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A B S T R A C T

Large-scale data collection is challenging in alternative centralized learning

as privacy concerns or prohibitive policies may rise. As a solution, Federated

Learning (FL) is proposed wherein data owners, called participants, can train

a common model collaboratively while their privacy is preserved. However,

recent attacks, namely Membership Inference Attacks (MIA) or Poisoning

Attacks (PA), can threaten the privacy and performance in FL systems. This

paper develops an innovative Adversarial-Resilient Privacy-preserving Scheme

(ARPS) for FL to cope with preceding threats using differential privacy and

cryptography. Our experiments display that ARPS can establish a private

model with high accuracy out¬performing state-of-the-art approaches. To

the best of our knowledge, this work is the only scheme providing privacy

protection beyond any output models in conjunction with Byzantine resiliency

without sacrificing accuracy and efficiency.

© 2023 ISC. All rights reserved.

1 Introduction

The performance of Machine Learning (ML) mod-
els greatly relies on the quantity of training data

available. Traditional ML algorithms typically in-
volve a single entity conducting centralized learning
which can in-crease computational complexity. Fur-
ther, getting access to a large dataset may be chal-
lenging. Consider a case in which the WHO intends
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to train a model assisting the cancer diagnosis based
on the medical records of some countries. However,
privacy concerns and government policies motivate
these countries to avoid data sharing. Besides, some
real-time applications, such as traffic flow prediction,
require updates in near real-time. However, central-
ized learning methods can often prove excessively
time-consuming for such purposes. Federated learn-
ing (FL) is a strategy for overcoming the barriers to
data sharing, enabling participants to train a com-
mon model collaboratively without revealing their
datasets [1]. Moreover, the distributed nature of FL
can take advantage of parallelization to accelerate
the training process and leads to faster convergence.
In this strategy, local models trained over user-side
datasets are aggregated in a central server as the
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global model. Then, participants update their local
models using the global model and share them with
the server. This iterative process continues until a
convergence criterion is met.

However, ML models can memorize the details re-
lated to individual examples rather than encode the
dataset’s general patterns. A resolute adversary can
exploit this breach to mount a Membership Inference
Attack (MIA) [2] to extract information about the
training data from raw models sent to/from the server,
causing critical privacy issues. Further, FL schemes
using local differential privacy (DP) [3] to address
privacy problems can lead to low-performance mod-
els due to adding too much noise during the learning
process. On the other hand, some adversarial users
aim to perturb the learning procedure via manipulat-
ing their local models during protocol execution [4].
Concerning Poisoning attacks (PA), Byzantine-robust
schemes [4, 5] have been proposed wherein an outlier
detection algorithm is used to remove potentially ma-
licious participants. Accordingly, these approaches are
insufficient to provide (i) privacy protection against
information leakage from the local or global models
and (ii) a communication efficient algorithm against
Byzantine faults. To address the above challenges, we
propose an Adversarial-Resilient Privacy-preserving
Scheme (ARPS) for federated learning, which can ef-
ficiently identify poisoning incidents during the train-
ing process, while protecting the privacy. Particularly,
the contributions of this paper are threefold, as fol-
lows:

• We propose ARPS as a privacy-preserving FL
scheme that tolerates Byzantine faults under
homomorphic encryption technology while im-
proving accuracy.

• We develop a novel similarity-based outlier de-
tection algorithm (Sanitize) to identify the ma-
licious models.

• We illustrate how our approach can be imple-
mented to train ML models, specifically convo-
lutional neural networks, and present empirical
assessments.

