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A B S T R A C T

Industrial control systems are widely used in industrial sectors and critical

infrastructures to monitor and control industrial processes. Recently, the

security of industrial control systems has attracted a lot of attention, because

these systems are now increasingly interacting with the Internet. Classic

systems are suffering from many security problems and with the expansion

of Internet connectivity, they are now exposed to new types of threats and

cyber-attacks. Addressing this, intrusion detection technology is one of the most

important security solutions that is used in industrial control systems to identify

potential attacks and malicious activities. In this paper, we propose Stacked

Autoencoder-Deep Neural Network (SAE-DNN), as a semi-supervised Intrusion

Detection System (IDS) with appropriate performance and applicability on

a wide range of Cyber-Physical Systems (CPSs). The proposed approach

comprises a stacked autoencoder, a deep learning-based feature extractor,

helping us with a low dimension and low noise representation of data. In

addition, our system includes a deep neural network (DNN)-based classifier,

which is used to detect anomalies with a high detection rate and low false

positive rate in a real-time process. The SAE-DNN’s performance is evaluated

on the WADI dataset, which is a real testbed for a water distribution system.

The results indicate the superior performance of our approach over existing

supervised and unsupervised methods while using a few percentages of labeled

data.
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1 Introduction

In today’s world, the control of physical systems
is based on methods where all processes can be

connected and controlled by communication links.
These systems, which result from the integration and
coordination of cyber and physical components are
called Cyber-Physical Systems.
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CPSs are found in critical infrastructures such as
water distribution, energy, and transportation and
consist of a physical process controlled by an Indus-
trial Control System (ICS). In a CPS, a set of sensors
measure process variables, such as temperature, flow
rate, level, etc., from the physical process and send
these values to the controllers through communica-
tion channels. Based on these values, the controller
makes decisions and initiates actions in the physical
process through the actuators [1]. These controllers,
sensors, and actuators make a large amount of data
that can be used for continuously monitoring the sys-
tem processes and detecting anomalies.

CPSs have many open security vulnerabilities due
to a lack of encryption and authentication in their
communication protocols. Therefore, these systems
are susceptible to many types of attacks and intru-
sions, such as hijacking the communication links,
spoofing network messages, modification of sensor
data, packet sniffing for using in subsequent attacks
or changing some control commands to break the
normal state of the system. In addition, with the in-
tegration of OT and IT systems, which connects the
CPSs to the Internet, these vulnerabilities may lead
to many new other attack types that will cause harm-
ful damage to the whole system. With the advent of
these threats, the existence of such systems that can
continuously monitor all processes and communica-
tion links is crucial.

However, existing solutions have failed to provide
plausible security for OT systems. The design of IT-
based IDSs Makes them incapable of monitoring the
measurement level activities of physical processes, so
they cannot be Exploited to detect multi-stage at-
tacks. Furthermore, the architecture of existing solu-
tions is based on a limited set of instructions (rule-
based systems) given to the system to detect and
block abnormal traffic. This limitation renders these
solutions vulnerable to unknown threats like zero-day
attacks. As a result, any subversive behavior that
does not contradict their instructions will be hidden
from their view. As a solution, industrial IDS with
capabilities such as continuous analysis and monitor-
ing of the industry’s internal network (OT), learning
from previous and existing data, as well as proper
performance against attacks of foreign origin, can
provide high-level security for ICSs.

Regarding the detection methods, IDSs can be
categorized into four baseline approaches as follows:

1. Statistical-based IDSs: these systems process
events or network traffic by statistical algorithms
(such as parametric and non-parametric methods,
time series analysis, Markov chains, etc.) to check
whether a piece of data matches a given statistical

model or not, which confirms the presence of intru-
sion. When an event occurs during anomaly detec-
tion, it is assigned an anomaly score, which is trained
by comparing the current and the previous statisti-
cal profile. The anomaly score shows the degree of
irregularity of the specific event, and if the anomaly
score is higher than a certain threshold, the system
generates an alarm.

