, and FFT. The pro-
posed algorithm is applied to both artificial Gaussian
autoregressive signals as well as various test images.
Experimental results confirm the independence of the
decoder performance to the host signal distribution
and its great robustness against common attacks [137].

While in the previous schemes the samples of the
host signals were assumed to be uncorrelated, another
research is performed in [138] to investigate the scaling-
based data embedding and the design of the optimal
detector for correlated signals [138]. In this work, the
host signal is assumed to be stationary Gaussian mod-
eled with a first-order autoregressive process. It can
be shown that this model is useful for representing
the low frequency components of the natural images.

Let, u be a first order markov sequence of normally
distributed random variables with mean µ, variance
σ2, and correlation coefficient ρ. If u contains N vari-
ables u1, u2, , uN , let x and y sequences represent the
samples of u in odd and even positions, respectively.
That is, xi = u(2i − 1), and yi = u2i. Dividing the
signal into these two categories satisfy the blindness
of the watermarking approach. Now, consider the new
sequence z, defined as:

zi =
xi
yi

=
u2i−1

u2i
(47)

This variable is the ratio of two correlated normal
variables x = N(µx, σ

2
x) and y = N(µy, σ

2
y). By using

some computation, it can be shown that for the case
of non zero µx, µy, and σy << µy, σx << µx, the
distribution of z = x/y can be well approximated by
a Gaussian distribution. More calculations result in
finding the correlation coefficient between the samples
of the new Gaussian random variable z.

For data embedding, the host signal is divided into

two parts. One part is manipulated while the other
part is kept unchanged for the parameter estimation.
Therefore, the odd and even numbered samples of xi
and yi are extracted at first. The data is embedded only
in the x sequence based on a scaling rule similar to (24)
to obtain the watermarked signal u′. The y part will
be later used to estimate the original signal parameter
at the decoder side. As we mentioned before, the ratio
between these two parts of signal can be modeled using
a Gaussian distribution. Therefore, a decoding scheme
using the ratio of samples is suitable for this highly
correlated signal. By calculating the distribution of
the ratio, the performance of the maximum likelihood
decoder is analytically studied. The unchanged part
of the signal is exploited to help the estimation of the
Gaussian parameters. The main characteristic of this
decoder is that it can be easily implemented for highly
correlated signals.

The error probability of the ML detector at the
presence of AWGN is analytically calculated. This
algorithm is applied to several artificial Gaussian au-
toregressive signals to verify the validity of the re-
sults. Simulation results show a great robustness of
this method for low watermark to noise ratios (WNR)
[138].

5 Steganalysis

Steganalysis is the art of detecting the presence of wa-
termarked secret message within a digital signal. There
are several ways to classify steganalysis methods, but
in our brief review, we consider the “method-specific”
and “universal” steganalysis approach. Method spe-
cific or non-blind steganalysis schemes are designed
to attack a certain type of steganography algorithms
based on its particular features and weaknesses. On
the other hand, the applied algorithm is not impor-
tant in blind or universal steganalysis which aim at
extracting general features that are the most sensitive
to malicious modifications. Although the steganalysis
was initiated by attacking certain algorithms such as
the LSB using limited number of features, the current
trend of steganalysis is toward the development of
universal steganalysis frameworks for large number of
features that are selected efficiently.

5.1 Method-specific Steganalysis

There exists a variety of steganalysis methods designed
to detect the existence of secret message embedded
through a specific data hiding method. These algo-
rithms find a weak point in a proposed steganography
algorithm and concentrate on it to suggest a tool or
measure for detecting the existence of secret message.
Since LSB coding is almost the simplest and most
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Figure 10. PoV appearance of histogram after LSB replace-
ment

prevalent watermarking technique, in this section, we
only consider some of steganalysis methods proposed
specifically for detecting this kind of algorithms.

The LSB coding ideas developed after LSB replace-
ment, where the least significant bit of signal sample
was simply replaced by the secret bit. This simple
technique results in a statistical drawback in the stego
signal, called Pair of Values (PoV). Here we explain
the PoV using a numerical example. Suppose that the
number of samples with value of four (100) and five
(101 in binary) in a cover signal before embedding are
n4 and n5 respectively. Since the secret message is sup-
posed to be encrypted and have equal number of ones
and zeros, all the LSBs of samples with values equal
to (100)b and (101)b are firstly removed and then ran-
domly replaced by zero or one. It is simple to verify
that as a consequence of this process, the expectation
of the number of samples with values equal to four and
five after data embedding are both (n4 + n5)/2. As a
result, every two adjacent values in the histogram of
digital signal tend to same values. This statistically
drawback of LSB replacement is called PoV and is
recognizable from the histogram of stego signal, as
seen in Figure 10.

