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1 Introduction

ABSTRACT

Differential fault analysis, a kind of active non-invasive attack, is an effective way
of analyzing cryptographic primitives that have lately earned more attention.
In this study, we apply this attack on CRAFT, a recently proposed lightweight
tweakable block cipher, supported by simulation and experimental results. This
cipher accepts a 64-bit Tweak, a 64-bit plaintext, and a 128-bit key to produce
a 64-bit ciphertext. We assume that the target implementation of CRAFT does
not use countermeasures in this paper. The considered fault model in the initial
phase of this paper is a single-bit, but random nibble-injected fault, where we
first present the fault injection attack as a simulation and then report on how
to retrieve the round sub-keys. Next, we use frequency glitch as a fault injection
technique in the experimental phase. This part aims to produce a single fault at
a nibble in a specific round of the CRAFT. Following our statistical analysis and
according to the simulation findings, we can reduce the key space to 30.28 and
24.37 bits, respectively, by using 4 and 5 faults. The experimental section also
identifies the location of random faults injected by the hardware mechanism.
(© 2022 ISC. All rights reserved.

niques for analyzing cryptographic systems. The FI
attack is used against various cryptographic systems

ne way of analyzing the security of a crypto-
O graphic system is to evaluate the implementa-
tion weaknesses [1]. Fault attacks are one approach
to obtaining secret information by exploiting these
weaknesses. This concept was first used by Boneh et
al. against the RSA [2]. According to recent research,
fault injection (FI) is one of the most efficient tech-
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because it does not necessitate a high level of exper-
tise or expensive analysis and equipment in some sce-
narios. In this approach, the attacker is assumed to
have physical access to the target device containing
the cryptographic system. While running the encryp-
tion process, s/he applies a deliberate manipulation
in it and checks for variations in the presence of a
fault. The variation may leak information about the
secret part of the algorithm.

Power and clock glitches are common approaches in
FI attacks. A glitch may cause a hardware fault by a
sudden change in power or clock frequency. The glitch
is an efficient, cost-effective, and widespread method
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Figure 1. Fault analysis steps [4]

for FI attacks [3]. The FI is performed in a variety of
ways, including electromagnetic field induction, laser
radiation, etc. Figure 1 illustrates the steps of the
fault attack. In this attack, a specific fault mechanism
changes the victim circuit (a subset of embedded cir-
cuits). At the same time, the oscilloscope records the
results of the modifications. The attacker evaluates
the data using various analytical approaches and re-
trieves the secret parameters using test equipment.
Fault attack has been extended to different methods
for instance differential fault attack (DFA) [5], fault
intensity attack (FIA) [6], statistical ineffective fault
attack (SIFA) [7], statistical effective fault attack
(SEFA) [8], persistent faults analysis (PFA) [9, 10]
and statistical ineffective persistent faults analysis
(SIPFA) [11]. However, one of the most frequently uti-
lized cryptanalysis methods is DFA. This method, for
the first time, was developed against symmetric cryp-
tography by Biham and Shamir in 1997. The principle
of DFA is combining faulty and non-faulty ciphertexts
to reveal an intermediate state to retrieve the secret
key. This method has been applied to a significant
number of block cipher, like AES, SIMON, SHA-3,
PRINCE, PRESENT, SKINNY [12-18]. CRAFT [19]
is a tweakable block cipher that was established to
prevent differential fault attacks. That is a 32 rounds
block cipher with a 128-bit master key and 64-bit
plaintext and Tweak. CRAFT contains characteris-
tics including executing encryption and decryption
in the same hardware area, as well as providing a
fault detection mechanism with small overhead [20—
22]. The comprehensive security of CRAFT is ana-
lyzed in [23]. Also, a single-tweak rectangle attack on
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18 rounds of this cipher is proposed in [24].

