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1 Introduction

Since their introduction, Cognitive Radio Networks (CRN), as a new solution
to the problem of spectrum scarcity, have received great attention from
the research society. An important field in database-driven CRN studies
is pivoted on their security issues. A critical issue in this context is user’s
location privacy, which is potentially under serious threat. The query process
by secondary users (SU) from the database is one of the points where the
problem rises. In this paper, we propose a Privacy-Preserving Query Process
(PPQP), accordingly. This method lets SUs deal in the process of spectrum
query without sacrificing their location information. Analytical assessment
of PPQP’s privacy preservation capability shows that it preserves location
privacy for SUs against different adversaries, with very high probability.
Relatively low communicational cost is a significant property of our protocol.

(© 2020 ISC. All rights reserved.

technology that enables implementation of this idea
is Cognitive Radio (CR) and the secondary network

he idea of Dynamic Spectrum Access (DSA) has
Treceived great attention over the past decade, due
to ubiquitous wireless network availability and rapid
growth of wireless technologies. As opposed to con-
ventional static spectrum management strategies, in
DSA, spectrum bands are not exclusively used by one
group of users. Instead, a second network consisting
of Secondary Users (SU) are allowed to opportunisti-
cally access the unoccupied portions of the spectrum
as long as they do not cause harmful interference to
the license-holders or the Primary Users (PU). The
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is therefore called a Cognitive Radio Network (CRN).

In a CRN, the SUs usually apply two methods to
detect locally unused frequency bands or white spaces.
The first approach is sensing the spectrum. In this
method, by listening to a channel, an SU determines
whether any PU in its vicinity is utilizing the channel
or not. This technique has been shown not to be effec-
tive as a standalone method [1]. The second method
which has been adopted by the Federal Communi-
cations Commission (FCC) in its latest rule [2], is
querying a database to achieve Spectrum Availability
Information (SAI). This alternative has been consid-
ered the most efficient technique currently available
to share the unused spectrum [1].

In spite of providing several advantages, querying
a white space database in its present manner, im-

ISeﬂure@



216

Location Privacy Preservation for SUs in a Database-Driven CRN — Salami, Ahmadian, Aref, and Jannati

poses serious privacy concerns to the users. This is
because according to the latest standard, i.e. Inter-
net Engineering Task Force (IETF) Protocol to Ac-
cess White-Space (PAWS) Databases [3], SUs must
issue their precise GPS coordinates as part of their
query. An attacker, e.g. the untrusted database, can
easily misuse this information to breach user’s pri-
vacy. This is while usually users are strictly reluctant
to share their location information. This is because
breach of users’ location privacy can reveal their per-
sonal habits, interests and secrets and may also ex-
pose them to unwanted advertisements and location-
based spam or even make them victims of blackmail
or physical violence [4]. Other sources of location
information leakage that may arise from database-
driven CRN architecture are the Maximum Transmit
Power (MTP) and the list of available channels in
the query’s response [5]. To address these problems,
location privacy in database-driven CRNs has gained
researchers’ great attention in recent years.

To this end, in this paper we design a protocol
that prevents SU’s location being revealed during the
querying process. In our protocol we combine the
ideas of spatial cloaking and homomorphic cryptog-
raphy. Since their introduction, homomorphic cryp-
tosystems have been used widely in providing solu-
tions to problems in the context of privacy [6]. For
instance, some existing works on Location Based Ser-
vices (like [7]) utilize such systems for protecting users’
privacy. Another idea to protect location privacy is
cloaking methods. Spatial cloaking is a technique to
blur a user’s exact location into a spatial region in
order to preserve her location privacy (like in [8]).
The most popular privacy requirement for the spa-
tial cloaking technique is k-anonymity [9]. It means
that the user’s location information reported to the
service provider should be indistinguishable from at
least k — 1 other users. We take advantage of both
ideas to design a privacy protecting protocol for rela-
tively stationary users with outstanding property of
low communicational cost.

The contributions of this paper can be summarized
as follows. We propose the Privacy-Preserving Query
Process (PPQP) as a method that lets SUs access
the SAT of their cell while keeping their location co-
ordinates unrevealed. The required level of privacy in
PPQP can be achieved through adjustment of some
user-controlled parameters. In fact higher level of pri-
vacy could be achieved in the expense of more com-
putational complexity. In our design we try to avoid
imposing too much communicational overhead to the
cognitive radios. We analyze the security of our pro-
tocol and show that neither the untrusted database,
nor any PU or even any external attacker can gain
any probabilistic advantage in attempt to find out
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SU’s location. Furthermore, we show through a com-
plexity analysis, that the communicational overhead
of PPQP is relatively low and is smaller compared to
previous works. Finally, we evaluate the performance
of our protocol through simulations to observe the
performance in terms of runtime.

The organization of this paper is as follows. Sec-
tion 2 reviews the related work. In Section 3 we talk
about homomorphic encryption, describe the Paillier
cryptosystem [10] and study a technique based on its
properties. Section 4 describes the system model, in-
cluding system architecture and the adversary model.
We introduce PPQP in Section 5 and the privacy of
the protocol is analyzed in Section 6. In Section 7
we present a complexity analysis of the protocol. We
then evaluate the performance of our protocol in Sec-
tion 8. Finally, Section 9 concludes this paper.

2 Related Work

During few recent years users’ location privacy in
database-driven CRNs has become a center of focus
among researchers who work on contexts associated
with security in CRNs. Works that issue this prob-
lem are mostly based on either k-anonymity [9] or
Private Information Retrieval (PIR) [11]. However,
some adopt miscellaneous other concepts.