2. Rule-based IDSs: in these systems, the traffic
packets are screened by a decision engine based on a
database of intrusion detection rules it is fed. These
packets are labeled as anomalies and discarded if an
error is detected by any of the rules. These systems
have a high detection accuracy; but very low efficiency
in detecting unknown and novel attacks.

3. Signature-based IDSs: a signature is a pattern
or string associated with a known attack or threat.
A signature-based intrusion detection system is a
process of comparing patterns with recorded events
to identify possible intrusions. This system is also
known as knowledge-based detection or misuse-based
detection due to the use of knowledge accumulated
by specific attacks and system vulnerabilities. These
systems are also vulnerable to unknown and new
attacks since they are built on a limited set of attack
signatures.

4. Deep learning-based IDSs: After observing the
vulnerability of traditional intrusion detection sys-
tems like misuse-based detection methods, researchers
turned to the design of new systems based on ma-
chine learning algorithms. In these systems, attack
detection is performed based on the output of a clas-
sifier trained by a dataset, including normal and ab-
normal network traffic samples. To aim this, DNNs
can profit the scientists in this field, as they obviate
the need for feature selection and provide a high clas-
sification accuracy. One of the advantages of deep
learning-based approaches compared to the classical
machine earning-based systems is higher detection
accuracy while having a lower rate of false positive
alerts, which has attracted researchers to design new
systems based on this approach. In the last five years,
they have designed different systems based on these
algorithms. In general, the design phases of a learning-
based system are divided into three categories: 1)
data collection, 2) selecting and extracting features,
and 3) a decision-making engine.

1.1 Our Contributions

In this paper, we propose SAE-DNN, a noise-resistant
semi-supervised method for cyber-physical systems
that uses a stacked autoencoder and a deep neural
network classifier to detect malicious data. Due to
the lack of sufficient labeled data in practical cases,
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a semi-supervised approach would be helpful that
mainly uses unlabeled data while using a low per-
centage of labeled data for the training phase. Since
the WADI dataset is highly dimensional and has 126
features and many of these features are useless, the
proposed approach should have a dimension reduc-
tion and feature extraction phase before any classifier
or detector. Hence, our proposed method comprises
a stacked autoencoder that has both of these prop-
erties. In addition, the stacked autoencoder acts as
a noise reducer phase that is so helpful due to the
noise of measurements when monitoring the system
and collecting data. To classify the data as normal
or malicious, we propose a four layers-deep neural
network that detects the abnormal samples with a
high detection rate while having a low false positive
rate. Also, to address the imbalanced dataset issue,
we use SMOTE technique which helps us with a sig-
nificantly improved detection rate. Briefly, our main
contributions are:

• Proposing a semi-supervised approach with
good performance and applicable to a wide
range of CPSs.

• Using deep auto-encoder as a feature extractor
that also helps us with dimension and noise
reductions.

• Using a four-layer (two hidden layers and two
layers of input and output) deep neural network
to classify the data into normal and malicious.

• Fine-tuning the network using a few percent of
labeled data, which significantly improves the
detection rate of our model.

• Using SMOTE oversampling technique to ad-
dress the imbalanced dataset issue.

1.2 Paper Organization

The remainder of this paper is organized as follows.
In Section 2, we explain some related works. Section 3
introduces the preliminaries on which our proposed
approach is based. Section 4 explains our proposed
architecture by describing the stacked autoencoder
architecture; and deep neural network. In Section 5,
we present and discuss the achieved results. Finally,
Section 6 concludes the paper and proposes possible
future extensions to this work.