1.1 Ouwur Contribution

DFA is a strong tool for the attack on cryptographic
algorithms. Although DFA requires fixing the Tweak
in the tweakable block cipher, it is still a priceless tool
for key recovery. In this work, we applied DFA against
the unprotected version of CRAFT for the first time,
to the best of our knowledge. We show that the un-
protected CRAFT version is vulnerable to DFA, so
the master key can be recovered with four faults. In
addition, we validated our results with simulations.
We also perform the practical fault attack on CRAFT
on an AVR ATmega32A by using clock glitches. It is
worth noting that using redundancies for detecting
and correcting faults for the FI attack protection is
considered for applications with no significant area
limitations. The authors of CRAFT proposed a set of
redundancies for the detection approach, all of which
had area and execution time overheads and may not
be suitable for area-constrained devices such as pas-
sive RFID tags. Therefore, security analysis of unpro-
tected implementation is also required. It was the case
for CRAFT’s security analysis against other attacks.
For instance, despite the fact that CRAFT was not
designed to resist specific attacks such as SIFA and
Related-key attacks [19], some researchers exploited
these scenarios. For another instance, ElSheikh et
al. [25] evaluated the CRAFT resistance to related-
key attack in the SPACE conference 2019. As a conse-
quence, by utilizing a simple key schedule of CRAFT
and 23! queries to the encryption oracle, they were
able to retrieve the master key. Therefore, the secu-
rity of cryptographic algorithms against various at-
tacks is worth evaluating to determine its security
boundaries accurately.

In the rest of this paper, we first introduce CRAFT
and its design characteristics in Section 2. The statis-
tical results and equations required for the analysis
are discussed in Section 3, after a discussion of the
differential fault attack and our strategy to apply this
analytical technique against CRAFT. In Section 4, we
show how a FI attack is performed in the hardware
(CRAFT algorithm) Using low-cost equipment.

2 Specification of CRAFT

CRAFT is a 64-bit block cipher that uses a 128-
bit master key and 64-bit Tweak. The master key
was initially split into two 64-bit halves. CRAFT
allocates 32 rounds to plaintext encryption. The 64-
bit plaintext input creates the initial states X;. The
input State to ¢-th round, X;, can be represented as a
4 x 4 matrix of nibbles as follows (brackets represent
the nibble number):
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Table 1. Round constants of CRAFT

Round 7 RC;(as,b;)
0-15  11,84,42,25,96,c7,63,b1,54,a2,d5,66,f7,73,31,14

16-31 82,45,26,97,c3,61,b4,52,a5,d6,e7,3,71,34,12,85

X0 X;[1] Xi[2] X;[3]
X, = X;[4] Xi[5] Xi[6] Xi[7] D
Xi[8] X5[9] Xi[10] X;[11]

X;[12] X;[13] X;[14] X;[15]

The encryption process of CRAFT, can be seen in
Figure 2. Every round involve five operations: MixCol-
umn (MC), RoundConstant (RC), Tweakeys (TK),
PermuteNibbles (PN) and S-box (.5).

Ri=MCoRC;0oTK;oPNoS (2)

Two operations, S-box and PermuteNibbles, were
ignored in the last round (31-st round).

Rs1 = MC o RC; o TK; (3)

The multiplication of 4 x 4 equations of the input
(IM) and binary M (Equation 4) matrices generates
the output of MC layer (Equation 5). Also, in the
following matrices, j represents the column number.

1011
0101
M= @
0010
0001
xipl| (X0l e x][2 e X/[3]
X7 i J
z_[1] _ X7 [1]@){1 (3] o
X;12 x7[2]
X/ [3] X7[3]

In the RoundConstant sub-function, a four-bit aj =
(a3,a?,at,a") and three-bit bI = (b2, b',b°) LFSR are
used. These constant values are updated separately
for each round, then XORed with X;[4] and X;[5],
respectively. Table 1 shows the numbers.

By combining the two specified keys (ko,k1) with
the Tweak, the four initial values Tweakeys T K,
TK,, TKy, and TK3 are produced. Each of these
values is a separate 4 X 4 block that is used to add
Tweakeys in different rounds.