Techniques based on k-anonymity attempt to guar-
antee that a user’s location is indistinguishable among
k users. Li et al. [12] apply k-anonymity to introduce
a method, which cuts off the relationship between
SU’s location and its register data in the DB. This
method protects SUs’ location privacy during the
commitment phase. In their framework they consider
a number of Base Stations (BS), which SUs are asso-
ciated with. Zhang et al. present a method in which
SUs query the DB by sending a cloak region that
includes their own location [13]. They use another k-
anonymity approach to protect PUs’ location privacy,
too.

Some other techniques on the other hand, are based
on PIR technique. Gao et al. [14] exploit some blind-
ing factors to hide SU’s location during the query
process. The SU keeps the secure blinding parameters
to retrieve the SAI of its location later. This work
applies PIR method of [15]. Troja et al. [16] offer a
method based on another PIR [17]. The method is
mainly efficient for mobile SUs. In this method the
coverage area is divided into multi-cell blocks and
neighbor SUs exchange SAI, so that fewer queries
from the DB would be necessary. Same authors pro-
pose another method [18], which takes advantage of
Hilbert space filling curve [19]. This work also mainly
considers mobility of users.

A number of other works apply different concepts
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to build their techniques. Salami et al. introduce
a cryptography-based protocol for spectrum shar-
ing [20]. Taking advantage of some well-known cryp-
tosystems, their protocol protects location privacy
for SUs and PUs, simultaneously. They consider Base
Stations for both primary and secondary networks.
Other work that protects bilateral location privacy
of both PUs and SUs is [21]. Both groups of users
solve an optimization problem that maximizes their
bilateral utility considering differential privacy [22].
They then obfuscate their location accordingly. Chen
et al. also protects location privacy for users of pri-
mary and secondary networks [23]. To let parallel
queries they use data-oblivious sorting networks in
their design. They combine garbled circuits [24] and
XOR secret sharing [25] on the DB side. Grissa et
al. propose an approach that offers an unconditional
privacy to SUs within the DB’s coverage area [26]. In
this scheme SU only sends its characteristics, but not
its location to the DB using cuckoo filter [27].

Although the location privacy of PUs is of
paramount importance, especially in the case of
military incumbent systems that have stringent re-
quirements in terms of security and privacy, little
work has exclusively focused on it [5]. Bahrak et
al. describe an attack by SUs to geolocate a PU
and then propose techniques to thwart against the
attack [28]. Authors in [29] and [30] have a general
view towards the issue. The former explores whether
PUs can retain a critical level of privacy in a spec-
trum sharing network, and the latter develops an
analytical model to analyze the vulnerability of PU’s
frequency to inference attacks.

Therefore, the previous work that also applies spa-
tial cloaking region idea is the one by Zhang et al. [13].
In their method, the SU sends a square cloak region
containing its real location to the DB. In response,
the DB sends the SAT of the whole square (n x n cells)
to the requesting SU. In our work, however, the in-
formation of 2n cells is transmitted. Compared with
download of all n x n cells, a reduction of % times in
the communicational complexity is observed for the
same level of privacy.

3 Preliminaries

3.1 Homomorphic Encryption

In mathematics, the term homomorphic describes
the transformation of one dataset into another while
preserving relationships between elements in both sets.
Homomorphic encryption schemes are cryptosystems
that allow computations to be performed on data
without decrypting it. They allow computations to
be carried out on ciphertext to generate an encrypted
result which, when decrypted, matches the result of

some other known operations on the plaintext [6].

Homomorphic cryptosystems can be served as a
useful tool for hiding the desired information through-
out execution of a protocol, by conducting some of
the original operations in the encryption domain. In
other words, one can implicitly make the plaintext
undergo certain operations by performing other spe-
cific operations on the corresponding ciphertext, in
the encryption domain. This is a desirable feature in
modern communication system architectures.

RSA [31] is the first public-key encryption scheme
with homomorphic properties. In 2009, IBM re-
searcher Craig Gentry came up with the first fully
homomorphic encryption scheme [32]. Unfortunately,
Gentry’s method also adds immense computational
requirements to computational tasks that would be
simple with unencrypted data and there is a long
way to go before it will be widely usable. One of
the most well-known homomorphic cryptosystems is
the Paillier cryptosystem [10], proposed by Pascal
Paillier in 1999. It will be described briefly in the
next subsection.

3.2 Paillier Cryptosystem

The general structure of Paillier public key encryption
scheme is as follows.

Key Generation: To establish a public key two ran-
dom primes, p and ¢, are selected in such a way that
the factorization problem is intractable and N = pXxq
is constructed. However, the module with which en-
cryption and decryption will be performed, is N2.
Then a random integer g € Z3. is selected, such
that © = (L (¢*) mod Nz)f1 mod N exists, where
L(z) mod N? = 2L, (g is sometimes said to be semi-
random, since there are a few values that do not sat-
isfy the existence of p.) The integer p, along with
A= Lem(p—1,q—1) form the private key of the sys-
tem, Kpr, = (A, ). And K,y = (N, g) is distributed
as the public key.

Encryption: To encrypt a message m € Zy;, a ran-
dom number s € Z% is chosen. Then the cipher-
text ¢ € Zy;» is produced in this way: ¢ = Ey(m) =
g™sY mod N2.

Decryption: Having the ciphertext ¢, the plaintext
message m could be obtained by:
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3.3 Encryption Domain Matrix
Multiplication

The Paillier cryptosystem has two important homo-
morphic properties. The first one is the additive ho-
momorphic property. It means that one can com-
pute the addition of two plaintexts, my and meo, i.e.
(mq +msy), in the encryption domain, given only their
ciphertexts, F, (m1), and Es,(ms). This is done by
multiplying the two latter:

D(E51(m1).E52 (mg) mod N2) =mq + mo.