2 Related Work

2.1 Defending Against Poisoning Attacks

In the Byzantine context, aggregation rules such as
Krum [6], and Median [7], can be used to enhance FL
against malfunctioning. However, these defenses may
collapse, facing countermeasures such as optimized
local model poisoning attacks [4]. A correlation-based
defense technology is presented in [8] that can detect
poisoning attacks. However, the correlation between
the gradients is revealed in this approach, which may

lead to privacy violations. The work in [9] effectively
defend against poisoning attacks by leveraging con-
tribution similarity for multiple threat actors. How-
ever, it may not be as effective against single attack-
ers. BREA [5] leverages verifiable secret sharing to
protect the privacy of individual participants. How-
ever, cubic communication overhead is its main lim-
itation. In [10], a feedback-based detection method
called BaFFLe is utilized to combat backdoor attacks.
However, this scheme suffers from a low convergence
rate. Recently, [11] has presented a hybrid system
using zero-knowledge proof and RSA optimization
algorithm to provide privacy protection with Byzan-
tine robustness. However, this scheme is vulnerable
to inference beyond the global model. An FL-based
intrusion detection system is introduced in [12] that
proposes a two-stage defense algorithm, DPA-FL, to
mitigate the impact of backdoor and label-flipping
attacks. The authors in [13] believe that the non-IID
nature of user data can increase the false positive
rate for defense algorithms. Initially, the local models
are partitioned into multiple clusters using Microag-
gregation to address this. Subsequently, models with
a distance exceeding a specified threshold from the
cluster centroids are identified as outliers.

2.2 Avoiding Privacy Violation

In the non-Byzantine setting, secure aggregation can
be tackled with additive masking [14]. In this method,
participants upload a masked version of their local
models to the server. Due to the additive property of
masking, the server can add up the masked models
to disclose the aggregated models. However, this ap-
proach may fail due to participant model drops, and
it costs a quadratic communication overhead. Cryp-
tographic approaches in [5, 15] propose techniques to
aggregate models using their encrypted data rather
than raw ones. Homomorphic encryption and verifi-
able secret sharing are the two main cryptographic
tools used in the aggregation process due to their ad-
ditive property. HybridAlpha [16] is another private
approach employing an SMC protocol based on func-
tional encryption. Although this approach allows for
high privacy guarantees without performance loss, it
is vulnerable to inference beyond the global model.
DP is another line of work wherein differentially pri-
vate schemes [17] can raise against inference attacks.

The rest of this paper is organized as follows. In
Section 3, we outline the preliminaries used to design
ARPS. We then, in Section 4, discuss ARPS in detail
and allocate an algorithmic description of its func-
tionality. In Section 5, we describe system settings
and empirical results. Finally, we conclude the paper
in Section 6.
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3 Preliminaries

In this section, we outline the primary components re-
quired to construct our scheme, including differential
privacy, and homomorphic encryption.

3.1 Differential Privacy

Differential privacy [18] is a probabilistic mechanism
that can be used to randomize a response given to a
database query, in which the inclusion or exclusion of
any single record in the dataset results in statistically
meaningless changes to the outcome. Roughly speak-
ing, DP provides plausible deniability for individuals
to guarantee their privacy against inference beyond
the learning models. The formal definition for DP is
as follows.

Definition 1. A randomized mechanism M with
domain D and range R provides (ϵ, δ)-differential
privacy if for any two adjacent datasets D1, D2 ∈ D

that differ in only a single record, and for all outcome
subsets S⊆ R, we have:

Pr(M(D1) ∈ S) ≤ eϵPr(M(D2) ∈ S) + δ (1)

The parameter δ represents the probability that
ϵ-differential privacy fails to protect privacy. The pa-
rameter ϵ is the privacy budget that controls the pri-
vacy loss of mechanism M such that the larger values
it takes, the more privacy loss results. DP is applied
to an algorithm’s output using noise injection with
the magnitude proportional to the sensitivity of the
output. Sensitivity is a measure criterion to track
the maximum change at the output on account of
a single-record inclusion in the dataset. A random-
ization mechanism can be generated using Gaussian
noise as the prevalent mechanism in the matter of
learning and defined by:

M(D) = f(D) +N(0,∆f2σ2), (2)

where N(0,∆f2σ2) stands for normal distribu-
tion with zero mean and variance of ∆f2σ2. The
Gaussian mechanism applied to function f of sen-
sitivity ∆f satisfies (ϵ, δ)-differential privacy if
δ ≥ 1.25exp(−(σϵ)2/2) and 0 < ϵ < 1 [18].