TKo=ko®T,TK1 =k1 T (6)

Vector @ (Equation 8) is used to perform permu-
tation for generating T'Ks and T K3 in accordance to
Equation 7.

TKy = ko ® Q(T),TK3 =k ® Q(T) (7)

Table 2. Permutation of CRAFT

p1512131410981165471230

Table 3. S-box of CRAFT

x 0123456789abcdef

S(x)cad3ebf789150246

Table 4. Notations

Symbol Notation

X*  The faulty value of X

A Difference, e.g. AX =X & X*
M A 4 x 4 binary matrix
MC MixColumn sub-function

RC RoundConstant sub-function
TK Add round Tweakeys
PN PermuteNibbles sub-function
S(-) Substitution box
S~1(-) Reverse of S(-)

p Permutation mapping

@  Permutation mapping of subkeys
X; Initial state at the beginning of the i-th round
Y; Data produced after RC;

W,; Data produced after TK;

Z;  Data produced after PN;

ko,k1 Initial keys

Q =[12,10,15,5,14,8,9,2,11,3,7,4,6,0,1,13]  (8)

Therefore, TK; mod 4 18 XORed with the interme-
diate values in round i (TK sequence is repeated
every four rounds).

Next, the permutation table alters the placement
of the nibbles (Table 2). And, at the end of each
round, S-box converts every 4 bits of the inputs to
a hexadecimal value at the outputs, according to
Table 3.

Table 4 illustrates all of the symbols that are re-
quired in this paper.

3 Differential Fault Analysis of
CRAFT

DFA is based on injecting a fault into the crypto-
graphic algorithm and exploiting the differential char-
acteristic using correct and faulty ciphertexts. In this
section, we first explain the theory of the attack on
the last round of CRAFT. Then the simulation re-
sults of the fault attack on CRAFT are presented.

1S¢0ured)
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Figure 2. The round structure of CRAFT

3.1 DFA on CRAFT

Assume that a fault is injected in the first nibble at the
beginning of the 27th round. The fault is propagated
to the last rounds as illustrated in Figure 3. By inject-
ing a fault into the internal state of CRAFT, the dif-
ferential of correct and faulty ciphertexts are changed
by passing through the S-box while remaining fixed
during the linear sub-functions such as Tweakeys,
PermuteNibbles, RoundConstant, and MixColumn.
A differential nibble of the correct and faulty cipher-
texts could be a non-zero, zero, or any possible differ-
ence. Non-zero differences, zero-differences, and any
possible differences are represented by yellow, red,
and white cells, respectively, which are depicted in
Figure 3.

Suppose the difference between the correct and
faulty value in the intermediate states with proba-
bility 1 is non-equal to zero. In that case, this con-
cept is denoted as a non-zero difference. If we cannot
guess the difference between the mentioned values,
the difference in each subsection will be unpredictable,
which is called any possible difference. Also, the zero
differences are related to the values in which the FI
has no effect [18, 24].

Since the S-box is a nonlinear sub-function, we
are interested in exploiting differential values of the
input and output of the S-box to recover the key. By
injecting a fault in the first nibble at the beginning
of the 27th round, a set of linear equations can be
obtained from the differential input and output of the
S-box in the last round, which is illustrated in Table 5.
One of the equations is utilized for key recovery in
the first evaluation, with the following assumptions:

(1) Plaintext is random, Tweak and (ko, k;) are
fixed.
(2) The fault model is considered as a bit flip

All non-zero differences are related to a specific
position of FI at the beginning of the 27th round, so
we can use the output differential patterns to pinpoint

ISeﬂure@

Table 5. Linear equations, by the FI into nibble 0 at 27th
Round of the CRAFT

AYas[3] = AYas[7] = AYas[15]
AYao[2] = AYag[6] = AYag|14]
AYa[3] = AYa[11]
AYs0[0] = AYao[8]
AYso[1] = AYig[5] = AYaq[13]
AY3g [2] = AYgg[G} = AY30[14]

AY3q [1] = AY31[13] ® AYsy [9]

AYz1[5] = AYa[13]

AYs:[7] = AYa[15]
AYs1[4] = AYa[12]

the exact location of the fault. According to Figure 3,
in the last round, three nibbles 9, 10, and 11 with
non-zero differences can be obtained. Now, we are
looking for the last round key (T'K3), and we will use
the linear relations which are given in Table 5.