The second homomorphic property of Paillier is
obtaining the multiplication of two plaintexts, m;
and mg, i.e. (my X my), in the encryption domain,
given F, (m1) and mq as follows:

D((E,, (m1))™ mod N?) = my x ma.

The above two properties, imply a trick to apply
in matrix calculation. Imagine we have a plaintext
matrix, A = (a;%),0 < j <m,0 <k <nanda
ciphertext (encrypted) matrix, C = Es(B), i.e. ¢; ; =
Es,; (bi;),0 < i < t,0 < j < m. We would like
to obtain the encryption domain multiplication of
matrix A with matrix C, without knowing matrix B.
The encrypted multiplication matrix, D = (d; 1) ,0 <
i1 < t,0 <k < n, can be obtained as:

dig =[] ()" =[] (Bs,, (bi)“"
j=1 j=1

This operation is called Encryption Domain Matrix
Multiplication (EDMM). Now on, we will indicate
EDMM operator by . That is: D = A x E5(B).

4 Protocol Model

4.1 System Model

Our system consists of a primary and a secondary
network. A database (DB) houses an up-to-date
repository of spectrum usage information of all PUs
throughout its coverage area, which is assumed to be
divided into M equal cells. When an SU requires a
channel, it queries the DB to get the SAI. The SAI
is calculated according to the specific ruleset of the
network.

As was indicated, the current standard which is
applied in database-driven CRNs is the Internet Engi-
neering Task Force (IETF) Protocol to Access White-
Space (PAWS) Databases [3]. According to this stan-
dard the SAI should contain the following informa-
tion:

1S¢0ured)

e A list of some available channels, like ch; (the
DB announces only a subset of all available
channels and not the full list of them)

e Maximum Allowable Transmission Power
(MATP) on each channel, P;

e A time stamp, ¢;, indicating how long the chan-
nel is available for secondary usage throughout
that cell.

Therefore the SAT of each cell can be shown in the
general form of (ch;, Py, t;).

After receiving the SAI, the querying SU chooses
one channel according to its own strategies and pri-
orities. These could be for example [3]:

e The frequencies that permit the highest power

e Frequencies that are available for the longest
period of time

e Just the first set of frequencies that matches its
needs

Then the user starts operating on that channel
considering the MATP and the valid time span. In
our system model we also assume that SUs are able
to perform cryptographic operations.

4.2 Adversary Model

The final goal of an adversary in the context of loca-
tion privacy is to find out the location of a user. We
define the privacy requirement in this paper as an
adversary’s incapability to find the exact location of
an SU. With this regard, three kinds of adversaries
could be imagined:

(1) A curious-but-honest database that follows the
protocol honestly, but is willing to acquire the
location coordinates of querying SUs.

(2) A PU that tries to understand where the loca-
tion of a user from the secondary network (a
SU) is.

(3) An external adversary that wants to find out
the location of the SUs. This could be due to
curiosity, financial ends, or any other reason.

Adversaries 2 and 3 can be analyzed quite similarly.
We will present a detailed privacy analysis of PPQP
against each adversary in Section 6.

5 Protocol Description

In this section we describe the PPQP protocol in a
step by step manner.

5.1 Overview of the Protocol

e Initialization:
Step 1: Every SU chooses a Query Region
(QR), which will remain unchanged. The size
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of the QR, i.e. the number of cells inside it, is
decided according to the level of privacy that
the SU intends to achieve. This size cannot be
larger than a limit which is predefined by the
DB, in order to restrict computational complex-
ity of the protocol. The SU announces its QR
to the DB. The SU also chooses a pair of public
and private keys for the Paillier cryptosystem.

e Query Process:

Step 2: Whenever an SU needs a channel, it
sends a Channel Request Message (CRM) to
the DB. This message contains all required char-
acteristics according to the ruleset besides the
SU’s ID.

Step 3: The SU encrypts the coordinates of
row and column in which it is located inside
the QR with its own private key and sends the
encrypted values to the DB.

e Query Reply:
Step 4: DB arranges SAI for cells within the
QR of the requesting SU inside a matrix. This
step and the previous one could be performed
simultaneously and not necessarily in sequential
order.
Step 5: Then the DB multiplies the SAT matrix
with user-sent vectors in encryption domain and
sends the result back to the SU.
Step 6: The SU decrypts the received message
from the DB to obtain the SAT of its cell. Then
it picks up its desirable channel according to
its requirements and starts activation on that
channel. An overview of the protocol is given
in Figure 1.

5.2 Protocol Details

We will now present a detailed description of the
protocol.

Step 1: At the beginning of the whole protocol, each
SU decides on a QR. A QR is an n x m rectangle,
where n and m are upper-limited by the DB. Every
cell in the QR is indicated by a (row,col) pair, where
0 < row < nand 0 < col < m are the row and
column number, respectively. The QR is arbitrarily
chosen around SU’s real location, locsy = [xsu, ysu]-
We will show the corresponding index of SU’s cell
within the QR by (r,c). The coordinates of (0,0) cell
(the origin cell), loc, = [0, Yo], along with n and m
uniquely describe a QR. This triple is reported to the
DB:

QR = <[-'17o; y0]7 n, m>

The QR is encrypted before reporting to the DB.
For this purpose, SU and the DB may utilize a

lightweight stream cipher. Therefore they should
share a secret key in advance. Every SU also chooses
a pair of public and private keys, K, and K, for
the Paillier cryptosystem, where K, = (NN, g) and
Kpri = ()‘7 /’L)'

Step 2: When an SU needs a channel, it sends a
CRM to the DB. The CRM contains user ID, which
has been assigned by the DB through SUs initial
registration to the network. Other parameters, such
as antenna height and other characteristics may also
be necessary according to the ruleset that governs
the network.