2 Related Work

An anomaly detection method based on machine
learning has been widely studied and achieved good
results in recent years. Due to the inherent lack of
labeled anomaly data for training supervised algo-
rithms, anomaly detection methods are mostly based
on unsupervised methods. In this section, we briefly
describe the approaches that used the WADI dataset

to train and test their algorithms. These approaches
can be generally divided into two categories: 1) GAN-
based and 2) basic classic methods. Dan Li et al. [2]
proposed an unsupervised multivariate anomaly de-
tection method based on Generative Adversarial Net-
works (GANs), using the Long-Short-Term-Memory
Recurrent Neural Networks (LSTM-RNN) as the base
model (namely, the generator and discriminator) in
the GAN framework to capture the temporal correla-
tion of time series distributions.

Araujo-Filho et al. [3] proposed FID-GAN, a novel
fog-based unsupervised IDS for CPSs using GANs.
To achieve higher detection rates, the proposed ar-
chitecture computes a reconstruction loss based on
the reconstruction of data samples mapped to the
latent space. They also addressed the problem of
latency-constrained applications by training an en-
coder that accelerates the reconstruction loss com-
putation. ZHANG et al. [4] proposed Transferred
Generating Adversarial Network-Intrusion Detection
System (TGAN-IDS) based on dual generative ad-
versarial networks. A Deep Convolutional Generative
Adversarial Network (DCGAN) was adopted to train
a generator and was transferred to the generator of
TGAN. A pre-training model named PreD was built
based on Convolutional Neural Network (CNN) to
do binary classification and was transferred to the
discriminator of TGAN. They also introduced a re-
construction loss function into the target function of
TGAN to suppress the deterioration of normal sam-
ple detection ability during adversarial training of
TGAN.

Kayan et al. [5] Proposed AnoML, which is an
end-to-end data science pipeline that allows the in-
tegration of multiple wireless communication proto-
cols, anomaly detection algorithms, and deployment
to the edge, fog, and cloud platforms with minimal
user interaction. They also evaluated the pipeline
with two anomaly detection datasets while comparing
the efficiency of several machine learning algorithms
within different nodes. ELNOUR et al. [6] Proposed
a novel semi-supervised Dual Isolation Forests-based
(DIF) attack detection system that has been devel-
oped using the normal process operation data only
and is composed of two isolation forest models that
are trained independently using the normalized raw
data and a pre-processed version of the data using
Principal Component Analysis (PCA), respectively,
to detect attacks by separating-away anomalies.

Alsaedi et al. [7] proposed a framework, named
Unsupervised Misbehavior Detection (USMD), com-
prising a deep neural network that learns about a
system’s expected behavior from data-driven repre-
sentations. USMD can identify in real-time the at-
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tacks on CPSs by using the long-short-term memory
and attention method for multi-sensor data. Shahid
et al. [8] compared two types of IDSs, namely design-
based and data-based approaches, and then applied
some machine learning-based system-modeling tech-
niques to the dataset. Design-based approaches re-
quire domain expertise and are not scalable. On the
other hand, data-based approaches suffer from the
lack of real-world datasets available for specific criti-
cal physical processes. They also proposed an oper-
ational invariants-based attack detection technique
using the system design parameters. Kabir et al. [9]
applied and compared several supervised machine
learning methods, such as k-nearest neighbors (kNN),
Naive Bayes (NB), Support Vector Machine (SVM),
Decision Tree (DT), and Random Forest (RF) using
WADI test dataset.

3 Preliminaries

3.1 Autoencoder

An autoencoder is an unsupervised artificial neural
network, as the output is the reconstruction of the
input itself [7]. In particular, autoencoders are trained
to learn a mapping function from the input to itself,
defined as

X̂ ∼= ϕ(φ(X)) (1)

where X is the input data, ϕ is an encoder that maps
the input X into some latent variables Z, and is a
decoder that maps Z back into the input space as X̂.
The training objective is to train φ and ϕ to mini-
mize the reconstruction error, which is the difference
between the original input X and the reconstructed
output X̂. Thus, an autoencoder can be seen as a
solution to the following optimization problems:

min ∥X − ϕ(φ(X))∥2 (2)

where ∥.∥2 denotes the l2-norm. Figure 1 illustrates
an example of an autoencoder.