As was mentioned before, the non-zero differences
on both sides of the S-box are utilized to recover
the last round key. Accordingly, one of the linear
equations before the input of the S-box is Equation 9:

AYz1[4] = AY3[12] (9)
Due to the presence of a linear sub-function before
the S-box, the following relationships are valid:

AWs1[4] = AZs1[10]
10
AW31[12] = AZ31[1] (10)

Also, the following equation shows the difference
between correct and faulty values in the output of
the PermuteNibbles:

Z31[10] @ Z3,[10] = Zz1 [1] & Z3, [1] (11)

According to Figure 4, to recover the T K3, the
following equations should be verified:
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Figure 3. Fault propagation in CRAFT (assume the round counter begins from 0)

X32[1] = S(Zs1[1]) = Zs1[1] = S~ 1 (X32[1])

o (12)
X32[10} = S(Z31[10]) = 231[10] =S (X32[10D

X5l] = S(Z5,[1]) = 25,1 = 5™ H(X5,[1]) (13)
X55[10] = S(23,10)) = 235, [10] = 5 (X3,[10))

If we track the path of the fault propagation from
ciphertexts to the output of the S-box (to backward)
we would have the following equations:

AX32[l] = AY32[1] @ AY32[9] © AY32[13] (14)
AX32[10] = AY32[10] (15)
ey 1 (16

Ya2[1] © Yih[1] @ Y32[9] @ Yia[9] © Y32[13] @© Y35 [13]
X32[10] @ X35[10] = Y32[10] @ Y55[10] (17)

To achieve X355[1] and X32[10], we need to guess
four nibbles: TK3[1], TK3[9], TK3[13], and T K35[10].
Now we need correct and faulty values of ciphertexts.

[

[
Z32[13] = Y32[13] @ T'K3[13] (18)
Z32(10] = Y32[10] & T'K3[10]
Z3[1] = Yg5[1] © TKs(1]
Z35[9] = Y55[9] & TK3[9] (19)
Z3,113] = Yo [13] @ TK3[13]
Z3,10] = Y5, [10] & TK3[10]

By using former equations, we construct new con-
nections between the differential values at the input
and output of the S-box at the last round:

AZ31[10) = AZ31[1]

Z31[10] @ Z3,[10] = Zz1[1] & Z5, 1]

S7H(X52[10]) @ S7H(X5,[10]) = 57 (Xs2[1]) @ S’l(Xé“z([l]))
20

(Ya2[10]) @ 571 (Y35[10]) =
(Ya2[1] @ Ys2[9] @ Ya2[13]) @ 571 (Y3 [1] @ Ya5[9] @ Y [9])
(21)

g
-

Eventually, we guess the subkeys of the last round,
in the following equation:

SY(Z32]10] ® TK3[10]) @ S™1(Z3,[10] ® TK3[10]) =

ST (Z32(1] ® TK3[1] ® Z32(9] ® TK3([9] & Z32[13] & TK3[13])

S™H(Z35[1 @ TK3([1] © Z3,19] © TK3[9) ® Z3,[13] ® TK3[13])
(22)

As can be resulted in Equation 22, we can guess
4 nibbles of subkey TK3. Since each nibble has 2%
possible states, there are 2'6 candidates to retrieve
these four nibbles of the last round key. Only those
candidates are picked that yield the correct master
key.