Step 3: The SU is located in cell (r,c) of the QR.
This can be translated into two 1-Hamming weight
vectors, of which only the (7)™ or (¢)!* element is
equal to one. The SU applies Paillier to encrypt the
two vectors element-wise and sends the resulted bi-
vectors to the DB:

Tene = (Fs, (0),..., B (1),..., Es, (0)),
Cene = (E,(0),...,E (1),..., B (0)),
where si,...,58,, and t1,...,t, are random num-

bers chosen by the SU for Paillier encryption.

Regarding Paillier encryption scheme (Section 3.2),
the vectors are in fact equal to:

384G, ..., 8m) mod N2,

,teg,,tn) mod N2.

Tene = (51; ..
Cone = (t1,...

Step 4: Upon reception of the CRM, the DB arranges
the SAT for the cells within the QR of the requesting
SU. We indicate this n x m matrix by SAI:

SAI =

anl " Gpm

Step 5: The DB then performs an encryption domain
matrix multiplication (Section 3.3) on SAI with Tep,.
and Cepne. It is easy through some manipulation to
show that:

Fone * SAI * Egnc = E(ar.) d:ef fffc

which is the encrypted value of the SAT of SU’s cell.
Then a3V is sent to the SU.

enc

Step 6: The SU decrypts a5U, with its private key

to obtain the SAT of its own cell. Then it picks up a
channel, tunes on it and starts utilizing the channel.

1S¢0ured)
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o u
SU DB
INITIALIZATION
1. QR — |
QUERY PROCESS
2. CRM —

3. Encrypted Row and/or Column Vector —p

QUERY REPLY

6. Decrypts and Selects a Channel

4. Determines SAI

«+—5. EDMM=Encrypted Cell (or Column/Row SAI)

Figure 1. PPQP protocol structure

5.3 Efficiency Improvement

In order to improve PPQP to make it more efficient
both computationally and communicationally, small
changes may be applied.

According to Section 5.2, in PPQP the user sends
both its row and column vectors (in the encrypted
form) to the DB, in order to access the SAI of the
cell in which it is located. As an alternative, the
SU may receive the SAI of the whole row or the
whole column and select its own cell. While still being
much more efficient than downloading the SAT matrix
of the whole QR, this approach reduces the total

communicational and computational cost significantly.

We will discuss the cost benefit in more detail in
Section 7.

In the improved version of the protocol, Steps 1,
2 and 4 remain the same as in Section 5.2. Steps
3, 5 and 6 should be modified as follows. Here we
assume that SU is willing to decrypt and send its
row vector. The case in which the column vector is
intended would be similar.

Step 1 (unchanged): At the beginning of the whole
protocol, each SU decides on a QR. A QR is an n xm

rectangle, where n and m are upper-limited by the DB.

Every cell in the QR is indicated by a (row,col) pair,
where 0 < row < n and 0 < col < m are the row and
column number, respectively. The QR is arbitrarily

chosen around SU’s real location, locsy = [xsu, ysu]-

We will show the corresponding index of SU’s cell
within the QR by (r,c). The coordinates of (0,0) cell
(the origin cell), loc, = [x,, Yo], along with n and m
uniquely describe a QR. This triple is reported to the
DB: QR := ([z0, Yo), n,m)..

The QR is encrypted before reporting to the DB.
For this purpose, SU and the DB may utilize a
lightweight stream cipher. Therefore they should
share a secret key in advance. Every SU also chooses
a pair of public and private keys, K, and K, for
the Paillier cryptosystem, where K,,;, = (IV, g) and

ISeﬂure@
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Step 2 (unchanged): When an SU needs a channel,
it sends a CRM to the DB. The CRM contains user
ID, which has been assigned by the DB through SUs
initial registration to the network. Other parameters,
such as antenna height and other characteristics may
also be necessary according to the ruleset that governs
the network.

Step 3m. The SU applies Paillier cryptosystem to
encrypt its binary row vector element-wise, to achieve:

Tene = (Esl (O)a cee 7Es,.(1)a ey ESm (0))
= (51,...,809,.,5m) mod N2

Then it sends 7, to the DB.

Step 4 (unchanged): Upon reception of the CRM,
DB arranges the SAI for the cells within the QR of

the requesting SU. We indicate this n x m matrix by
SATL

SAI =

Step 5m. The DB performs an encryption domain
matrix multiplication (Section 3.3) on SAI with 7¢yc,

to achieve TepoxSAI = (E (ar1), ..., E(are),. ..
ar, ., which is the ciphertext of (r)!" row of SAI

matrix of the QR, SAI. This vector is sent back to
the SU.

Step 6m. SU decrypts only the () element of a’,,,.
using its private key, to obtain the SATI of its own
cell. Then it decides a channel to pick up, tunes on
it and starts utilizing the channel. We will discuss
the benefits of the modified version in more details

in Section 8.

E (arm))
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6 Privacy Analysis

This section models the privacy requirements through
a game between adversary A and challenger C, to
examine the security properties of PPQP protocol.
Adversary A could be the DB, a PU or an external
attacker, as indicated in Section 4.2. Then, the prob-
abilistic advantage of adversary A in winning the
game is calculated. The goal is to show that even if
the adversary has some a priori information regard-
ing the SU’s location, PPQP can satisfy the privacy
requirement described in Section 4.2.

The game can be generally described as follows.

Setup: The adversary A chooses two distinct random
locations (cells), like loc® and loct, among the M cells
that the DB covers.