Two most famous steganalysis methods that exploit
the PoV drawback to detect LSB replacement embed-
ding are RS [67] and Chi-square [68] analyses. In the
following, we briefly review the Chi-square analysis
to present a method-specific steganalysis technique.

Suppose that the number of samples with value 2i
and 2i+ 1 after embedding is n2i and n2i+1 respec-
tively. We define the statistics of yi and yi∗ as:

yi = n2i, y
∗
i =

n2i + n2i+1

2
(48)

We know that after embedding, yi∗ is the expecta-
tion of yi, hence these values are expected to be almost
the same in case of stego signal. This fact makes the
χ2 statistics defined below to tend to zero:

Figure 11. The Fourier transform (the upper curve) and the
noise distribution of LSBM (the lower figure)

χ2 =
vX
i=1

(yi − y∗i )2

y∗i
(49)

where v is the number of possible pair of values in
the histogram of samples. the closeness of χ2 statistics
to zero value results in the following probability to
tend to one in case of stego signal. The closer the p-
value to zero, the more probable is the clean. Γ(x)
represents the gamma function of x.

p = 1−
Z χ2

0

t
v−2
2 e

−t
2

2
v
2 Γ(v2 )

dt (50)

The LSB matching (LSBM) solves the problem of
PoV using a simple idea. In the LSBM a sample value
randomly increases or decreases by one in case of
not being matched to the secret bit. As a result of
this minor change, despite of LSB replacement where
only 2i to 2i + 1 and reverse changes are allowed,
here both 2i to 2i + 1 and 2i to 2i − 1 changes are
possible. Therefore, the PoV appearance of histogram
does not happen anymore. As a consequence, more
sophisticated steganlysis methods were required. For
this purpose, Harmsen proposed his analysis based on
center of mass of the histogram of the characteristic
function (HCF COM) [139]. The main idea of HCF-
COM analysis establishes the LSBM as a lowpass
noise convolved with the original signal. Note that in
LSBM, both the probability of incense and decrease
of the value of a sample in the host signal equals
0.25, where the sample may remain unchanged by the
probability of 0.5. The noise-like distribution of the
LSBM embedding effect and its Fourier transform is
shown in Figure 11.

As seen in Figure 11, the LSBM acts as a lowpass
filter. A noise with this distribution is added to the
host signal. We know that if two uncorrelated ran-
dom variables are added, the distribution of the result
would be the convolution of the variables distribution.
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Assume the histogram of the original signal as the es-
timation of its distribution. Then we will have the his-
togram and the noise distribution convolved together
after embedding. Since the embedding noise was found
to behave like a lowpass filter, higher frequencies of
the histogram function are attenuated comparing to
lower ones. We refer to the Fourier transform of the
histogram as the Histogram Characteristic Function
(HCF). Having higher values of HCF, the center of
mass of HCF (HCF-COM of stego signal) stands lower
than that of the original image. Center of mass of HCF
for 256-point DFT is defined as:

C(H[k]) =

1P
k=0

27k|H[k]|

1P
k=0

27|H[k]|
(51)

where H[k] is the kth sample of HCF (Fourier trans-
form of the histogram). Generally, classifiers work on
a set of features similar to the introduced HCF-COM.
A number of stego and clean signals are generated
at first. Then the classifier is trained using these fea-
tures to distinct stego signals from the clean ones in
the best possible way. After finding the decision rule,
the classifier can decide either every new unknown
signal is stego or clean. For only HCF-COM feature,
the decision rule reduces to a simple thresholding.

Although Harmsen HCF-COM analysis showed an
acceptable performance for colored images, it encoun-
tered some difficulties in case of grey-scale ones. Ker
modified the HCF-COM feature and proposed adja-
cency HCF-COM and calibrated adjacency HCFCOM
features [140]. The histogram function used for sim-
ple HCF-COM was a one-dimensional histogram over
possible values from minimum to maximum value, for
instance 0 to 255 for 8-bit signals. But adjacency his-
togram is a 2-dimensional histogram which its (i, j)
entry is the frequency of pair of adjacent samples with
values equal to i and j. Center of mass of this his-
togram also decreases as a consequence of data embed-
ding. Therefore, Ker proposed adjacency HCF-COM
as another steganalysis feature and showed that it
outperforms normal HCF-COM in grey-scale images.