3.2 Homomorphic Encryption

Homomorphic encryption is a public-key crypto-
graphic tool that enables users to perform computa-
tions over encrypted data without requiring a private
key. Additive homomorphic encryption schemes, like
Paillier, provide the following properties:

Encpbk(P1) ∗ Encpbk(P2) = Encpbk(P1 + P2) (3)

Encpbk(P ) ∗ ∗r = Encpbk(r.P ), (4)

wherein Pi and pbk denote the plaintext and public-
key respectively. Operation ∗ serves as the multipli-
cation and, ∗∗ serves as the exponentiation. Suchlike
schemes are functional when untrusted parties carry
out the computations over encrypted data leading
to the privacy protection of the data owner. Paillier
scheme [19] is an additive homomorphic public-key
cryptosystem that provides probabilistic encryption
based on computations in group Z∗

n2 , where n is an
RSA modulus. The security of this scheme is owing
to the difficulty of computing the nth residue classes
problem.

4 Proposed Approach

In this section, we present the details required to
organize ARPS as a framework for private and se-
cure federated learning against inference attacks and
Byzantine faults.

4.1 System Model

Our system consists of four fundamental entities:

• Key Generation Center (KGC): The KGC
is a trusted entity responsible for the distribu-
tion and administration of all public and private
keys (pbk, sk).

• Participants: Also referred to as users, the
participants P = {P1,P2, ...,PN} participate
in the training of a shared model under the co-
ordination of the Aggregator. To preserve pri-
vacy, each user trains the model locally using
their private data from D= {D1, D2, ..., DN}
on their respective devices. We recall that the
servers are assumed to be untrusted, so DP is
employed locally by each user. The encrypted
gradients are subsequently uploaded to the Ag-
gregator. Furthermore, it is assumed that the
data held by each user is independent and iden-
tically distributed (IID).

• Aggregator: The Aggregator receives user
gradients and performs aggregation, typically
through averaging, to achieve an optimized
global model. Additionally, the Aggregator is
tasked with detecting poisoning attacks with
the assistance of the Sanitizer.

• Sanitizer: The Sanitizer assists the Aggrega-
tor in identifying malicious users and holds a
private-public key pair (pbk, sk) generated by
the KGC for data encryption and decryption.

4.2 Threat Model

In our threat model, the Aggregator and Sanitizer
are honest but curious servers. Such a server follows
the protocol instructions properly but attempts to
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Figure 1. High-level architecture of proposed FL approach

extract additional information. Furthermore, a group
of users up to size a can collude with each other,
called attackers, and in contrast to the servers, they
can circumvent the learning protocol. Gaussian and
label-flipping attacks are well-known attacks that at-
tackers can use to craft their local models. In the
Gaussian attack, samples from Gaussian distribution
with mean zero and a specific amount of variance are
substituted for local model parameters. In contrast,
a label-flipping attack is a data poisoning attack,
wherein adversaries corrupt some data samples by
maliciously changing their labels before training. Our
threat model also considers the outsiders who monitor
the protocol execution and ensures they learn noth-
ing about participants’ sensitive information. The
communications between the servers and the partic-
ipants are secured using Paillier cryptosystem. The
integrity and authenticity of transmitted messages
are supplied via secure channels between the servers
and the participants.

4.3 Scheme Design

We employ a novel FL scheme inspired by cryptog-
raphy, and DP that addresses MIA and PA simul-
taneously as two dominant attacks in the federated
learning area. Initially, Aggregator and participants
agree on the number of adversaries a, the number of
honest participants h, the learning algorithm g, the
dataset structure, and the privacy loss ϵ offline. DP-
SGD [20], a deep learning algorithm that modifies the
minibatch stochastic optimization process to make
it differentially private, is served as g. Further, N
participants wish to collaboratively train a neural net-
work model in a private fashion. To accomplish these
goals, we depict our scheme in the following steps:

(0) The Aggregator broadcasts the initial version of
the global model parameters to the participants.

(1) Each participant uses the global model and its
respective dataset to update its local model.
This is done through the train˙local˙model func-
tion in Pseudocode 1, as described in [20]. Dur-
ing the learning process, participants apply a

Pseudocode 1 ARPS

1: Input: Privacy guarantee ϵ; set of participants
P; number of honest participants h; number of
rounds T ; learning rate η; sampling probability µ;
loss function L; Aggregator A; Sanitizer S; Key
generation center KGC.

