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A B S T R A C T

In this paper, we want to derive achievable secrecy rate regions for quantum

interference channels with classical inputs under a one-shot setting. The main

idea to this end is to use the combination of superposition and rate splitting for

the encoding scheme and construct a decoding scheme based on simultaneous

decoding.
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1 Introduction

The physical layer security was introduced by Shan-
non for the first time [1]. After that, the wire-

tap channel was presented by Wyner, in which a
sender transmits its message to a legitimate receiver
in the presence of a passive eavesdropper [2]. More-
over, Csiszár and Körner introduced the broadcast
channel with confidential messages [3]. However, the
physical layer security problems have been extended
to multi-terminal channels like multiple access chan-
nels (MACs), Interference channels (ICs), relay chan-
nels, etc., due to their importance and their usage in
practical systems [4–10].
In recent decades, with development in quantum

data processing and its applications, a significant ef-
fort has begun to use the natural features of quantum
mechanics to improve communication. Some of these
features are as follows: entanglement, uncertainty, no-
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cloning theorem, superposition, etc. [11]. These nat-
ural features help communication to be faster and
more secure.

Moreover, the security problem plays a critical role
in quantum communication and devotes a consider-
able part of the research to itself. In this regard, the
quantum wiretap channel (QWTC) was firstly in-
troduced in [12] and [13]. Then, secrecy constraints
are extended to multi-user quantum channels such as
quantum interference channel (QIC) [14] and quan-
tum multiple access channel (QMAC) [15–18]. The
interference phenomenon is one of the major prob-
lems in communication systems.

In this paper, we derive some achievable secrecy
rate regions for quantum interference channels with
classical inputs. One of the major open problems in
quantum information theory is related to the simul-
taneous decoder for quantum channels with three or
more senders (i.e., jointly typical decoder). However,
this problem has been solved for some cases, such as
the min-entropy case and the case of the quantum
multiple access channels (QMACs), in which the out-
put systems are commutative [19]. Therefore, in the
independent and identical distributed (i.i.d.) case, we
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have to use successive decoding combined with time-
sharing. In contrast, for the one-shot case, we have to
use the simultaneous decoder. Sen proved a joint typ-
icality lemma which is helpful to decode any number
of messages simultaneously in the one-shot case [19].

In this paper, we want to study secure communi-
cation over a classical-quantum interference wiretap
channel (C-QI-WTC) under the one-shot setting. To
the best knowledge, it is the first time that this chan-
nel is studied. Even in the classical case, the security
problem of interference channels has been investigated
under a different scenario called interference channels
with confidential messages. Also, another feature of
our problem is that the channel is considered under
the one-shot setting. This choice is because there is
not a proven joint typicality lemma in the asymptotic
i.i.d. case for general quantum channels (i.e., quan-
tum channels with any number of senders). Therefore,
all of the obtained results are new, and the proposed
strategies in the paper can be applied to the classical
interference channel.

The paper is organized as follows: In Section 2,
some seminal definitions are presented. In Section 3,
the main channel and information processing tasks
are presented. In Section 4, the results and main
theorems are presented. Section 5 is dedicated to the
discussion of future works.

2 Preliminaries

Let A (Alice) and B (Bob) be two quantum sys-
tems. These quantum systems can be denoted by
their corresponding Hilbert spaces as HA, HB. The
states of the above quantum systems are presented
as density operators ρA and ρB, respectively, while
the shared state between Alice and Bob is denoted
by ρAB . A density operator is a positive semidefinite
operator with a unit trace. Alice or Bob’s state can
be defined by a partial trace operator over the shared
state. The partial trace is used to model the lack of
access to a quantum system. Thus, Alice’s density
operator using partial trace is ρA = TrB{ρAB}, and
Bob’s density operator is ρB = TrA{ρAB}. We use

|ψ⟩A to denote the pure state of system A. The cor-

responding density operator is ψA = |ψ⟩ ⟨ψ|A. The
von Neumann entropy of the state ρA is defined by
H(A)ρ = −Tr{ρA log ρA}. For an arbitrarily state
such as σAB , the quantum conditional entropy is de-
fined by H(A|B)σ = H(A,B)σ −H(B)σ. The quan-
tum mutual information is defined by I(A;B)σ =
H(A)σ + H(B)σ − H(A,B)σ, and the conditional
quantum mutual information is defined by:

I(A;B|C)σ = H(A|C)σ +H(B|C)σ −H(A,B|C)σ
Quantum operations can be denoted by completely
positive trace-preserving (CPTP) maps NA→B . The

CPTP maps accept input states in A and output
states in B. The distance between two quantum states,
such as A and B is defined by trace distance. The
trace distance between two arbitrarily states such as
σ and ρ is:

∥σ − ρ∥1 = Tr|σ − ρ| (1)

where |ψ|=
√
ψ†ψ. This quantity is zero for two

similar and perfectly distinguishable states.

Fidelity is defined as F (ρ, σ) =
∥∥√ρ√σ∥∥2

1
, and pu-

rified distance is a metric on D(H) and is defined as
P (ρ, σ) :=

√
1− F (ρ, σ)2. Most of the above defini-

tions are given from [20].

Definition 2.1. Hypothesis testing mutual informa-
tion is denoted by IϵH := Dϵ

H(ρXY ∥ρX ⊗ ρY ), ϵ ∈
(0, 1) and is considered as quantum hypothesis testing
divergence [21] where Dϵ

H(.∥.) is hypothesis testing
relative entropy [21]. ρHXHY is the joint state of in-
put and output over their Hilbert spaces (HX ,HY ),
and it can be shown as ρXY :

ρXY =
∑
x

pX(x) |x⟩ ⟨x|X ⊗ ρxY (2)

where pX is the input distribution.