Algorithm execution: The challenger C' chooses a
random bit a € {0, 1}. It selects loc® as the location of
the SU in the protocol. C' then executes the protocol
accordingly.

Challenge: C' provides A with protocol transcript

(Fene and/or Gepe and a5 or af,. ) and asks A about
a.

Guess: A guesses a bit b € {0,1} according to the
information it has received and sends it back to C. A
wins the game if b = a; otherwise, A loses.

We measure the probabilistic advantage for adver-
sary A in this game, when it correctly guesses bit a in
the proposed protocol. This is referred to as user lo-
cation advantage of adversary A and will be denoted
by Adv(A) = |Pr(b=a)— 1| (asin [33] and [34]). To
measure this advantage we consider two cases: when
loca’ is located inside the QR and when it is not. By
a’ we mean the complement of bit a. In other words,
loc® is the location which has not been involved in
the protocol.

(1) loc* is located inside QR: If the adversary is
not the DB, it does not have any information
about QR. Because QR is reported to the DB
through an encrypted message. Therefore, it
must randomly guess the value of a. If the ad-
versary is the DB, although it knows Q R, since
this area has been arbitrarily chosen by the SU,
the DB still cannot find out anything about
a. Moreover, the Paillier encryption has indis-
tinguishable ciphertexts under chosen-plaintext
attack. This means that for any probabilistic
polynomial-time adversary A, given an encryp-
tion of a message randomly chosen between two
known messages, the success probability of A
to identify the chosen message is negligibly bet-
ter than that of randomly guessing. Hence, in
this case, the success probability of A to de-

tect a having (Fepe and/or €e,. and a3¥ (or

a’ . ) is negligibly better than that of randomly
guessing. Therefore, we can say that for any ad-
versary, Pr(b = a) = 1 + ¢ where ¢ is a small
enough real number.

(2) loc™ is not located inside QR: Depending on
whether the adversary is the DB or not (it can
be a PU or any external attacker), the result
is different. When the DB plays the role of the
adversary, since it knows QR, it will definitely
know the value of bit a, i.e. Pr(b = a) = 1.
However, if another entity plays the role of A,
since it does not have any information about
@R, it must guess the value of a randomly, i.e.
Pr(b = a) =  + ¢, where ¢ is a small enough
real number.

Before computing the probabilistic advantage of
adversary A in this game, we should identify the
occurrence probability of each of the above-cited cases.

M
and m are the dimensions of QR and M is the total
number of cells in DB’s coverage area.

For case 1 we have Pr (loc“/ € QR) = 2™ where n

For case 2 we have Pr <loca ¢ QR) =1-47

Now, we can derive the following probabilistic ad-
vantage for adversary A, according to whether it is
the DB or not:

e Adversary A is the DB
Adv(DB) = |Pr(b = a) — %\
= |Pr (loca/ € QR) Pr (b =a| loc S QR)

a’ a’ 1
+Pr(loc ¢QR)Pr(b:a\loc gQR)—§|
(1) (-) -

M 2 M 2
:1<1,m)+m5.
2 M M

According to the above equation, by increas-
ing the number of cells in the QR, the informa-
tion obtained by the DB about SU’s location
can be decreased. (Note that € is a negligibly
small number). Therefore, the larger the num-
ber of cells in the QR, the less the advantage
gained by an untrusted DB. However, it would
result in more complexity.

e Adversary A is not the DB

1
Adv(others'than'DB) = |Pr(b = a) — §|
= |Pr (local S QR) Pr (b =a| loc” S QR)

+ Pr (loca/ ¢ QR) Pr (b =a| loca/ ¢ QR) — %|

'rmL>< 1+ + (1 nm « 1+ 1
M 2 "¢ M 27°) 72
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Therefore, the information any adversary other
than the DB could obtain about SU’s location is
negligibly small.

7 Complexity Analysis
7.1 Computational Complexity

To evaluate the computational overhead of our proto-
col, we consider the operations performed by SU and
the DB in one round of the protocol. Hereafter, we
indicate the basic form of the protocol by Method I
and call the efficiency-improved version Method II.

On SU side: n+m — 2 (in Method I) or n — 1 (or
m — 1) (in Method II) Paillier encryption processes
on “0” plaintext and two (in Method I) or one (in
Method II) encryption process(s) on “1” plaintext
should be performed. This is while each encryption
process requires one modular exponentiation and one
modular multiplication. Although this is true in gen-
eral case, considering the specific values of the plain-
texts, each encryption process reduces to only two
multiplications in Method I and one in Method II.

Furthermore, in the last step of the protocol, SU
performs one decryption process (in both Methods),
consisting of one modular exponentiation, one modu-
lar multiplication and one modular addition.

The computational complexity on SU side is sum-
marized in Table 1 and Table 2 for Methods I and II,
respectively.

Table 1. Computational cost of method I

SU DB

Modular Exponentiation 1 nm + m
Modular Multiplication 3 nm — 1
Modular Addition 1 —

On the DB side: The computational job of the DB
takes place in the 4" step of the protocol. In Step 4 of
Method I, the DB first performs the EDMM process
on the SAT matrix with SU’s encrypted column vec-
tor. Then it executes another EDMM on the resulted
vector with SU’s encrypted row vector. The fodrmer
requires a total of nm modular exponentiations plus
m(n — 1) modular multiplications. The latter takes
m modular exponentiations, plus m — 1 modular mul-
tiplications. Resulting in a total of nm + m modular
exponentiations, plus nm — 1 modular multiplications
(see Table 1).

In Method II, only one EDMM is to be performed,
reducing DB’s computational task to nm modular
exponentiations and nm — n (or nm — m) modular
multiplications (see Table 2).