2: Output: Global model θT .
3: initializing θ((0)) with random values, KGC gen-

erates (pbk, sk) for S.
4: for t ∈ 1, ..., T do
5: for p ∈ P do
6: download the golbal model θ(t) from A

7: compute θ
(t)
p =

train˙local˙model(Dp,N(0,∆g2σ2/h), η, µ,L)

8: send E
(t)
p ← Enc(θ

(t)
p , pbk) to A

9: end for
10: A computes Phonest = Sani-

tize({E(t)
p }Np=1,P,h)

11: A sends aggregate E(t) =
∏

p∈Phonest
E

(t)
p to

S

12: S calculates θ̃(t) =
∑

p∈Phonest
θ
(t)
p =

Dec(E(t), sk)
13: S sends θ(t) = θ̃(t).|Phonest|−1 to A and P

14: for p ∈ Pdecryption do

15: if accuracy(θ(t)) ≥ accuracy(θ
(t)
p ) then

16: votep = 1, else: votep = 0
17: end if
18: send votep to A

19: end for
20: if

∑
p∈Phonest

votep ≥ 0.7|Phonest| then
21: θ(t) = θ(t), else: θ(t) = θ(t−1)

22: end if
23: end for

DP mechanism to add a proper amount of noise
to their models due to privacy budget, number
of honest participants, number of adversaries,
and sensitivity of g. Afterward, the random-
ized models are encrypted using Paillier with
pbk and conveyed to the Aggregator.

(2) Upon receiving the encrypted local models, the
Aggregator obscures them by multiplying them
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Pseudocode 2 Sanitize

1: Input: {E(t)
p }Np=1;P;h

2: Output: Honest Clients Phonest

3: A selects q ∈R Z+

4: A sends {E(t)
p ∗ ∗q}Np=1 to S

5: S decrypts {θ(t)p,blind ∗ ∗q}Np=1 = {q ∗ θ(t)p }Np=1 =

{Dec(E
(t)
p ∗ ∗q, sk)}Np=1

6: S performs {scoreblindp }Np=1 =

multiKrum({θ(t)p,blind}Np=1)

7: S performs θ̂blind = Median({θ(t)p,blind}Np=1)

8: S obtains {similarityp}Np=1 =

CosineSimilarity({θ(t)p,blind}Np=1, θ̂blind)

9: S sends {scoreblindp }Np=1 and {similarityp}Np=1 to
A

10: A performs {scorep}Np=1 = {q−1.scoreblindp }Np=1

11: Aggregator runs argmax y and argminx func-
tions for h times

12: X.append(argminp{scorep}Np=1)

13: Y.append(argmaxp{similarityp}Np=1)
14: Phonest = X

⋂
Y

with a random non-zero integer q. This is real-
ized by Paillier’s additive homomorphism prop-
erty. Then, the Aggregator sends the obscured
local models to the Sanitizer.

(3) In order to identify malicious models, the Sani-
tizer needs to decrypt the encrypted obscured
local models using sk. First, as described in [6],
it runs the multi-Krum algorithm to calculate
the similarity scores of each obscured model.
In the next stage, it computes the cosine sim-
ilarity between each obscured model and the
coordinate-wise median of the obscured local
models. Finally, it provides the results of both
stages to the Aggregator. By calling Sanitize
in Pseudocode 2, we describe the details for
sanitizing the local models.

(4) In contrast to cosine similarity, that obscurity
does not affect its results; a rescaling operation
must be applied as follows to complete the multi-
Krum algorithm:

scorep = (scoreblindp ).q−1for p ∈ [N ] (5)

The Aggregator picks up h models with mini-
mum scores and h models with maximum co-
sine similarity separately. Then, to intensify the
Sanitize, it averages the joint models of both
methods and delivers the result to the Sanitizer.

(5) Before broadcasting the received result as the
global model θ(t) to the participants and the
Aggregator, the Sanitizer decrypts it using sk.