Definition 2.2. [22] Consider states ρX , σX ∈
D(HX). The quantum relative entropy is defined as:

D(ρX∥σX) :={
Tr{ρX [log2 ρX − log2 σX ]} supp (ρX) ⊆ supp (σX)

+∞ otherwise

where supp (σX) refers to the set-theoretic support
of σ. supp (σ) is the subspace of H spanned by all
eigenvectors of σ with non-zero eigenvalues.

Fact 1. The following relation exists between the
quantum relative entropy and hypothesis testing rel-
ative entropy for ϵ ∈ (0, 1) [21]:

Dϵ
H(ρX∥σX) ≤ 1

1− ϵ
[D(ρX∥σX) + hb(ϵ)]

where hb(ϵ) := −ϵ log2 ϵ − (1 − ϵ) log2 (1− ϵ) is a
binary entropy function.

Definition 2.3. [23] Consider a bipartite state ρXY

and a parameter ϵ ∈ (0, 1). The max mutual informa-
tion can be defined as follows:

Imax(X;Y )ρ := Dmax(ρXY ∥ρX ⊗ ρY )ρ

where ρ refers to the state ρXY and Dmax(.∥.) is the
max-relative entropy [24] for ρX , σX ∈ HX :

Dmax(ρX∥σX) := inf {γ ∈ R : ρX ≤ 2γσX}

Definition 2.4. [24] Consider states ρX , σX ∈
D(HX) and ϵ ∈ (0, 1). The quantum smooth max
relative entropy is defined as:

Dϵ
max := inf

ρ′
X
∈Bϵ(ρX)

Dmax(ρ
′
X∥σX)
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where Bϵ(ρX) := {ρ′X ∈ D(HX) : P (ρ′X , ρX) ≤ ϵ} is
ϵ-ball for ρXY .

Definition 2.5. [23] Consider

ρXY :=
∑
x∈X

PX(x) |x⟩ ⟨x|X ⊗ ρxY

as a classical-quantum state and a parameter ϵ ∈
(0, 1). The smooth max mutual information between
the systems X and Y can be defined as follows:

Iϵmax := inf
ρ′
XY

∈Bϵ(ρXY )
Dmax(ρ

′
XY ∥ρX ⊗ ρY )

= inf
ρ′
XY

∈Bϵ(ρXY )
Imax(X;Y )ρ′

where

Bϵ(ρXY ) := {ρ′XY ∈ (HX ⊗HY ) : P (ρ
′
XY , ρXY ) ≤ ϵ}

is ϵ-ball for ρXY .

Definition 2.6. [25] Consider

ρXY Z :=
∑
z∈Z

PZ(z) |z⟩ ⟨z|Z ⊗ ρzXY

be a tripartite classical-quantum state and ϵ ∈ (0, 1).
We define,

IϵH(X;Y |Z) := max
ρ′

min
z∈supp (ρ′

Z
)
IϵH(X;Y )ρz

XY

where maximization is over all

ρ′Z =
∑
z∈Z

pZ(z) |z⟩ ⟨z|Z

satisfying P (ρ′Z , ρZ) ≤ ϵ.

Definition 2.7. [25] Consider

ρXY Z :=
∑
z∈Z

PZ(z) |z⟩ ⟨z|Z ⊗ ρzXY

be a tripartite classical-quantum state and ϵ ∈ (0, 1).
We define,

Iϵmax(X;Y |Z) := max
ρ′

min
z∈supp (ρ′

Z
)
Iϵmax(X;Y )ρz

XY

where maximization is over all

ρ′Z =
∑
z∈Z

pZ(z) |z⟩ ⟨z|Z

satisfying P (ρ′Z , ρZ) ≤ ϵ.

Definition 2.8. [21] For a state ρ ∈ D(H) and a
positive semidefinite operator σ, the quantum Rényi
relative entropy of order α, where α ∈ [0, 1)∪ (1,+∞)
is defined as:

Dα(ρ∥σ) ≡
1

α− 1
log2

{
ρασ1−α

}
Also, Rényi entropy of order α can be defined as
follows:

Hα(A)ρ ≡ 1

1− α
log2 Tr {ραA}

Figure 1. The C-QI-WTC model

Definition 2.9. [19] A two-user C-QMAC under the
one-shot setting is a triple

(X1 ×X2, NX1X2→Y (x1, x2) ≡ ρx1x2

Y ,HY )

, where X1 and X2 are the alphabet sets of two clas-
sical inputs, and Y is the output system. ρx1x2

Y is a
quantum state, and the channel has a completely pos-
itive trace-preserving map (CPTP) NX1X2→Y . Con-
sidering the joint typicality lemma introduced in [19,
Corollary 4], the one-shot inner bound of a C-QMAC
is as follows:

R1 ≤ IϵH(X1 : X2Y )ρ − 2 + log ϵ

R2 ≤ IϵH(X2 : X1Y )ρ − 2 + log ϵ (3)

R1 +R2 ≤ IϵH(X1X2 : Y )ρ − 2 + log ϵ

where IϵH(.) is the hypothesis testing mutual infor-
mation defined in Definition 2.1 with respect to the
controlling state:

ρQX1X2Y :=∑
qx1x2

p(q)p(x1|q)p(x2|q) |qx1x2⟩ ⟨qx1x2|QX1X2 ⊗ ρx1x2

Y

and Q is a time-sharing variable.