1S¢0ured)

Table 2. Computational cost of method II

SU DB

Modular Exponentiation 1 nm
Modular Multiplication 2 nm —n

Modular Addition 1 —

7.2 Communicational Complexity

In Step 3 of Method I, the SU should send the en-
crypted values of its row and column vectors to the
DB, which contain n and m elements, respectively.
Assume that a log p-bit cryptosystem is being uti-
lized. This results in a total of (n + m)log p bits for
the user. On the other hand in Step 5, during Query
Reply Process, the DB sends back a single log p-bit
message to the SU. The total communicational over-
head of Method I is thus (n + m + 1)log p bits.

The communicational overhead in the second
method seems to be much more fairly distributed
between the two sides. While the SU sends an n(or
m)-element vector in Step 3, the DB replies with an
m(or n)-element vector in Step 5. The total com-
munication complexity for Method II is therefore
(n + m)log p bits.

The communicational cost for PPQP is summarized
in Table 3.

Table 3. Communicational cost in PPQP

SU DB Total

Method I (n + m)log p log p (n+ m + 1)log p
Method II nlog p mlog p (n+ m)log p

7.3 Comparison with Other Works

We will compare PPQP’s communicational cost with
similar previous approaches. Scaled for providing pri-
vacy among whole coverage area, communicational
complexities are shown in Table 4. Here, M indicates
number of cells under coverage of the DB and log p is
the output length of the cryptosystem. Other parame-
ters will be introduced in each case. We put n = v M
in PPQP’s complexity phrase, 2nlog p, to scale the
QR to the whole coverage area.

Table 4. Communicational cost comparison

Method Communicational Complexity
K-Spectrum Query [13] Mlog (|SAIJ)
1 1yio
LPDB [26] query + gsj&f%

PriSpectrum [14] (2vV' M + 3)log p
PPQP 2V Mlog p

K-Spectrum Query, the method represented in [13],
like ours, takes advantage of the concept of cloaking
region. SUs choose square query regions and report
it to the DB. In response to a CRM, the DB sends
the SAI of all cells within the query region to the
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requesting SU. This, of course, occupies a great por-
tion of the available bandwidth and in turn reduces
network’s throughput significantly. The communica-
tional complexity of K-Spectrum Query is given as
Mlog (|SAI|), where log (|SAI|) is the bit-length of
the SAT of each cell. It can be easily seen that if the
following inequality is satisfied, PPQP’s complexity
is less than that of K-Spectrum Query:

log p

Nora

The worst case happens when log p has its maxi-
mum and /M its minimum values. A bit-length of
2048 bits usually provides satisfactory level of security
and on the other hand, no longer bit-lengths are in-
tended in order to avoid very large communicational
cost. M may take different values. For instance, in
simulations presented in [26] M is taken of order 10°.
In [14] authors have assumed values around 10* for
M. Putting log p = 2048 and M = 10* we will have
lf/gﬂp = 20.48. This is while 21 bits is barely enough
to represent the time stamp (¢;). So, the SAI length of
every cell is of course more than that. (It should be re-
minded that the SAT of every cell can be represented
in its simplest form as (ch;,t;,P; ) triples.) Therefore,
it is obvious that the communicational complexity of
PPQP is much less than that of K-Spectrum Query.

log (|SAI|) >

In PriSpectrum method [14], the SU uses some
blinding factors (like some randomly chosen numbers)
to hide its horizontal and vertical coordinates from
the DB. The user can later use these factors (or their
inverse, for example) to retrieve the information of his
interest. This method is in fact based on the PIR in-
troduced in [15]. The communicational complexity of
PriSpectrum is given by (2v/M + 3)log p. Expanding
the QR to the whole coverage area in PPQP, the com-
municational cost would be 2v/Mlog p, which is less
than that of PriSpectrum. The notable point here is
that the communicational complexity of PriSpectrum
is exactly the mentioned value (due to the nature
of the method), but in PPQP one can (and usually
does) choose a smaller QR to reduce the complexity,
2nlog p, where n < v/M. This capability is very use-
ful specially when the network is congested or when
small bandwidth is available.

LPDB method [26] is based on Cuckoo filter in-
troduced in [27]. Using this filter, a different repre-
sentation of DB’s information can be provided. The
SU arranges a query and checks if an available chan-
nel exists in its location. As can be seen in Table 4,
the communicational complexity phrase for LPDB
contains several parameters. Some are related to the
Cuckoo filter. (g is the number of DB entries which
contain available channels; s the number of all TV

band channels; € the false positive rate of Cuckoo fil-
ter; a the load factor of Cuckoo filter; and query is
the bit-length of user’s query.) According to graphs
presented in [26], LPDB’s communicational cost in
no information leakage mode is larger than that of
PPQP, even in its best case.

In the light of the above discussions, it can be seen
that PPQP has reduced the communicational cost
compared to previous similar methods and has the
least cost among them.

8 Simulation Results

In this section, we present and analyze the simulation
results of PPQP protocol. To this end, we implement
the protocol for both entities (SU and DB) running
on a Microsoft PC with a dual-core 2GHz CPU, 2GB
RAM and a 64-bit Windows7 Ultimate OS, using
Java programming framework. We consider the per-
formance for key lengths of 1024 and 2048 bits of the
Paillier cryptosystem. We measure and compare the
average computation latency in one round of PPQP
protocol for SU and DB as well as the aggregated
latency, for different values of QR size. For ease of
display, we have considered square QRs, where both
dimensions (n and m) are the same. We simulate both
methods and also compare them with each other.