3.2 Deep Neural Network

In classical machine learning, the important features
of input are manually selected, and the system au-
tomatically learns to map the feature space into the
output variable. There are multiple levels of features
in deep learning. These features are automatically
discovered and composed together at various levels
to produce outputs. Each level represents abstract
features discovered from the features presented in the
previous level [10].

3.3 Evaluation Metrics

There are some metrics to evaluate the performance
of IDSs, which we briefly explain as follows:

Figure 1. An example of an autoencoder [12]

Precision =
TP

(TP + FP )
× 100

Recall =
TP

(TP + FN)
× 100

F1score = 2× Precision×Recall

(Precision+Recall)
× 100

FPR =
FP

(TN + FP )
× 100

Accuracy =
TP + FN

(TP + FP + TN + FN)
× 100

where TP and FP represent the number of positive
samples that are correctly classified and misclassified,
respectively. TN and FN also represent the number
of negative samples that are correctly classified and
misclassified, respectively. We evaluate these parame-
ters as they are the core elements that determine the
efficiency of an anomaly detection algorithm. Accu-
racy determines the overall correct prediction ratio.
Precision demonstrates how many of the predicted
anomalies are really anomalies. Recall demonstrates
how many of anomalies are detected. F1˙Score is an
evaluation metric that considers class distribution.

4 The Proposed Approach

In this section, we explain our proposed approach.
The system architecture of our method comprises
a stacked autoencoder as a feature extractor and a
DNN classifier to detect anomalies. The stacked au-
toencoder takes normal samples as input and trains
itself to represent a low-dimension and low-noise rep-
resentation of input data. Then a total model is cre-
ated by cascading the weights of encoders weights
of trained stacked autoencoder to a four-layer deep
learning classifier.

Afterward, the labeled data, a few percent of the
whole testing dataset and including normal and under-
attack samples, will be given into the total model to
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accomplish the training process. Meanwhile, the first
part of the model (weights of trained stacked autoen-
coder) is set to untrainable. After the second training
phase is completed, we set the first part of the model
to trainable mode, the second part (classifier) to un-
trainable mode, and then fine-tune the first part of
our model with labeled data, which means retraining
the first part with a low learning rate. Here we ex-
plain the architecture of our stacked autoencoder, the
DNN classifier, and the total model that is cascaded
from these two parts.

4.1 Stacked Autoencoder

The stacked autoencoder we created consists of two
separate autoencoders. This model works as follows:

• The first autoencoder is trained using input
data (normal samples).

• Encoded data from the first autoencoder will
be given as input to the second autoencoder for
training the model.

• After the training is completed, the encoder
layers of the first and second autoencoder are
cascaded and create the first part of the total
model (feature extractor).

The first autoencoder consists of input and output
layers of 127 neurons (126 features) and an encoded
layer of 64 neurons. The second autoencoder consists
of input and output layers of 64 neurons and an en-
coded layer of 32 neurons. Figure 2 shows the archi-
tecture of the proposed feature extractor. We used
adam optimizer and set the learning rate to 1e-3.

4.2 DNN Classifier

We used a four-layer classifier (two hidden layers)
which consists of an input layer of 32 neurons, an out-
put layer with one neuron (binary classifier), and two
hidden layers with 32 and 16 features, respectively.
We also used sigmoid as an activation function. Fig-
ure 3 illustrates the architecture of our proposed DNN
classifier. As shown in Figure 3, the classifier consists
of a four-layer input of 32 neurons, two hidden layers
of 32 and 16 layers respectively, and a binary output
layer.