Note that IϵH(:) is the difference between a Rényi
entropy of order two and a conditional quantum en-
tropy.

3 Channel Model

A two-user C-QI-WTC is a triple

(X1×X2,NX1X1→Y1Y2Z(x1, x2) ≡ ρY1Y2Z
x1x2

,HY1⊗HY2⊗HZ),

where Xi, i ∈ {1, 2} denote the input alphabet sets,
and (Y1, Y2, Z) denote the output systems (Y1, Y2 de-
note the channel outputs at the two legitimate re-
ceivers and Z is the channel outputs at the eavesdrop-
per). ρY1Y2Z

x1x2
is the system output’s quantum state.

Each user wants to transmit its message as securely
as possible over a C-QI-WTC to its intended receiver.
The main channel (i.i.d. case) is illustrated in Fig-
ure 1.

Consider the main channel illustrated in Figure 1
under the one-shot setting. Each user chooses its
message mi; i ∈ {1, 2} from its message set Mi = [1 :
|Mi|= 2Ri ]; i ∈ {1, 2}, and send it over a C-QI-WTC.
The users also use two junk variables ki; i ∈ {1, 2}
from two amplification sets Ki = [1 : |Ki|= 2R̂i ]; i ∈
{1, 2} for randomizing Eve’s knowledge. We have two
doubly indexed codebooks x1(m1, k1) and x2(m2, k2)

ISeCure



74 One-Shot Achievable Secrecy Rate Regions for QI-WTC — Aghaee, and Akhbari

Figure 2. The structure of the C-QI-WTC under the
Han-Kobayashi settings

for user-1 and user-2, respectively. The above channel
can be divided into two sub-C-QMA-WTCs (one from
both users to (Y1, Z) and another from both users to
(Y2, Z)).

4 Main Results

In this section, we present the main results.
Theorem 1 (One-shot achievable rate region for
C-QI-WTC). Consider a two-user C-QI-WTC which
accepts X1 and X2 as inputs and Y1, Y2 and Z as
outputs. ρY1Y2Z

x1x2
is the channel density operator. For

any fixed ϵ ∈ (0, 1), ϵ′ ∈ (0, δ′) and δ, δ′ such that
δ, δ′ > 0, the rate pair Ri = log|Mi|+δ, i ∈ {1, 2} is
achievable to satisfy the following inequalities:

R1 ≤min {IϵH(X1 : X2Y1|Q)ρ, I
ϵ
H(X1 : X2Y2|Q)ρ}

− Iηmax(X1 : Z|Q)ρ + log ϵ− 1− log
3

ϵ′3

+
1

4
log δ

R2 ≤min {IϵH(X2 : X1Y1|Q)ρ, I
ϵ
H(X2 : X1Y2|Q)ρ}

− Iηmax(X2 : ZX1|Q)ρ + log ϵ− 1− log
3

ϵ′3

+
1

4
log δ

R1 +R2 ≤min {IϵH(X1X2 : Y1|Q)ρ, I
ϵ
H(X1X2 : Y2|Q)ρ}

− Iηmax(X1 : Z|Q)− Iηmax(X2 : ZX1|Q)ρ

+ log ϵ− 1− 2 log
3

ϵ′3
+

1

2
log δ +O(1)

where η = δ′ − ϵ′ and the union is taken over in-
put distribution pQ(q)pX1|Q(x1|q)pX2|Q(x1|q). Q is
the time-sharing random variable, and all of the mu-
tual information quantities are taken concerning the
following state:

ρQX1X2Y1Y2Z ≡
∑

q,x1,x2

pQ(q)pX1|Q(x1|q)pX2|Q(x2|q)

|q⟩ ⟨q|Q ⊗ |x1⟩ ⟨x1|X1 ⊗ |x2⟩ ⟨x2|X2

⊗ ρY1Y2Z
x1x2

(4)

Proof: See Appendix A.

Sketch of proof : The channel can be split into
two sub-QMA-WTCs with classical inputs. One from
(X1, X2) to (Y1, Z) and another from (X1, X2) to

(Y2, Z). Using the proposed method by El-Gamal and
H. Kim [26] helps to prove this theorem.

Theorem 1 gives the simplest achievable rate re-
gion for C-QI-WTC under the one-shot setting. With-
out considering the secrecy constraints, Han and
Kobayashi obtained the best achievable rate region
for the interference channel (i.i.d. setting) using rate
splitting that the messages are split into common and
personal messages. This technique is extended to the
quantum case with some limits [14]. Using the Han-
Kobayashi’s technique, the message Xi is split into
Xi0 (common part) and Xii (personal part), where
i ∈ {0, 1}.

The structure of the C-QI-WTC under Han-
Kobayashi’s setting is illustrated in Figure 2. The fol-
lowing channel can be divided into two separate sub
3-user C-QMA-WTCs: one from (X10, X11, X20) to
(Y1, Z) and another from (X20, X22, X10) to (Y2, Z).

As mentioned before, there is not a proven quan-
tum simultaneous decoder for decoding three or more
messages in general and it remains a conjecture (ex-
cept in some cases such as the commutative version
of output states and min-entropy cases [14]).