(6) The Aggregator employs a consensus mecha-
nism to reduce the likelihood of bypassing the
Sanitize. To aim this, participants evaluate the

accuracy of the current global model θ(t) using
their test dataset. If the accuracy has increased
compared to the previous round, the partici-
pant submits 1 as a positive vote to Aggregator.
Otherwise, it submits 0 as a negative vote.

(7) The Aggregator only adopts the votes from
honest users, previously identified by Sanitize,
and if more than 70% of them are positive,
then θ(t) is permitted to be used as the current
global model. Otherwise, θ(t−1) is downloaded
by users as the current global model.

This iterative procedure through step 1 up to step 7 is
terminated when the global model converges or meets
a bound for the maximum number of rounds. This
scenario is illustrated in Figure 1, and details are
outlined in Pseudocode 1. It is worth noting that we
perform robust aggregation under ciphertext entirely.
The only non-cipher data revealed to the public are
the global models, which are under DP protection.

4.4 Noise Generation

Applying DP to federated learning in a traditional
fashion is performed as follows. Every participant em-
ploys the Gaussian mechanism to add noise to its
trained model with the distribution of N(0,∆g2σ2),
where ∆g denotes the sensitivity of g and σ indi-
cates the noise parameter. In this setting, every single
model is differentially private, making the encryp-
tion unnecessary for privacy protection. However, the
overall noise generated at the Aggregator after the
aggregation process will be

∑N
i=1 N(0,∆g2σ2) which

equals N(0,∆g2Nσ2) due to the additive property
of Gaussian noise. Hence the global model satisfies
ϵ/
√
N -DP, resulting in meaningful accuracy degrada-

tion after multiple rounds of training with a fixed N .
We know that DP is immune against post-processing.
Hence, by using averaging as aggregation rule, we
can reduce the sensitivity. We can go further and con-
sciously decrease the quantity of variance by a factor
of h. This helps to proceed the training process for
more rounds without accuracy drop compared to tra-
ditional approaches. In this case, we have directly re-
duced the variance itself, so the privacy loss will be h

times higher than normal situation, which contradicts
the ϵ-DP guarantee. Therefore, to provide security
for local models, Paillier is leveraged. This strategy
leads to an aggregation value with overall noise of:

aggregation noise = N(0, (∆g/N)2N/hσ2) (6)

as N/h is strictly greater than one, we have reached
a near optimal tradeoff, wherein differential privacy is
preserved while at the same time offering significant
increments of accuracy.

Remark 1. Although the local models do not con-
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(a) (b)

(c) (d)

Figure 2. CNN training with MNIST dataset under σ = 8, (ϵ, δ) = (0.8, 10−5) for 20 participants. (a) none-Byzantine setting; (b)
Under label-flipping attack; (c) Under Gaussian attack; (d) none-Byzantine setting for ϵ ∈ {0.6, 1.3, 6.4}

tain enough noise to ensure differential privacy and
thus require encryption, as per Equation (6), all the
global models and the final model in our system are
protected under (ϵ, δ)-DP. As a result, they can be
decrypted and shared publicly.

Remark 2. As local models are encrypted and global
models are under (ϵ, δ)-DP protection, no information
more than ϵ can be extracted across our system. So,
ARPS is private against MIA.

5 Experimental Evaluation

In this section, we empirically evaluate the perfor-
mance of the proposed ARPS using the convolu-
tional neural networks (CNN) on the popular dataset
MNIST used as a benchmark in the machine learning
literature.

5.1 Experimental Setup

The MNIST dataset of handwritten digits has a train-
ing set of 60,000 samples and a test set of 10,000 sam-
ples. Our baseline model is a feedforward neural net-

work (CNN) with a single hidden layer containing 32
hidden units. We use Keras with Tensorflow backend
in python to implement neural network architecture.
For private optimizing of model parameters and gra-
dients by SGD, we use the Tensorflow˙privacy library.
The phe library is employed to encrypt model param-
eters, which consist of real numbers, using the Paillier
cryptosystem. We conduct experiments by adjusting
the number of participants N = 20, the number of
rounds T = 50, the privacy budget ϵ ∈ {0.6, 1.3, 6.4},
and the type of poisoning attack. For the differentially
private SGD optimizer of networks, we set the epoch
to 1, the learning rate to 0.18, batch size to 150, the
norm clipping to 1.5, and the number of micro batches
to 150. We compare our results with the six baseline
scenarios below to show how our approach can stand
out in Byzantine and non-Byzantine settings. Each
scenario can be treated as an individual class, with
various approaches categorized accordingly.