Computational delay for Method I, Method II and
their comparison are shown in Figure 2, Figure 3 and
Figure 4, respectively. As can be seen in all figures,
the execution time for SU is independent from QR
dimension, n. This is because in the forward direction
(Step 3), SU just multiplies g with s twice (in Method
I, Figure 2a) and once (in Method II, Figure 3a) for
Paillier encryption. In the backward direction (Step
6), it does the same once, for Paillier decryption. Note
that only two (in Method I) and one (in Method II)
of the vectors’ elements are non-zero.

However, DB should perform the EDMM operation
in both methods. This process depends on the size
of vectors and the SAI matrix dimension. In other
words, DB’s execution time increases as the QR size,
n, increases. This is true about both methods and
can be observed in Figure 2b and Figure 3b. The
total computational latency for Methods I and II,
which follows the same trend as the DB’s, is shown
in Figure 2c and Figure 3c.

Figure 4 presents a visual comparison between exe-
cution latency of Methods I and II for 1024-bit Pail-
lier. As was discussed, SU’s computational delay is
independent from n, thus the method would not af-
fect it (Figure 4a). However, Figure 4b shows a sig-
nificant decrease in computation time for the DB in
Method II compared with the first method. This re-
duction is due to fewer EDMM operations in Method
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Figure 2. Performance measurements for method I

II. Since SU’s execution time is constant, the total
protocol latency follows DB’s trend, hence experienc-
ing significant reduction in Method II (Figure 4c). It
can be concluded that Method II is much more effi-
cient in terms of execution time. Especially in cases
where stricter privacy is aimed, Method II would be
preferable. The difference between the two methods
becomes more significant as the QR size, n, increases.

9 Conclusion

In this paper, we introduced a cryptography-based
protocol (PPQP) for spectrum query in database-
driven cognitive radio networks, which preserves lo-
cation privacy of secondary users. This method takes
advantage of homomorphic properties of some well-
known cryptosystems. We examined PPQP’s capabil-
ity for preserving users’ location privacy and showed
that it does the duty well against different adversaries.
Our protocol was also observed to have relatively low
communicational cost.
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Figure 3. Performance measurements for method II

Acknowledgment

This work was partially supported by Iran-NSF Grant
No. 92-32575.

References

[1] ECC. Report 159, technical and operational re-
quirement for the possible operation of cognitive
radio system in the white space of the frequency
band 470-790 mhz. 2011.

[2] FCC. Third order and memorandum opinion
and order, in the matter of unlicensed operation
in the TV broadcast bands, additional spectrum
for unlicensed devices below 900 mhz and in the
3 ghz band. 2012.

[3] V. Chen (Ed.), S. Das, L. Zhu, J. Malyar,
and P. McCann. RFC 7545, Protocol to Ac-
cess White-Space (PAWS) databases. DOI
10.17487/RFC7545, Available: http://www.rfc-
editor.org/info/rfc75454, 2015.

[4] R. Shokri, G. Theodorakopoulos, J. Y. Le
Boudec, and J. P. Hubaux. Quantifiying loca-
tion privacy. In IEEE Symposium on Security




July 2022, Volume 14, Number 2 (pp. 215-227)

g || ethod | esslllem Method I

0.6
o
§0.4
]
EO.Z
ot —0
4 9 16 25 36
n2
(a) SU
Method| Methodll
1.2
1 s

go.s /

o6 |
€

0.4
0.2 bﬁ‘é
0 — T T ]

4 9 16 25 36
n?
(b) DB
g [\ ethod|
1.2
1

Time(sec)
o ©C O o
N B o o

(¢) Total runtime

Figure 4. Runtime comparison between method I and method

II

[5]

and Privacy, pages —, 2011.

M. Grissa, B. Hamdaoui, and A. A. Yavuz. Loca-
tion privacy in cognitive radio networks: a survey.
IEEE Communications Surveys and Tutorials,
19:1726-1760, 2017.

R. L. Rivest, L. Adleman, and M. L. Dertouzos.
On data banks and privacy homomorphisms.
Foundations of Secure Computation, 19:169-179,
1978.

I. T. Lien, Y. H. Lin, J. R. Shieh, and J. L.
Wu. A novel privacy preserving location-based
service protocol with secret circular shift for K-
NN search. IEEFE Transactions on Information
Forensics and Security, 8:863-873, 2013.

J. Xu, H. Yu, C. Xu, and N. Zheng. A dynamic
spatial cloaking algorithm for location privacy.
In IET International Conference on Information
Science and Control Engineering, pages —, 2012.
L. Sweeney. Achieving k-anonymity privacy pro-
tection using generalization and suppression. In-
ternational Journal on Uncertainty, Fuzziness
and Knowledge-based Systems, 10:571-588, 2002.

[10] P. Paillier. Public-key cryptosystems based on

[15]

[16]

[20]

[21]

22]

composite degree residuosity classes. In 17th Int.
Conf. on Theory Application of Cryptographic
Techniques, pages 223-238, 1999.

B. Chor, E. Kushilevitz, O. Goldreich, and M. Su-
dan. Private information retrieval. Journal of
the ACM (JACM), 45:—, 1998.

H. Li, Q. Pei, and W. Zhang. Location privacy-
preserving channel allocation scheme in cogni-
tive radio networks. International Journal of
Distributed Sensor Networks, 12:—, 2016.

L. Zhang, C. Fang, Y. Li, H. Zhu, and M. Dong.
Optimal strategies for defending location infer-
ence attack in database-driven crns. In IEEE
International Conference on Communications
(ICC), pages 7640-7645, 2015.

Z. Gao, H. Zhu, Y. Liu, M. Li, and Z. Cao.
Location privacy in database-driven cognitive
radio networks: Attacks and countermeasures. In
IEEE Conference on Computer Communications
(INFOCOM’13), pages 2751-2759, 2013.