Remark 1. Note that, to take the intersection of
the private regions for two 3-sender MACs raised
in Theorem 1, we used the method of [26]. Another
approach can be using Fürier-Motzkin elimination
[26, Appendix D] which gives achievable rate region
similar to the Han-Kobayashi expression.

Remark 2. The Han-Kobayashi technique is based
on rate splitting. It should be noted that the split
messages are not independent of each other. Thus, ob-
taining secrecy against the eavesdropper by Wyner’s
randomizing technique becomes problematic in this
setting. In other words, we cannot randomize over
a block independently. For example, m1 should be
randomized using the product of two junk variables
(k10 · k11).
Conjecture 1 (An inner bound on the one-shot
secrecy capacity region of the C-QI-WTC).
Consider the region:

R(N) =
⋃
π

{
(R1, R2) ∈ R2|Eqns.(5)− (13) hold

}
R1 ≤IηH(X10X11 : Y1X20)ρ − Iδ

′−ϵ′

max (X10 : Z)ρ

− Iδ
′−ϵ′

max (X11 : ZX10X20)ρ − 2 log
3

ϵ′3
+

1

2
log δ′

+ log ϵ− 2 +O(1) (5)

R1 ≤ IηH(X11 : Y1X10X20)ρ + IηH(X10 : Y2X20X22)ρ

− Iδ
′−ϵ′

max (X10 : Z)ρ − Iδ
′−ϵ′

max (X11 : ZX10X20)ρ

− 2 log
3

ϵ′3
+

1

2
log δ′ + 2 log ϵ− 4 +O(1) (6)
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R2 ≤ IηH(X20X22 : Y2X10)ρ − Iδ
′−ϵ′

max (X20 : ZX10)ρ

− Iδ
′−ϵ′

max (X22 : ZX10X11X20)ρ +
1

2
log δ′

− 2 log
3

ϵ′3
+ log ϵ− 2 +O(1) (7)

R2 ≤ IηH(X20 : Y1X10X11)ρ

+ IηH(X22 : Y2X10X20)ρ − Iδ
′−ϵ′

max (X20 : ZX10)ρ

− Iδ
′−ϵ′

max (X22 : ZX10X11X20)ρ +
1

2
log δ′

− 2 log
3

ϵ′3
+ 2 log ϵ− 4 +O(1) (8)

R1 +R2 ≤ IηH(X11 : Y2X10X20)ρ

+ IηH(X10X11X20 : Y2)ρ

− Iδ
′−ϵ′

max (X10 : Z)ρ

− Iδ
′−ϵ′

max (X11 : ZX10X20)ρ

− Iδ
′−ϵ′

max (X20 : ZX10)ρ

− Iδ
′−ϵ′

max (X22 : ZX10X11X20)ρ

+ log δ′ − 4 log
3

ϵ′3
+ 2 log ϵ− 4 +O(1)

(9)

R1 +R2 ≤ IηH(X11 : Y1X20X10)ρ

+ IηH(X22X20X10 : Y2)ρ

− Iδ
′−ϵ′

max (X10 : Z)ρ

− Iδ
′−ϵ′

max (X11 : ZX10X20)ρ

− Iδ
′−ϵ′

max (X20 : ZX10)ρ

− Iδ
′−ϵ′

max (X22 : ZX10X11X20)ρ

+ log δ′ − 4 log
3

ϵ′3
+ 2 log ϵ− 4 +O(1)

(10)

R1 +R2 ≤ IηH(X11X20 : Y1X10)ρ

+ IηH(X22X10 : Y2X20)ρ

− Iδ
′−ϵ′

max (X10 : Z)ρ

− Iδ
′−ϵ′

max (X11 : ZX10X20)ρ

− Iδ
′−ϵ′

max (X20 : ZX10)ρ

− Iδ
′−ϵ′

max (X22 : ZX10X11X20)ρ

+ log δ′ − 4 log
3

ϵ′3
+ 2 log ϵ− 4 +O(1)

(11)

2R1 +R2 ≤ IηH(X11 : Y1X10X20)ρ

+ IηH(X10X22 : Y2X20)ρ

+ IηH(X11X10X20 : Y2)ρ

− 2Iδ
′−ϵ′

max (X10 : Z)ρ

− 2Iδ
′−ϵ′

max (X11 : ZX10X20)ρ

− Iδ
′−ϵ′

max (X20 : ZX10)ρ

− Iδ
′−ϵ′

max (X22 : ZX10X11X20)ρ

+
3

2
log δ′ − 6 log

3

ϵ′3
+ 3 log ϵ− 6 +O(1)

(12)

R1 + 2R2 ≤ IηH(X11X20 : Y1X10)ρ

+ IηH(X22 : Y2X10X20)ρ

+ IηH(X22X10X20 : Y1)ρ

− Iδ
′−ϵ′

max (X10 : Z)ρ

− Iδ
′−ϵ′

max (X11 : ZX10X20)ρ

− 2Iδ
′−ϵ′

max (X20 : ZX10)ρ

− 2Iδ
′−ϵ′

max (X22 : ZX10X11X20)ρ

+
3

2
log δ′ − 6 log

3

ϵ′3
+ 3 log ϵ− 6 +O(1)

(13)

Proof: In Appendix B.

Sketch of proof: We consider two sub-C-QMA-
WTCs. Therefore, from the perspective of the first re-
ceiver Y1, there are three messages (m10,m11,m20 →
(Y1, Z), and for the second receiver, there are three
messages (m20,m22,m10 → (Y2, Z). The paper [27]
introduces the same setting, but it considers a ran-
domized order such as m10 → m20 → m11. For the
first C-QMA-WTC, Alice should randomize over a
total block of size (k10 · k11). For the second C-QMA-
WTC, Bob should randomize over a total block of size
(k20 · k22). Then, we can analyze both sub-channels.