After evaluation of all candidates in Equation 22
equation, a limited number of 2'6 possible candidates
are reported as the surviving key candidates. The
correct candidates are the terms used to describe
these survival keys. Nibbles 1,9,10, and 13 of T K3
subkey should be in the correct candidates With a
probability of 1. The step-by-step instructions for
recovering the last round key of CRAFT are set out
in Algorithm 1.

3.2 Simulation Results of DFA on CRAFT

After describing DFA on CRAFT in the previous
part, we now extend the attack for simulation. As
mentioned before, the required nibbles of the T K3
in the validation of the Equation 22 can be retrieved
by using Algorithm 1. According to Table 5, other
remained nibbles can also be recovered by using this
algorithm due to FI into nibble 0 at the beginning of

the 27th round.
7
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Last Round ‘

Figure 4. DFA on last Round of CRAFT (assume the round counter begins from 1)

Algorithm 1 DFA on Last Round of CRAFT

Require: P: Plaintext; TK: Tweak; K: Master Key; C: Cor-
rect Ciphertext; C*: Faulty Ciphertext; Enc: Encryption;
CC: Correct Candidates; Tk3[1]: “17; Tk3[9]: “9”; Tk3[10]:
“10”; Tha[13]: “13”.

Ensure: candidates for CC'. (initialization)

: Nibble < 0 > location of fault

o f+ 0zl > Value of fault

TK <« Fized

ko, kl < Fized

while True do
P& {0,136
Correct Enc(P) = C
Faulty Enc(P) = C

9: if round == 27 then

10: Nibble = Nibble & f

11: end if

12: Z32 + C 18

13: Z35 < C* 19

> injection Fault

14: check 1:

15: if 22 == True then :

16: save (CC)

17: end if

18: check 2:

19:  if ”17,797,710”,”713” € CC then
20: print(CC)

21: end if

22: end while

As another example, by considering the equation
AY3[7] = AY3;[15], the extended equation will be
Equation 23.

571 (Zs2[11] @ TK3[11]) @ S~ (Z5,[11] @ TK3[11]) =

S1(Z32[0) ® TK3[0] ® Z32[8] ® TK3[8] ® Z32[12] ® TK3[12])

STH(Z3,[0] ® TK3[0] © Z3,[8] @ TK3[8] @ Z3,[12] @ TK3[12])
(23)

As a result of the recent equation, nibbles 0, 8, 11,
and 12 of T K3 can be retrieved. Hence, By using other
non-zero differences in Table 5, more information
about T K3 can be achieved. So far, we only used
two linear equations (Equation 22, Equation 23) to
extract the eight nibbles from the T K3, while we can

ISeﬂur@

Table 6. By injecting fault to different nibbles of the 27th
round CRAFT (single fault), the last round keys (T'K3) can
be retrieved

Injection at T K3 nibbles that can be retrieved

nibble[7] [0],[1],[5],[7],[8],[9],[10],[11],[12],[13],[14],[15]

nibble[0]  [0],1],[2],[5],(8],[9][10],[11],[12],[13],[14]
nibble[1] — [1],[2],[3],[6],[8],[9],[10],[11],[13],[14],[15]
nibble[2]  [0],[2],[3],[7],[8],[9],[10],[11],[12],[14],[15]
nibble[3]  [0],[1],[3,[4],[8],[9],[10],[11],[12],[13], [15]
nibble[4] (0], [1],[4],[81,[9],[11],[12],[13],[14],[15]
nibble[5]  [2],[3],[7],[8],[9],[10],[11],[12],[13],[14],[15]
nibble[6]  [2],[3],[6],[9],[10],[11],[12],[13],[14],[15]

[

[

[

nibble[8]  [0],[1],[2],[5],(8],[9],[10],[11],[12],[13],[14]
nibble[9]  [1],[2],[3],[6],(8],[9],[10],[11],[13],[14],[15]
nibble[10]  [0],[2],[3],[7],(8],[9],[10],[11],[12],[14],[15]
nibble[11] ~ [0],[1],[3],[4],[8],[9],[10],[11],[12],[13],[15]
nibble[12] (0],[8],[11],[12]

nibble[13] (1],(3],[8],[9],[10],[11],[13],[15]
nibble[14] 2],9],[10],[14]

nibble[15] (1],9],[10],[13]

use the same strategy to recover more of the subkeys
and reduce the computable space for the master key.