(1) None-private Centralized Learning. In this sce-
nario, a single party holds the entire dataset,
and no privacy mechanisms are applied during
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Table 1. Comparison of state-of-the-art Federated Learning approaches

Security Efficiency

FL Byzantine SMC Privacy Source of Accuracy No. of Client-side Communication Clients’

Approaches Robustness Information Leakage Computations per Iteration Overhead Interaction

[15] ✗ HE∗ ✓ ✗ > 0.9 O(1) O(N) ✗

[16] ✗ FE‡ ✓ ✗ > 0.9 O(1) O(N) ✗

[3] ✗ ✗ ✓ ✗ < 0.9§ O(1) O(N) ✗

[4] ✓ ✗ ✗ local-global models > 0.9 O(1) O(N) ✗

[5] ✓ SS† ✗ global model > 0.9 O(N2) O(N2) ✓

[21] ✗ SS ✗ global model > 0.9 O(1) O(NlogN) ✓

[10] ✓ HE-ZKP∗∗ ✗ global model > 0.9 O(1) O(N) ✗

[8] ✓ HE ✗ global model > 0.9 O(1) O(N) ✗

Our Approcah ✓ HE ✓ ✗ > 0.9 O(1) O(N) ✗

∗ Denotes homomorphic encryption.
† Denotes secret sharing.

∗∗ Denotes zero-knowledge proof.

‡ Denotes functional encryption.
§ Noise accumulation at the aggregation process leads to accuracy drop after a limited number of rounds.

the training process. This class encompasses all
ML algorithms.

(2) Private Centralized Learning. The whole
dataset is still held by one party, but DP is
used as a privacy mechanism in the training
process. Works such as [20] can be classified
within this category.

(3) None-private Federated Learning. In this sce-
nario, the dataset is distributed to multiple par-
ties, and no privacy mechanisms are applied.
Works such as [1] can be categorized within this
class.

(4) Local Differential Privacy (LDP). While the
dataset is distributed to multiple parties, DP
is applied to preserve the privacy of each data
holder solely. This approach requires a large
number of data parties to achieve satisfactory
functionality. In contrast, our approach can
achieve the same results with fewer data parties,
thanks to our noise reduction strategy. There-
fore, our approach can be utilized in both cross-
silo and cross-device federated learning settings.
Works such as [3] can be categorized within this
class.

(5) Hybrid Approach. In this approach, the amount
of added noise is reduced using homomorphic
encryption to improve accuracy. Works such
as [15] can be categorized within this class.

(6) LFR and ERR. Loss Function based Rejection
and Error Rate based Rejection are used to de-
fend against poisoning attacks in a non-private
federated fashion. Works such as [4] can be cat-
egorized within this class.

Comparison in the non-Byzantine setting. Fig-
ure 2a shows the testing accuracy results for various
approaches mentioned earlier with 20 participants in
non-Byzantine background coordinating 50 rounds of
training with the privacy parameter σ = 8. We note
that the Hybrid approach and ARPS acquire the same
results in a non-Byzantine context; therefore, we con-
sider one of them for representation convenience. As
ARPS falls in LDP category, our approach is able to
achieve the accuracy of 0.923, which is lower than the
best result of 0.989 related to Federated No Privacy,
in line with the noisy nature of differential privacy.
However, ARPS remarkably outperforms the LDP
with the best accuracy score of 0.685, thanks to the
noise reduction strategy. As shown in Figure 2a, the
smooth oscillations in the performance of the LDP
stem from updates overwhelmed by noise.