Remark 3. The above conjecture holds if and only
if the following condition holds. Because taking the
intersection of the private regions for two 3-sender
C-QMACs is not enough to get a private region for
the full C-QI-WTC.

{Iηmax(m10,m11,m20,m22 : Z)ρ ≤ ϵ3|
Iηmax(m10,m11,m20 : Z)ρ ≤ ϵ1,

Iηmax(m10,m20,m22 : Z)ρ ≤ ϵ2} (14)

where ϵ1, ϵ2 and ϵ3 are arbitrary small numbers.

To overcome the above problem, we should change
the encoding process, which results in the following
theorem.
Theorem 2 (An inner bound on the one-shot secrecy
capacity region of the C-QI-WTC). Consider the
region:
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R(N) =
⋃
π

{
(R1, R2) ∈ R2|Eqns.(15)− (29) hold

}

R1 ≤min {IϵH(X10X11 : Y1X2)ρ, I
ϵ
H(X1 : Y2X20X22)ρ}

− Iδ
′−ϵ′

max (X10 : Z)ρ − Iδ
′−ϵ′

max (X11 : ZX10X20)ρ

− 2 log
3

ϵ′3
+

1

2
log δ′ + log ϵ− 2 +O(1) (15)

R1 ≤{IϵH(X11 : Y1X10X2)ρ + IϵH(X10 : Y1X11X2)ρ,

IϵH(X1X20 : Y2X22)ρ, I
ϵ
H(X1X22 : Y2X20)ρ}

− Iδ
′−ϵ′

max (X10 : Z)ρ − Iδ
′−ϵ′

max (X11 : ZX10X20)ρ

− 2 log
3

ϵ′3
+

1

2
log δ′ + log ϵ− 2 +O(1)

(16-18)

R2 ≤min{IϵH(X20X22 : Y2X10)ρ, I
ϵ
H(X2 : Y1X10X11)ρ,

IϵH(X20X22 : Y2X10)ρ} − Iδ
′−ϵ′

max (X10 : Z)ρ

− Iδ
′−ϵ′

max (X11 : ZX10X20)ρ

− 2 log
3

ϵ′3
+

1

2
log δ′ + log ϵ− 2 +O(1) (19)

R2 ≤{IϵH(X22 : Y2X20X1)ρ + IϵH(X20 : Y2X22X1)ρ,

IϵH(X2X10 : Y1X11)ρ, I
ϵ
H(X2X11 : Y1X10)ρ}

− Iδ
′−ϵ′

max (X20 : ZX10)ρ

− Iδ
′−ϵ′

max (X22 : ZX10X11X20)ρ

− 2 log
3

ϵ′3
+

1

2
log δ′ + 2 log ϵ− 4 +O(1)

(20-22)

R1 +R2 ≤min{IϵH(X11X10 : Y2X1)ρ,

IϵH(X22X20X1 : Y2)ρ}
− Iδ

′−ϵ′

max (X10 : Z)ρ

− Iδ
′−ϵ′

max (X11 : ZX10X2)ρ

− Iδ
′−ϵ′

max (X20 : ZX10)ρ

− Iδ
′−ϵ′

max (X22 : ZX1X20)ρ

− 4 log
3

ϵ′3
+ log δ′ + 2 log ϵ− 4 +O(1)

(23)

R1 +R2 ≤{IϵH(X11 : Y1X10X2)ρ

+ IϵH(X10X20 : Y1X11)ρ,

IϵH(X22 : Y2X20X1)ρ

+ IϵH(X20X10 : Y1X11)ρ,

IϵH(X22X1 : Y2X20)ρ

+ IϵH(X20 : Y2X22X1)ρ,

IϵH(X11X2 : Y1X10)ρ

+ IϵH(X10 : Y1X11X2)ρ}
− Iδ

′−ϵ′

max (X10 : Z)ρ

− Iδ
′−ϵ′

max (X11 : ZX20X10)ρ

− Iδ
′−ϵ′

max (X20 : ZX10)ρ

− Iδ
′−ϵ′

max (X22 : ZX10X11X20)ρ

− 4 log
3

ϵ′3
+ log δ′ + 2 log ϵ− 4 +O(1)

(24-27)

2R1 +R2 ≤min{IϵH(X20X1 : Y2X22)ρ

+ IϵH(X1X22 : Y2X20)ρ}
− 2Iδ

′−ϵ′

max (X10 : Z)ρ

− 2Iδ
′−ϵ′

max (X11 : ZX10X2)ρ

− Iδ
′−ϵ′

max (X20 : ZX10)ρ

− Iδ
′−ϵ′

max (X22 : ZX10X11X20)ρ

− 6 log
3

ϵ′3
+

3

2
log δ′ + 2 log ϵ− 4 +O(1)

(28)

R1 + 2R2 ≤min{IϵH(X10X2 : Y1X11)ρ

+ IϵH(X2X11 : Y1X10)ρ}
− Iδ

′−ϵ′

max (X10 : Z)ρ

− Iδ
′−ϵ′

max (X11 : ZX10X20)ρ

− 2Iδ
′−ϵ′

max (X20 : ZX10)ρ

− 2Iδ
′−ϵ′

max (X22 : ZX10X11X20)ρ

− 6 log
3

ϵ′3
+

3

2
log δ′ + 2 log ϵ− 4 +O(1)

(29)

Proof: In Appendix C.