4.3 Fine-Tuning

In the first step, we trained our stacked autoencoder
using unlabeled normal data. After that, we made
the total model and trained the DNN classifier using
labeled data. After completion of these two training
phases, we designed a fine-tuning step, which is re-
training the feature extractor leveraging labeled data
used to train the classifier. The learning rate of the
fine-tuning step should be lower than the learning

rate of previous steps so as not to disturb the con-
vergence of the feature extractor. We set the learning
rate to 1e-4 and set the number of epochs to 60. All
experiments were conducted on an Intel(R) Core(TM)
i5-6200U CPU @ 2.30GHz with 8GB of RAM.

5 Results and Discussion

In this section, we evaluate our model and compare it
with unsupervised and supervised algorithms, which
used the WADI dataset to implement their models.
First, we describe the dataset used to train and test
our model.

5.1 Datasets

We used WaterDisribution (WADI) dataset to train
and evaluate our proposed model. Water distribu-
tion networks are often geographically spread and
require automatic control to operate. Automation
makes the water distribution network vulnerable to
cyber-physical attacks [11]. The WADI dataset rep-
resents an extension of a Secure Water Treatment
(SWAT) system by considering a complete and real-
istic water treatment, storage, and distribution net-
work. It contains 1,209,610 data patterns with 126
features by collecting 126 sensors and actuators data
from a water distribution testbed that had non-stop
run for 16 days while being attacked during the last
two days [5]. The first 14 days of the process repre-
sent the normal behavior of the system and the data
collected during this period is used to generate the
training dataset. The last 2 days of the process are
under attack and the collected data is labeled and
used to generate the test dataset. We divide the test
dataset into two separate datasets. Then we use one
of them for classifying and fine-tuning the system
and the other one for testing the total model. The
goal of an attacker is to manipulate the normal opera-
tions of the plant by changing the reading of values of
sensors or actuators. It is assumed that the attacker
has remote access to the SCADA system of WADI
and has general knowledge about how the system
works. Various experiments have been conducted on
the WADI system to investigate cyber-attacks and
respective system responses. In total, 15 attacks have
been inserted into WADI [2].

5.2 Evaluation

To train our models, we have used the normal samples
and 1%, 2%, 3%, and 10% of the labeled dataset as
labeled samples, respectively. Table 1 illustrates the
comparison of the results of our proposed approach
with some of the best previous results of unsupervised
and supervised algorithms. As the table shows, for
example using only 1% of labeled data, the results
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Figure 2. The architecture of proposed SAE-DNN (Here we have, n = 126, k = 64, o = 32. The matrix W is representative of the

classifier, which is a four-layer DNN and is not shown here)

show total accuracy of 98%, a precision of 97.2%, a
recall of 99%, and F-score of 0.9809.

We compared the results of our approach with un-
supervised and supervised approaches, which used the
WADI dataset to train and evaluate their models. As
illustrated in Table 1. using only 2% of labeled data,
the results of our approach (SAE-DNN) outperform
the supervised systems (SVM, KNN, BYS) which use
the full dataset to train and test their algorithms.

Our approach outperforms the best-unsupervised
system among these unsupervised approaches, which
shows the efficiency and usability of our proposed
approach in a practical environment. We should note
that the more percentage of the labeled dataset we use,
the lower the False Positive Rate (FPR) we achieve.
Table 2 illustrates different values of False Positive
Rates for different percentages of labeled data usage.
As shown in this table, the FPR decreases as the
percentage of labeled data used increases. We see that
using only 2% of labeled data, FPR is lower than 1%,
which is a suitable rate for practical use cases.

As we mentioned earlier, another major challenge
would be that any IDS that is implemented for indus-
trial systems should work in real-time since most of
them are critical-to-life, unlike IT, where the software
patch comes in a while. Therefore, any IDS would
need to be a real-time one. This challenge necessi-
tates real-time detection and real-time data process-
ing. The computation time of each test sample for
our approach is about 60µsec, which shows the effec-
tiveness of our proposed SAE-DNN approach.