Since the location of the fault may change during
every FI trial, different non-zero differences will be
obtained for all of the nibbles in Table 6, which will
be comparable to Table 5 information. Thus, at the
beginning of the 27th round, more T'K3 nibbles can
be retrieved depending on FI in various nibbles.

On average, 37.75 bits of the master key may be
recovered if injecting a single fault during the 27th
round of CRAFT. The Equation 24 shows this com-
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putation (according to Table 6).
((44 x 9) + (40 x 2) + 48 + (16 x 3) + 32) + 16 = 37.75 (24)

We focus on the last results in Table 7. The last
equation illustrates that by injecting a nibble fault
into a random location of the 27th round, 37.75 bits
of the last round key will be retrieved. Hence, it is a
remaining computation at the order of 226-2%. For a
personal computer, this is a feasible time complexity.
Therefore, the key of the last round is retrieved at
an acceptable time. Also, we can recover more bits
of the master key by injecting the fault in separate
nibbles of the 27th round (without iterating).

In Table 7, the symbols N, k,., and k., respectively,
refer to the number of faults that have been injected
into the separate nibbles, the average number of bits
that can be recovered from the last round, and the
remaining bits of the master key (128 bits). Hence,
the ¢, is the time required to recover k, bits, and
tk,, is the remaining time to recover the master key.
The t,, exactly equal to the required time to do
2Fun calls to CRAFT. The overall time complexity is
represented in the paper by Tiotq; (time to recover the
entire master key) and obtained from the following
equation:

Tiotal = thy + thyn (25)

We have been attacking T'K3 nibbles so far. Al-
though the last round key is nearly recovered, there
is still considerable time complexity to recover the
master key (Table 7). To fully recover the master key,
we need to consider T K in our analysis.

If we use an exhaustive search to guess the remain-
ing bits of the Tks (for example, 26.25 from 64 bits),
we can decrypt the last round and return to the penul-
timate round, then the T'ky can be retrieved by using
the penultimate round linear equations and represent
the simulation results on the average for it.

3.3 Recovering the Master Key with
Minimum Time Complexity

The final step involve evaluating Tke and TKj. If
we repeat the FI twice, 37.75 bits are recovered from
T K3 for the first time. Then, we guess the remaining
bits that cost 226-25. For a personal computer, this is
an acceptable time complexity. The complete recovery
of the last round key leads us to analyze the Tko and
recover 37.75 bits from the penultimate round key
by the second fault injection. Hence, on average, 75.5
bits are obtained from the master key by two faults.
Now, we can almost retrieve the large portion space
of the master key by injecting two faults into the 27th
round, as shown in Table 8.

A Remaining keys (for exhaustive search) [E——
Retrieved keys
128 4 3179
114.6 116.3 21/
1121 —
109.5 e
103.6 ./»/""
97.7 4
9% | y
E P
e}
[N
@]
5 64
Ra)
g
=)
z -\I
32 i
30.2 '\1
243 ‘\1; >
184] 50—
133 117 10
>
>

Number of faults

Figure 5. The number of bits that can be retrieved from the
master key based on the number of injected faults (the number
of keys that can be recovered is indicated with , while
another number of keys that can not be recovered is indicated
in Red (according to Table 8))

In conclusion, after four faults, on average, 30.28
bits of the master key remain, which may be estimated
using an exhaustive search with little computational
complexity and time. We utilized a processor with
Corei3 @3.4GHz 4GB RAM for our computations.
Figure 5 depicts the relation between increasing the
number of faults and the number of recoverable bits
of the master key.