Sketch of proof: The overall sketch of the proof is
the same as that for Conjecture 1 with one differ-
ence: Suppose that both receivers want to decode
non-interfering messages. Also, this setting is similar
to Theorem 1. It can be helpful for the receivers to de-
code their messages, including the intended messages
and interfering messages. In other words, X10 and
X20 can be used as side information. Therefore, the
first sub-channel can be modeled as (X10, X11, X2) →
(Y1, Z). All steps, such as encoding and decoding, are
the same as for Conjecture 1.
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Secrecy criterion: The secrecy criterion for the
channel can be defined as follows:

I(M1,M2 : Z) ≤ ν Theorem 1

I(M10,M11,M20,M22 : Z) ≤ ν Conjecture 1, Theorem 2

This means that the mutual information between
the sent messages and the wiretapper should be
bounded above by an arbitrarily small number.

5 Conclusion

In this paper, the problem of secure communication
over a quantum interference channel has been stud-
ied. The main approach for decoding sent messages is
simultaneous decoding (one-shot quantum joint typi-
cality lemma) [19]. Also, we used the method of [27]
to randomize Eve’s knowledge and calculate leaked
information. Conjecture 1 gives a one-shot achievable
rate region for C-QI-WTC in the form of the Han-
Kobayashi rate region. Still, it is not clear how we
can conclude the secrecy requirement for this chan-
nel from the secrecy criterion of sub-C-QMA-WTCs.
However, Theorem 2 solves this problem using a new
encoding.
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A Proof of Theorem 1

Proof. The channel in Figure 1 can be split into
two sub-QMA-WTCs with classical inputs. One from
both users to (Y1, Z) and another from both users
to (Y2, Z). At last, the overall achievable secrecy rate
region can be calculated as:

RC−QI−WTC ≤ min
{
RC−QMA−WTC1

,RC−QMA−WTC2

}
Consider the first sub-channel. From Sen’s jointly
typical decoder [19] and [27, Lemma 3.2], it is clear
that:

R1 ≤ IϵH(X1 : Y1X2|Q)ρ − Iηmax(X1 : Z|Q)ρ + log ϵ

− 1− log
3

ϵ′3
+

1

4
log δ

R1 ≤ IϵH(X2 : Y1X1|Q)ρ − Iηmax(X2 : ZX1|Q)ρ + log ϵ

− 1− log
3

ϵ′3
+

1

4
log δ

R1 +R2 ≤ IϵH(X1X2 : Y1|Q)ρ − Iηmax(X1 : Z|Q)ρ

− Iηmax(X2 : ZX1|Q)ρ + log ϵ− 1

− 2 log
3

ϵ′3
+

1

2
log δ +O(1)

There are similar rates for the second sub-channel.
Taking the intersection of the derived regions for the
two sub-channels completes the proof.

Secrecy criterion: The secrecy constraint requires
that Eve just could be able to decode negligible in-
formation:

Iηmax(M1,M2 : Z)ρ ≤ ν

It is obvious that [27, Lemma 3.2] guarantees the
secrecy criterion.

B Proof of the Conjecture

Proof. To bypass the problem raised in Remark 1
and recover the non-corner points in the secrecy rate
region, we use rate splitting. We apply the following
setting: We consider two sub-C-QMA-WTCs. There-
fore, from the perspective of the first receiver (Y1),
there are three messages (m10,m11,m20) → (Y1, Z),
and for the second receiver, there are three messages
(m20,m22,m10) → (Y2, Z). The paper [27] introduces
the same setting, but it considers a randomized or-
der such as m10 → m20 → m11. This order has no
impact on decoding the messages, but it is helpful to
compute leaked information. Also, it should be con-
sidered that in the one-shot case, we do not use the
successive decoder because the time-sharing strategy
gives only a finite achievable rate pair. Instead, we
use the one-shot jointly typical decoder [19] for both
sub-channels.

For the first C-QMA-WTC, Alice should randomize
over a total block of size (k10 · k11). It refers to the
fact that the split messages are dependent. There is
a detailed discussion in [28].

For the C-QI-WTC, the controlling state is as fol-
lows:

ρX10X11X20X22Y1Z :=∑
X10,X11∈X1
X20,X22∈X2

pX10
(x10)pX11

(x11)pX20
(x20)pX22

(x22)

|x10⟩ ⟨x10|X10
⊗ |x11⟩ ⟨x11|X11

⊗ |x20⟩ ⟨x20|X20
⊗

|x22⟩ ⟨x22|X22
⊗ ρx10x11x20x22

Y1Y2Z
(B.1)

To simplify the analysis, we first remove the security
constraint of the problem. From Sen’s one-shot jointly
typical decoder [19], we have the following region for
the first C-QMAC:

R′
10 ≤ IϵH(X10 : Y1X11X20)ρ + log ϵ− 2

R′
11 ≤ IϵH(X11 : Y1X10X20)ρ + log ϵ− 2
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R′
20 ≤ IϵH(X20 : Y1X10X11)ρ + log ϵ− 2