In addition, it is impossible to impose an absolute
threshold for distinction between stego and clean sig-
nals. HCF-COM of one signal after data embedding
might be still higher than the other one prior to embed-
ding. This depends upon the nature of signal. To make
analysis more independent of the nature of the signal,
Ker proposed calibrated HCF-COM. Calibrated sig-
nal is the received signal down-sampled by the rate of
two (for images it results in the decrease of the size
of image by four). This signal is considered as an es-

Figure 12. The ROC performance of the calibrated adjacency

HCF-COM

timate for the original signal which is not available
at the receiver side. Then thresholding is done on the
ratio of HCF-COM of the received signal to that of
the calibrated one. Ker showed that this improvement
makes the analysis more independent of the original
signal and results in better discrimination between
stego and clean signals.

Even with these improvements, the classifier still
has errors in detection. Every threshold yields a num-
ber of true detections (probability of detection) and
a number of false detections of clean signals as stego
ones (probability of false alarm). Plotting different
pairs of detection and false alarm probabilities versus
each other for different thresholds, we get the Receiver
Operation Characteristic (ROC) results. Figure 12
shows the ROC performance of the calibrated adja-
cency HCF-COM against the LSB matching method,
and the one in [35] which offers the probability of
change per pixel of 37.5% for data embedding at the
rate of the one bit per pixel (1bpp). It is obvious that
among these methods, one with the least probability
of change, has the curve closer to the y = x line, which
means the best performance in terms of not being
detected by the steganalyzer.

More recently, steganography algorithms with bet-
ter performance against the calibrated adjacency HCF-
COM were introduced. These algorithms require more
complicated detection features. For instance, the HCF-
COM was proposed for the difference image, i.e., the
image generated from the difference of adjacent pixels
[141, 142]. This competition between steganography
and steganalysis is still continuing. The invention of
new analysis methods, trigger the design of more de-
veloped data hiding algorithms. As a result of this
competition, more and more sophisticated algorithms
are available both in steganography and steganaly-
sis. Nowadays, steganography algorithms are sophisti-
cated enough not be discovered by limited number of
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Figure 13. Generic block diagram of a universal steganalysis
system

features. As a consequence, current trends of steganog-
raphy algorithms are to design universal steganalysis
frameworks that work on the large number of features
independent of the applied steganography scheme.

5.2 Universal Steganalysis Methods

Analyses techniques introduced in the previous sec-
tion, concentrates on a specific statistical drawback
of certain steganography methods. However, one can
provide a set of statistical features that is large enough
to analyze signals generated through a variety of data
hiding methods. Therefore, universal analysis is an
approach independent of the embedding which re-
quires classifiers much more complicated than simple
thresholding techniques. Figure 13 shows the overall
performance of a universal steganalysis system.

Feature reduction is necessary to ensure that the
best possible analysis performance is guaranteed us-
ing the least size of selected features. As an exam-
ple for the clean signal estimation, we can apply the
Ker’s method for calibrated signal at the receiver end.
The way we can discriminate different universal ste-
ganalysis methods is through their selected feature
set. One of the first universal steganalysis schemes is
Farid’s universal feature set, which exploits the high
order moments of the image wavelet coefficients [143].
Some well-known image quality metrics are used as a
feature set by Avcibas to form another steganalysis
system [144]. Moulin [145] and Huang [146] feature
sets are another examples of the universal feature sets
introduced for the purpose of steganalysis.

Ker employed the histogram of the adjacency for
the sake of steganalysis [140]. This feature counts the
number of adjacent pixel pairs with a certain pair
of values. The adjacency feature is a second order
statistic, because it considers the co-occurrence of
two certain values. One can consider the occurrence
probability of certain triples as the third order statis-
tics. Although higher order statistics can be defined
as well, the complexity imposed by large number of
possibilities in the higher order statistics make them
impractical. Therefore, the second and third order

Figure 14. average of 2D co-occurrence histogram of 1000

images

statistics are much more common in the literature of
the steganalysis. Figure 14 shows the average of two
dimensional co-occurrence histogram for a set of 1000
images:

As it is illustrated in Figure 14, close pixel values
are more probable to occur. This fact, leads to the
idea of applying the co-occurrence to the difference
images. In the next equations, we denote with F the
original matrix which can be the image itself, or its
transformed version in quantized DCT or wavelet sub-
bands. We also define the difference matrix D whose
entries are the difference between the consecutive
entries of the original image. We define four types of
difference matrices in this paper. Suppose that F i,j

is the F matrix when shifted by i rows to the right
and j columns to the bottom. The horizontal, vertical,
diagonal and minor diagonal difference matrices are
defined based on (52):

CDh = F − F 1,0

Dv = F − F 0,1

Dd = F − F 1,1

Dmd = F − F 1,−1

(52)

The second and third order statistic can be ex-
tracted from the difference images described by (52).
As seen before, the pixel pairs with limited difference
are most probable. Therefore, we can restrict the val-
ues of the statistics to the range of [−T, T ] to limit
the number of second order statistics. The informa-
tion about the number of co-occurrences is recorded
in NJ matrices as features of higher order statistics.
For instance, NJ is a 7 × 7 matrix for T = −3 and
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Figure 15. The co-occurrence matrix extraction

order = 2. This procedure is shown in Figure 15.