It is notable that due to the repeated process of
water distribution through the data collection phase,
we removed the time feature and then deleted all re-

Table 1. Comparison of the proposed approach with some
supervised and unsupervised approaches

Accuracy Precision Recall F-score

MAD-GAN [2] 66% 7% 99.98% 0.13

FID-GAN [3] 84.2% 81% 99.98% 0.895

TGAN [4] 94.3% 92% 99.98% 0.9583

CNN-AE [5] 95.1% 94.1% 98.6% 0.963

Dual IF [6] 81% 76.5% 99.94% 0.867

SVM [9] 97.1% − − −

KNN [9] 99.8% − − −

BYS [9] 93.5% − − −

USMD [7] 96.2% 94.64% 99.76% 0.9702

SAE-DNN (1%) 98% 97.2% 99% 0.9809

SAE-DNN (2%) 99.3% 99.07% 99.5% 0.9928

SAE-DNN (3%) 99.57% 99.44% 99.71% 0.9957

SAE-DNN (10%) 99.8% 99.91% 99.98% 0.9994

peated rows of data in order to avoid any malfunction
when detecting real anomalies. In addition, due to
the imbalanced dataset issue that may decline the
detection rate of the system, we used SMOTE over-
sampling technique to balance the ratio of abnormal
samples to normal samples in the dataset. This tech-
nique helped us with a significantly improved detec-
tion rate. We also removed the normal data up to one
hour after each attack because of the fluctuating be-
havior of the system in that period to get back to the
normal state of the system. In our experiments, we
trained the autoencoders, classifier, and fine-tuner for
15 epochs, 100 epochs, and 60 epochs, respectively.

6 Conclusion and Future Work

This paper described the proposed Stacked AutoEn-
coder Deep Neural Network (SAE-DNN) intrusion
detection system for multisensory data to leverage in
Cyber-Physical systems. SAE-DNN is a data-driven
detection system, which presents a semi-supervised
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Figure 3. The architecture of the proposed DNN classifier

approach with good performance, and applies to a
wide range of CPSs. SAE-DNN consists of a deep
learning-based feature extractor and a deep neural
network-based classifier, which can be exploited to
detect anomalies with a high detection rate and a
low false positive rate in a real-time process. The
stacked autoencoder takes normal samples as input
and trains itself to represent a low-dimension and
low-noise representation of input data. Moreover, the
proposed SAE-DNN uses a DNN classifier, which can
be used to classify the anomalies and normal data
with a high detection rate and low false positive rate
using highly related features extracted from the deep
neural network. In addition, the proposed approach
includes a fine-tuning step, which helps us with a
significantly improved detection rate of malicious
data. We also showed the effectiveness of our pro-
posed approach conducted on the WADI (a publicly
available dataset collected from a real water distribu-
tion testbed) dataset using different detection metrics
and compared it with the state-of-the-art methods.
The results showed a good performance of SAE-DNN
while using a few percentages of labeled data. The re-

Table 2. Different values of False Positive Rates for different

percentages of labeled data usage

Accuracy FPR

SAE-DNN (1%) 98% 2.85%

SAE-DNN (2%) 98% 0.92%

SAE-DNN (3%) 98% 0.83%

SAE-DNN (5%) 98% 0.68%

SAE-DNN (10%) 98% 0.24%

sults of the proposed SAE-DNN using only 2% of the
labeled dataset showed the superior performance of
SAE-DNN over existing supervised and unsupervised
methods. For future work, we intend to strengthen
the security of our proposed system against adversar-
ial attacks. As a future direction, promoting the se-
curity of our proposed scheme against adversarial at-
tacks would be interesting. Furthermore, an attempt
to sketch new roads to design unsupervised genera-
tive models might potentially result in more accurate
IDSs. In addition, we intend to further study the de-
sign of unsupervised generative models, which helps
us with data augmentation. This will help us to de-
sign new intrusion detection systems more accurately.
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