R′
10 +R′

11 ≤ IϵH(X10X11 : Y1X20)ρ + log ϵ− 2

R′
10 +R′

20 ≤ IϵH(X10X20 : Y1X11)ρ + log ϵ− 2

R′
11 +R′

20 ≤ IϵH(X11X20 : Y1X10)ρ + log ϵ− 2

R′
10 +R′

11 +R′
20 ≤ IϵH(X10X11X20 : Y1)ρ + log ϵ− 2

Also, for the second C-QMAC, there are similar
rates. It should be noted that R1 = R10 + R11 and
R2 = R20 + R22. After eliminating redundant rates
and using the Fürier-Motzkin elimination, we have:

RC−QIC =
⋃

π: pX10
(x10)pX11

(x11)pX20
(x20)pX22

(x22)

R′
1 ≤ IϵH(X10X11 : Y1X20)ρ + log ϵ− 2

R′
1 ≤ IϵH(X11 : Y1X10X20)ρ + IϵH(X10 : Y2X20X22)ρ

+ 2 log ϵ− 4

R′
2 ≤ IϵH(X20X22 : Y2X10)ρ + log ϵ− 2

R′
2 ≤ IϵH(X20 : Y1X10X11)ρ + IϵH(X22 : Y2X10X20)ρ

+ 2 log ϵ− 4

R′
1 +R′

2 ≤ IϵH(X11 : Y2X10X20)ρ

+ IϵH(X10X11X20 : Y2)ρ + 2 log ϵ− 4

R′
1 +R′

2 ≤ IϵH(X11X20 : Y2X10)ρ

+ IϵH(X22X10 : Y2X20)ρ + 2 log ϵ− 4

R′
1 +R′

2 ≤ IϵH(X11 : Y1X20X10)ρ

+ IϵH(X22X20X10 : Y2)ρ + 2 log ϵ− 4

2R′
1 +R′

2 ≤ IϵH(X11 : Y1X10X20)ρ

+ IϵH(X11X10X20 : Y2)ρ

+ IϵH(X22 : Y2X10X20)ρ + 3 log ϵ− 6

R′
1 + 2R′

2 ≤ IϵH(X11X20 : Y1X10)ρ

+ IϵH(X22X10X20 : Y1)ρ

+ IϵH(X22 : Y2X10X20)ρ + 3 log ϵ− 6

This region is called the quantum one-shot Han-
Kobayashi rate region for C-QIC, which is calculated
in a special case by Sen [29]. He considers the case of
an interference channel with independent prior entan-
glement between sender 1 and its intended receiver
and between sender 2 and its intended receiver. It
should be noted that the quantum Han-Kobayashi
rate region for C-QIC in the i.i.d. case is conjectured
in [14].

Note that, all of the above rates correspond to the
C-QMACs without secrecy constraints. Now we want
to consider the secrecy requirements of the problem.

For a C-QMA-WTC, we need a smooth version of
the tripartite convex split lemma [20]. This runs into

the smoothing bottleneck of quantum information
theory. In [27], the authors suggested a novel lemma
that gives the size of the randomized block in terms
of smooth max mutual information.

Lemma 1. Given the control state in Equation B.1
and decoding order such as m10 → m20 → m11 →
m22, δ

′ > 0 and 0 < ϵ′ < δ′, let
{
x
(1)
10 , . . . , x

(K10)
10

}
,{

x
(1)
11 , . . . , x

(K11)
11

}
and

{
x
(1)
2 , . . . , x

(K2)
2

}
be i.i.d.

samples from the distributions pX10 , pX11 and pX2 .
Then, if

log |K10| ≥ Iδ
′−ϵ′

max (X10 : Z)ρ + log
3

ϵ′3
− 1

4
log δ′

log |K20| ≥ Iδ
′−ϵ′

max (X20 : ZX10)ρ + log
3

ϵ′3
− 1

4
log δ′

+O(1)

log |K11| ≥ Iδ
′−ϵ′

max (X11 : ZX10X20)ρ + log
3

ϵ′3

− 1

4
log δ′ +O(1)

log |K22| ≥ Iδ
′−ϵ′

max (X22 : ZX10X11X20)ρ + log
3

ϵ′3

− 1

4
log δ′ +O(1)

the following holds,

E X10∼pX10
X11∼pX11
X20∼pX20
X22∼pX22

∥∥∥∥∥ 1

|K1| |K2|

|K22|∑
k=1

|K11|∑
l=1

|K20|∑
j=1

|K10|∑
i=1

ρZ
xi
10x

j
20x

l
11x

k
22

− ρZ

∥∥∥∥∥
1

≤ 60 δ′
1
8

Proof: The proof is similar to the two-user case ex-
plained in [27].

As mentioned before, let k1 = k10 · k11 and k2 =
k20·k22. Note that, R1 = R′

1−log k1, R2 = R′
2−log k2.

Using the above lemma completes the proof.

C Proof of Theorem 2

Proof. As mentioned in Appendix A, the secrecy con-
straint requires that Eve just could be able to decode
negligible information:

Iηmax(m10,m11,m20,m22 : Z)ρ ≤ ν (C.1)

Encoding: Suppose that both receivers want to
decode non-interfering messages. This setting is
similar to Theorem 1. It can be helpful for the
receivers to decode their messages, including the
intended messages and interfering messages. In other
words, X10 and X20 can be used as side information.
Therefore, the first sub-channel can be modeled as
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(X10, X11, X2) → (Y1, Z). Consider the first C-QMA-
WTC (X10, X11, X2) → (Y1, Z). From [27], we know
that an achievable rate region can be calculated as
stated in Equation C.2, Equation C.10.