One of the most important feature sets extracted
from the difference images is 686-D Subtractive Pixel
Adjacency Matrix (SPAM) [147]. In this case, the
third order statistics only at the range of [−3, 3] are
considered. All the features are extracted from spa-
tial domain signal. In order to decrease the number
of features, horizontal and vertical feature sets are
reduced to one by averaging. The same procedure is
performed to the diagonal and minor diagonal feature
sets. Therefore, the final number of the features in the
SPAM feature set equals 2× (2× 3 + 1)3 = 686.

The second and third order statistics can also be
extracted from the transform domain. Since DCT
is the transform used for JPEG compression and is
common in steganalysis, there exists a trend to extract
features in the DCT domain. In the JPEG compression,
the original image is divided into a block of size 8× 8
and then the DCT is applied. Since the dependencies
are decreased in the transform domain, the second
order statistics seem to be sufficient.

In order to extract these features in the JPEG do-
main, there are several approaches considering 8× 8
blocks. One can extract the features among the coeffi-
cients of each block. This is called inter-block feature
extraction, while the term intra-block is referred to
the case where coefficients in the same place of dif-
ferent blocks are considered. Here, we discuss these
features in more details.

1) Features Extracted from Inter-block Correlation:
These features are extracted through considering the
DCT 8 × 8 blocks as the F matrix. For each block,
D and NJ matrices are calculated separately. Appar-
ently, this process generates a very large number of
matrices. In order to produce manageable results, we
average over all matrices. Since dependencies are con-
sidered only inside blocks, this method is called inter-
block correlation and is summarized and illustrated
in Figure 16.

2) Features Extracted from Intra-block Correlation:
In this case, we combine certain entries (frequencies)
of all 8× 8 blocks excluding the first entry (DC coef-
ficient), together to form a set of 63 new F matrices.
The D and NJ matrices are calculated similar to the
former sections. The number of matrices is reduced by
averaging over all of them as discussed in the previous
section. Since similar frequencies in different blocks

Figure 16. The feature extraction in DCT domain using

inter-block correlation

Figure 17. Feature extraction in the DCT domain using

intra-block correlation

are considered in this method, it is called the intra-
block correlation which is presented in Figure 17.

The inter-block and intra-block features are ex-
ploited in some recent and efficient steganalyzers such
as 648-D CC-Shi [148, 149], and 548-D CC-Pev [150]
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feature sets. However, there might be still more weak
dependencies not captured by these features; such as
the dependency between the second coefficient from
one of the blocks and the third one from another block.
Including these dependencies, the 48600-D CC-C [151]
feature set is designed to capture even the weakest
dependencies. Although this large feature set reflects
even the weakest dependencies, one might ignore its
performance improvement in the exchange of much
less complexity and realization time.

It was shown that recent steganalyzers work on
large feature sets, because a limited number of fea-
tures are not capable to discover the sophisticated
current steganography schemes. As the number of
features grows, the other important part of the ste-
ganalysis frameworks the classifier- becomes more
and more important. Although several classifiers such
as neural networks [152] have been applied in the field
of steganalysis, the support vector machines (SVM)
[153] are of the most interest among steganalyzers.
Although the SVM classifier performs efficiently for
steganalysis purposes, its complexity increases expo-
nentially by growing size of the current feature sets.
On the other hand, the efficient analyzing of the recent
sophisticated and diverse steganographic algorithms
necessitates applying a large number of features to
reflect even the weakest dependencies in the images.
However, the implementation time and the complex-
ity of these classifiers such as SVM restrict the ste-
ganalyzer to use only limited number of features. In
order to tackle this challenge, the ensemble classifi-
cation structure is very recently investigated in the
steganalysis literature [154].

Actually, an ensemble structure consists of appli-
cation of several classifiers on a limited number of
features, whose decisions are integrated by an efficient
rule to make the final decision. The base classifiers
work on a limited number of features (100 for instance),
while a feature can be repeated in several classifiers.
The aggregation of the results from simple classifiers
leads to a simple and efficient steganalyzer. In this
way, the ensemble classifier decreases the complexity
of the classification algorithm significantly, while it
keeps the ability of dealing with a large number of
features with offering almost the same performance.
Moreover, the ease of dealing with a large feature sets,
makes it possible to avoid the need of conducting many
experiments to pick the optimized features for each
specific embedding method. Trying several classifiers
and decision rules, the authors have come to the result
that the application of complex classifiers or decision
rules does not improve the performance of the final
classifier. Therefore, the majority rule is exploited to
aggregate the decisions that come from a simple base
classifiers [154].