The steps involved and outcomes of the above sta-
tistical simulations may be accessed at the following
address:

https://github.com/Hamed-Ramzanipour/
hardwaresoftwaredfacraft/tree/main/Software

4 Hardware Implementation of DFA

In this section, we aim to express the results of the
practical differential fault attack by hardware imple-
mentation of the CRAFT and the fault mechanism.

4.1 Fault Injecting Structure

In the FI phase, the glitch frequency is used to disrupt
the encryption and obtain the faulty ciphertexts. We
employed two external clock sources to inject faults
in this model.

Assume two separate circuits such that the first
one (victim) provides the CRAFT hardware imple-
mentation and the second (glitch) operates as the FI
mechanism at the same time. To inject a fault, the
second circuit makes a sudden change in the external
clock, which may disrupt the operating clock of the
encryption circuit. Each sub-function of the encryp-
tion may not operate efficiently with a direct external

1S¢0ured)
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Table 7. The average number of bits retrieved from various single nibble FI (CRAFT encryption takes 0.0468 seconds)

N 1 2 3 4 5 6 7 8
kr(bit) 37.75 48.86 54.77 57.34 58.96 60.10 60.95 61.60
kun (bit) 90.25 79.14 73.23 70.66 69.04 67.9 67.05 66.40
tr, (s) 0.270 0.367 0.442 0.537 2.28 30.43 720.44 21600.4
tro () 29025 x g 279N gl 9TR2B yq 97066 g 26904 5y 96Tyl 96T:05 yp 96640 4

Tiotar () th, +68 x 1021 t5 +31 x 1018 ¢, 45 x 1017, +8 x 1016 ¢, +2 x 1016 ¢, +1.2 x 106 ¢}, +7 x 101° ¢}, 47 x 1015

Table 8. Analysis of the master key space (ko, k1 are 128-bits, and all parameters are associated with the last two rounds, Tk2 and

Tks)
N 2 3 4 5 6 7 8
kr(bit) 75.5 86.61 97.72 103.63 109.54 112.11 114.68
kun (bit) 52.5 41.39 30.28 24.37 18.46 15.89 13.32
t, (s) 0.540 0.646 0.752 0.798 0.844 0.959 1.074
tho (5) 2528 xto 24189 % g 93028 oy 92BT gy 91846y 91589 oy 91332 g

Tiotar () th,+2 X 10M ¢, +1.3 x 1011 ¢, 4+6.1 x 107 t5, +1 x 10 ¢, +16 x 103 ¢;, +2.8 x 103

479.66
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Figure 6. The Fault injecting structure

impact on the clock cycle, and provide us the non-
zero differences, so we can do differential analysis.

The glitch is produced by connecting the fault trig-
ger signal to the external clock of the victim circuit.
Hence, one of the inputs of the external clock victim
circuit is connected to the output of an XOR of the
trigger signal and one of the crystal oscillator pins
(belonging to the victim circuit). Figure 6 depicts this
description.

To be more precise in injecting the fault, the op-
erating clock frequency of circuit (2) is several times
higher than the operating clock frequency of circuit
(1). So, the glitch circuit has a higher speed frequency
than the victim circuit, which may make a transient
change during the execution of CRAFT. The appro-
priate bandwidth for the crystal oscillator of the fault
circuit is determined by different criteria, such as the
victim circuit frequency, noise, and fault accuracy.

1S¢0ured)

4.2 Experimental Results

We used AVR Microcontroller ATmega32A for exper-
imental verification. Figure 7 depicts our hardware
implementation of the FI mechanism. Two external
crystal oscillators of 2 MHz and 16 MHz are used
for the victim and glitch circuits, respectively, in the
frequency sources.

In the previous subsection, the FI mechanism
against the victim circuit was presented. Figure 7a
depicts the CRAFT circuit components and also the
glitch circuit. Trigger fault pulses are continually
produced by the circuit (2). According to the FI
mechanism, this glitch may disrupt the performance
of any sub-function or skip part of it. Hence, the
faulty outputs of the circuit (1) can be obtained,
and we utilize these outputs to evaluate hardware
implementation [26].