R1 ≤ IϵH(X10X11 : Y1X2)ρ − Iδ
′−ϵ′

max (X10 : Z)ρ

− Iδ
′−ϵ′

max (X11 : ZX10X2)ρ − 2 log
3

ϵ′3

+
1

2
log δ′ + log ϵ− 2 +O(1) (C.2)

R1 ≤ IϵH(X11 : Y1X10X2)ρ + IϵH(X10 : Y1X11X2)ρ

− Iδ
′−ϵ′

max (X10 : Z)ρ − Iδ
′−ϵ′

max (X11 : ZX10X2)ρ

− 2 log
3

ϵ′3
+

1

2
log δ′ + 2 log ϵ− 4 +O(1)

(C.3)

R2 ≤ IϵH(X2 : Y1X10X11)ρ − Iδ
′−ϵ′

max (X20 : ZX10)ρ

− Iδ
′−ϵ′

max (X22 : ZX10X11X20)ρ − 2 log
3

ϵ′3

+
1

2
log δ′ + log ϵ− 2 +O(1) (C.4)

R2 ≤ IϵH(X2X10 : Y1X11)ρ − Iδ
′−ϵ′

max (X20 : ZX10)ρ

− Iδ
′−ϵ′

max (X22 : ZX10X11X20)ρ − 2 log
3

ϵ′3

+
1

2
log δ′ + log ϵ− 2 +O(1) (C.5)

R2 ≤ IϵH(X2X11 : Y1X10)ρ − Iδ
′−ϵ′

max (X20 : ZX10)ρ

− Iδ
′−ϵ′

max (X22 : ZX10X11X20)ρ − 2 log
3

ϵ′3

+
1

2
log δ′ + log ϵ− 2 +O(1) (C.6)

R1 +R2 ≤ IϵH(X11 : Y1X10X2)ρ

+ IϵH(X10X20 : Y1X11)ρ

− Iδ
′−ϵ′

max (X10 : Z)ρ

− Iδ
′−ϵ′

max (X11 : ZX10X2)ρ

− Iδ
′−ϵ′

max (X20 : ZX10)ρ

− Iδ
′−ϵ′

max (X22 : ZX10X11X20)ρ

− 4 log
3

ϵ′3
+ log δ′ + 2 log ϵ− 4 +O(1)

(C.7)

R1 +R2 ≤ IϵH(X11X2 : Y1X10)ρ

+ IϵH(X10 : Y1X11X2)ρ

− Iδ
′−ϵ′

max (X10 : Z)ρ

− Iδ
′−ϵ′

max (X11 : ZX10X2)ρ

− Iδ
′−ϵ′

max (X20 : ZX10)ρ

− Iδ
′−ϵ′

max (X22 : ZX10X11X20)ρ

− 4 log
3

ϵ′3
+ log δ′ + 2 log ϵ− 4 +O(1)

(C.8)

R1 +R2 ≤ IϵH(X11X10X2 : Y1)ρ

− Iδ
′−ϵ′

max (X10 : Z)ρ

− Iδ
′−ϵ′

max (X11 : ZX10X2)ρ

− Iδ
′−ϵ′

max (X20 : ZX10)ρ

− Iδ
′−ϵ′

max (X22 : ZX10X11X20)ρ

− 4 log
3

ϵ′3
+ log δ′ + 2 log ϵ− 4 +O(1)

(C.9)

R1 + 2R2 ≤ IϵH(X10X2 : Y1X11)ρ

+ IϵH(X2X11 : Y1X10)ρ

− Iδ
′−ϵ′

max (X10 : Z)ρ

− Iδ
′−ϵ′

max (X11 : ZX10X2)ρ

− 2Iδ
′−ϵ′

max (X20 : ZX10)ρ

− 2Iδ
′−ϵ′

max (X22 : ZX10X11X20)ρ

− 6 log
3

ϵ′3
+

3

2
log δ′ + 2 log ϵ− 4 +O(1)

(C.10)

For the second C-QMA-WTC (X1, X20, X22) →
(Y2, Z), there are similar achievable rates. Taking
the intersection of the secrecy regions for both sub-
channels can be calculated as stated in Equation 15,
Equation 29. Against Conjecture 1, Lemma 1 guar-
antees that the secrecy constraint for this problem
Equation C.1 holds. This completes the proof.

Hadi Aghaee received the B.Sc. de-
gree in Electrical Engineering from
Qom University of Technology, Qom,
Iran, in 2015, and the M.Sc. degree
in Telecommunication Engineering
from Faculty of Electrical Engineer-
ing K. N. Toosi University of Tech-

nology (KNTU), Tehran, Iran, in 2018. His current
research interests include quantum information the-
ory, information theory and secure communication
over quantum channels.

Bahareh Akhbari received the
B.Sc. degree in 2003, the M.Sc. de-
gree in 2005 and the Ph.D. degree
in 2011 all in Electrical Engineering
from Sharif University of Technology
(SUT), Tehran, Iran. She was also
a visiting Ph.D. student at the Uni-

versity of Minnesota for one year, starting in 2010.
Since 2012, she is an assistant professor at the Fac-
ulty of Electrical Engineering, K. N. Toosi Univer-
sity of Technology (KNTU), Tehran, Iran. Her re-
search interests include information theory, cryptog-
raphy and network security, communication theory
and information-theoretic security.

ISeCure


	1 Introduction
	2 Preliminaries
	3 Channel Model
	4 Main Results
	5 Conclusion
	A Proof of Theorem 1
	B Proof of the Conjecture
	C Proof of Theorem 2