6 Conclusion

A survey on data hiding concepts and algorithms
is given in this paper. The main attributes of data
hiding systems are briefly discussed and a variety of
data hiding applications are presented. Transparency
which means the similarity between the original and
stego/watermarked signal is almost required for every
data hiding algorithm. In watermarking applications
where a low-rate data transmission is needed, the wa-
termark is required to be robust against some certain
attacks; while in the steganography applications that
requires a high rate of embedding, the robustness is-
sue is less important. On the other hand, the capacity
considerations are critical for steganography schemes,
while they are not important in watermarking appli-
cations. The data hiding tradeoff declares that one
cannot satisfy all these three concepts simultaneously.
The security of algorithm and the computational com-
plexity are the other attributes of data hiding schemes.
Since the knowledge of human auditory and visual sys-
tem helps to design the data hiding algorithms more
efficiently, they are also briefly reviewed in this paper.

Next in this paper, data hiding algorithms were
categorized and discussed separately. It was shown
that the LSB algorithms provide the best capacity
without acceptable robustness, which makes them a
proper choice for steganography applications. These
parameters are more or less compromised in the other
methods; while the multiplicative embedding was seen
to present the best properties to satisfy the water-
marking requirements. Therefore, this group of data
hiding schemes is discussed in more details. Finally,
the analysis of data hiding algorithm was reviewed by
being divided into blind and non-blind steganalyzers.

The main target of this work is to help the newcom-
ers in the field of data hiding to find their right path
of research by getting familiar with the main concepts
and algorithms of this field. However, after about two
decades from the inception of data hiding concepts, it
is not as simple to design a new data hiding scheme
or improve an elder one to achieve a significant gain
in performance. Somehow, it seems that the problem
of data hiding has been approached from all possible
aspects, especially for images. On the other hand, the
development of steganalyzers has also been slowed
down and newly introduced features that are usually
supported with the simulation results rather than solid
mathematical frameworks, and result in a very slight
performance achievement.

Nowadays, it seems that the future of the data hid-
ing field is focused on the development of the novel
applications rather than designing a new schemes. For
instance, the generation of the tamper-proof images
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with the self-recovery capability is introduced as an in-
teresting novel application of the data hiding systems.
It was shown that the self-recovery problem can be
modeled by applying a proper source code to generate
the “image digest” and a channel code to protect it
against the tampering. The source and channel coded
image is embedded in itself as the tamper-proof wa-
termark. Although in a recent work in this field, these
source and channel codes are selected to be optimal
separately; one can inject the joint source channel
coding concepts to the problem and optimize both
source and channel codes simultaneously to achieve a
performance gain.

Recently, the concept of data hiding has also been
extended to the fields other than multimedia. For in-
stance, some fragile watermarks can be embedded in
the printed circuit boards when they are designed and
ordered to be implemented. In this case, the owner
will notice every manipulation when the implemented
board is returned back to him. These manipulations
might be done for example to disrupt the board per-
formance in a particular geographical area. This is
called hardware watermarking. The same concept can
be extended to the software watermarking, when the
designer of the software desires to notice every mali-
cious manipulation on the source code or the library
files. In the field of cryptography, a new problem of
interest is to embed the secret key of a conversation
into the encrypted message itself, instead of commu-
nicating it through a separate secure channel which
may not exist.

Although these applications need to leave a water-
mark to find the manipulations later, there is another
new similar trend called forensics, in which the target
tries to find any additional useful information from
the media. For example, one can find that an object
is artificially repeated in an image via investigating
the correlations between blocks; or as another inter-
esting application of forensics one may try to find the
location in which a photo is taken, by analyzing the
signatures of the city power system on the image. In
the computer networks field, it will be interesting to
find any forbidden application which is run on the net-
work through analyzing the signatures of its header
and information using forensics tools.

All in all, by considering the tremendous size of
works accomplished in the field of data hiding, to
achieve a the real performance gain in this field, one
requires the application of very sophisticated ideas.
There exists another hot topic in data hiding to find
its novel applications which may be extended to the
fields such as multimedia protection, self-recovery,
hardware, software protection and network monitor-
ing. The application of the watermarks to find ma-

licious modifications is a sub-discipline of a general
concept called forensics in which, the aim is to extract
maximum possible information from multimedia to
combat malicious actions.
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