According to implementation studies [27, 28], faults
that happened in the initial rounds had a higher im-
pact on the resulting ciphertexts, which generated
more than zero difference in the outputs. Hence We
are looking for a significant zero difference between
faulty and non-faulty ciphertexts (at least 8 nibbles
out of 16), which may indicate that the fault is in-
jected in the last rounds with high probability. For
example, Figure 7b) shows a 40 bits zero-differences
between the faulty and non-faulty ciphertext, which
indicates that the fault occurred in one of the last
rounds.

To identify the round of the injected fault, we
employed a set of differential vectors generated by
our implementation to evaluate the correct and faulty
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(a) Hardware setting

(b) The FI attack results

Figure 7. Implementation differential fault attack on hardware

Table 9. The number of FI by hardware implementations of
fault circuit into the different rounds of CRFAT (assume the
round counter begins from 0)

The ith round The number of faults Location of sub-function

28 3 Mixcolumn
29 4 Mixcolumn
30 18 Mixcolumn
31 76 Mixcolumn

ciphertexts in decryption mode by the correct key in
the offline phase. The most probable round in the
offline phase is regarded as a target round in the
online phase, and other rounds could be considered
noise.

So, after running the circuits for 10 minutes, we got
around 200 different vectors from 1200 random faults,
indicating that we should exclude 1000 injections due
to AVR crashes. We store the number of valid output
differential vectors during that time. The number of
FI in each round is shown in Table 9. In the Table 9,
101 of 200 differential vectors had more than or equal
to 8 zero differences. The offline verification in de-
cryption mode confirmed that all faults are injected
at the beginning of each round. As a result of using
1200 faults, at least 101 faults are injected at the
beginning of different rounds in this experiment for
two reasons: first, the higher speed of the fault cir-
cuit frequency, which, even with no control between
glitch and the victim circuit executing the FI before
the start of each round, and second, our assumption
of selecting differential vectors with at least 8 zero
differences.

According to results of Section 3.2, if 4 or 5 effective
(beginning of the 27th round) faults are injected into
CRAFT, the master key may be retrieved using this
approach. However, by injecting a fault at the 31st
round also key can be recovered by more injections.

The main goal of this part was to implement a fault
circuit using low-cost equipment. We discovered the
location of the faults during the analysis phase by

combining hardware results and statistical analysis.
Using a precise fault to modify only one bit (bit-
flip) of a vector in the intermediate rounds of each
algorithm requires more cost and time to boost the
efficiency of DFA.

The hardware programming CRAFT and the FI
circuit with the stated results are available at the
following address:

https://github.com/Hamed-Ramzanipour/
hardwaresoftwaredfacraft/tree/main/Hardware

5 Conclusion

CRAFT is a lightweight block cipher that has effi-
cient features in encryption design. In this paper, we
performed a differential fault attack against this algo-
rithm, first in simulation and subsequently in hard-
ware implementation. Our simulation showed that
the recovery of the main key complexity could be re-
duced to 30.28 and 24.37 bits using 4 and 5 faults,
respectively, which leaves little complexity for an ex-
haustive search. Experimental implementation of the
FI attack was performed on CRAFT using low-cost
equipment and finding the location of some of the
single faults applied.

Although we were able to apply DFA to CRAFT
effectively, there are still several topics that need to be
investigated further. To begin with, the experiment is
built on a very basic and almost uncontrollable circuit
that needs several FI to create the required faults. It
is proposed that a master-slave structure be used to
shorten this time and improve FI accuracy. CRAFT’s
designers also suggested a fault detection mechanism
to prevent differential fault attacks. However, we
did not use it in our study. Hence, the evaluation
of CRAFT security against DFA in the presence of
countermeasures might be the second focus of future
research.
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