Comparison in the Byzantine setting. In Figure 2b,
and Figure 2c, we demonstrate the convergence per-
formance of our approach in contrast with Hybrid,
ERR, and LFR under label-flipping and Gaussian at-
tacks with 20 participants, including 30% Byzantine
ones. The privacy parameter σ is set to 8 for ARPS
and Hybrid. Figure 2b reveals that ERR and Hybrid
collapse completely under label-flipping attack while
the accuracy of LFR oscillates sharply within a wide
range of 0.147 through 0.839. As plotted in Figure 2c,
all the approaches, except for ours, have failed entirely
to accomplish the training process under Gaussian
attack. However, our approach can reach an accuracy
of 0.933, relying on its strong Byzantine robustness
characteristic.

Performance evaluation on privacy budget. In Fig-
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ure 2d, we pick diverse privacy budgets ϵ = 0.6, ϵ =
1.3, and ϵ = 6.4 to show the results of testing accuracy
with 20 participants, including 30% Byzantine par-
ticipants conducting 50 training iterations. Further,
we include a non-private approach with no Byzantine
participants to compare with ARPS. As we expected
through theoretical results, the accuracy value in-
creases as we relax the privacy protection, which is in
inverse relation to ϵ. Meanwhile, our defense provides
a convergence guarantee under poisoning attacks.

Remark 3. Our experiments have been conducted
within a cross-silo architecture, where FL holds a rela-
tively small number of users who own a large amount
of data and are configured with sufficient computa-
tional resources. Moreover, we’ve adopted a local dif-
ferential privacy model in which the aggregator is
considered untrusted, so DP is applied at the user
side.

5.2 System Feature Comparison

In Table 1, we summarize state-of-the-art FL ap-
proaches to compare their features through the lens
of security and efficiency. To address MIA and PA, a
functional federated learning framework should ob-
serve strong privacy guarantees, Byzantine robust-
ness, and communication efficiency. However, most
existing studies either overlook privacy, leading users
to lose their trust in the system or lack a mechanism
to counteract poisoning attacks, resulting in a denial
of service. Only some studies, like [11], claim to pro-
vide privacy guarantees and Byzantine robustness,
but they leave global models unprotected. Our secure
approach provides a frame for learning of high pre-
cise ML models without sacrificing efficiency, which
is the key contribution of our approach. Table 2
shows the global accuracy (GA), false positive rate
(FP), and detection rate (DR) of various attacks on
CNN classifier for MNIST, when different defense
mechanisms are adopted. DR shows a fraction of hon-
est users who have been correctly identified. Our ap-
proach can increase DR by 2% and decrease FP by
3-5% compared to Cosine and Krum in isolation un-
der Gaussian attack. Further, it achieves 100% DR
under label-flipping attack. As can be seen, relaxing
the privacy loss (ϵ) can improve the GA.

6 Conclusion

In this paper, we take a principled approach in design-
ing an innovative FL scheme to train an ML model
in a distributed manner with refined accuracy. We
have focused on the most pressing confidentiality and
availability concerns in FL, including MIA and PA
posing serious threats to data owners and model per-
formance. To overcome information extraction be-

Table 2. Testing results of attacks on the CNN classifier for

MNIST

Defense ϵ #users Attack GA(%) FP(%) DR(%)

- ∞ 10 - 98.76 - -

Krum ∞ 10 Gaussian 98.47 16.66 92.85

Cosine ∞ 10 Gaussian 98.55 18.66 92.00

Sanitize ∞ 10 Gaussian 98.49 13.6 94.14

Sanitize ∞ 10 Label-flipping 98.45 0 100

Sanitize 100 10 Gaussian 92.53 13.9 95.00

Sanitize 15 10 Gaussian 91.31 11.99 94.85

yond learning models, we draw on DP. By deploying
Sanitize, an outlier detection strategy adapted for
cipher space, we can recognize users who aim to deny
the availability of the learned model. On the other
hand, our empirical results declare that ARPS can
gain high accuracy of 0.93 facing 30% Byzantine par-
ticipants. Additionally, the communication overhead
for every participant is at most O(1) in each iteration.
However, our work is confined to untargeted poison-
ing attacks. It would be an interesting future direc-
tion to probe the targeted poisoning attacks, such as
backdoor attacks.
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