J. Trostle and A. Parrish. Efficient computation-
ally private information retrieval from anonymity
or trapdoor groups. In the 13th International
Conference on Information security (ISC’10),
pages 114-128, 2010.

E. Troja and S. Bakiras. Leveraging p2p inter-
actions for efficient location privacy in database-
driven dynamic spectrum access. In the 22nd
ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems,
pages —, 2014.

C. Gentry and Z. Ramzan. Single-database pri-
vate information retrieval with constant com-
munication rate. In International Colloguium
on Automata, Languages and Programming
(ICALP’05), pages 803-815, 2005.

E. Troja and S. Bakiras. On packing r-trees. In
24th IEEE International Conference on Com-
puter Communication and Networks (ICCCN),
pages 1-8, 2015.

I. Kamel and C. Faloutsos. On packing r-trees,.
In the second international conference on In-
formation and knowledge management (ACM),
pages 490-499, 1993.

Z. Salami, M. Ahmadian-Attari, H. Jannati,
and M. R. Aref. A location privacy-preserving
method for spectrum sharing in database-driven
cognitive radio networks. Wireless Personal
Communications, 95:3687-3711, 2017.

Z. Zhang, H. Zhang, S. He, and P. Cheng. Achiev-
ing bilateral utility maximization and location
privacy preservation in database-driven cogni-
tive radio networks. In IEEE 12th International
Conference on Mobile Ad Hoc and Sensor Sys-
tems (MASS), pages 181-189, 2015.

M. E. Andres;, N. E. Bordenabe,

ISeﬂur@

at




226

Location Privacy Preservation for SUs in a Database-Driven CRN — Salami, Ahmadian, Aref, and Jannati

K. Chatzikokolakis, and C. Palamidessi. Geo-
indistinguishability: Differential privacy for
location-based systems. In ACM SIGSAC
conference on Computer and communications
security, pages 901-914, 2013.

[23] Z. Chen, L. Chen, and H. Zhong. Towards secure
and verifiable database-driven spectrum sharing.
In 47th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks
(DSN), pages —, 2017.

[24] A. C. C. Yao. How to generate and exchange
secrets. In 16th Annual Symposium on Foun-
dations of Computer Science (FOCS), pages —,
1975.

[25] Z. Chen, L. Huang, and L. Chen. ITSEC: An
information-theoretically secure framework for
truthful spectrum auctions. In International
Conference on Computer Communications (IN-
FOCOM), pages 2065—2073, 2015.

[26]) M. Grissa, A. A. Yavuz, and B. Hamdaoui.
Cuckoo filter-based location-privacy preservation
in database-driven cognitive radio networks. In
IEEE World Symposium on Computer Networks
and Information Security (WSCNIS), pages 1-7,
2015.

[27] B. Fan, D. G. Andersen, M. Kaminsky, and M. D.
Mitzenmacher. Cuckoo filter: Practically bet-
ter than bloom. In 10th ACM International on
Conference on emerging Networking Experiments
and Technologies, pages 75-88, 2014.

[28] B. Bahrak, S. Bhattarai, A. Ullah, J. Park,
J. Reed, and D. Gurney. Protecting the primary
users’ operational privacy in spectrum sharing.
In IEEFE International Symposium on Dynamic
Spectrum Access Networks (DYSPAN’1}), pages
236—247, 2014.

[29] M. Clark and K. Psounis. Can the privacy of pri-
mary networks in shared spectrum be protected?
In 35th IEEE International Conference on Com-
puter Communications (INFOCOM), pages 1-9,
2016.

[30] A. B. Mosbah, T. A. Hall, M. Souryal, and
H. Afifi. An analytical model for inference at-
tacks on the incumbent’s frequency in spectrum
sharing. In IEEFE International Symposium on
Dynamic Spectrum Access Networks (DYSPAN),
pages —, 2017.

[31] R.Rivest, A. Shamir, and L. Adleman. A method
for obtaining digital signatures and public-key
cryptosystems. Communications of the ACM,
21:120-126, 1978.

[32] C. Gentry. Fully homomorphic encryption using
ideal lattices. In the 41st ACM Symposium on
Theory of Computing (STOC), pages 169-178,
2009.

[33] I. Bilogrevic, M. Jadliwala, V. Joneja, K. Kalkan,

1S¢0ured)

J. P. Hubaux, and 1. Aad. Privacy-preserving op-
timal meeting location determination on mobile
devices. IEEE Trans. on Information Forensics
and Security, 9:1141-1156, 2014.

[34] Y. Ling, S. Ma, Q. Huang, and X. Li. A general
two-server framework for ciphertext-checkable
encryption against offline message recovery at-
tack. In Cloud Computing and Security (ICCCS
2018), pages 370-382, 2018.

Zeinab Salami received the B.Sc.
degree in Electrical Engineering and
the M.Sc. degree in Communica-
tions Engineering, both from the De-
partment of Electrical Engineering,
Sharif University of Technology, Iran,
in 2007 and 2010, respectively. She is
currently working toward the Ph.D. degree in Commu-
nications Engineering at the Department of Electrical
Engineering, K. N. Toosi University of Technology,
Iran, and is a member of Information Systems and
Security Lab (ISSL) at Sharif University of Technol-
ogy. Her research interests include network security,
cognitive radio networks, and cryptography.

Mahmoud Ahmadian-Attariisa
Professor at the Department of Elec-
trical Engineering, K. N. Toosi Uni-
versity of Technology, Iran. He re-
ceived the combined B.Sc. and M.Sc.
degree in Electrical Engineering from
University of Tehran, Iran, in 1977.
He received the Ph.D. degree in Digital Communica-
tion Systems from University of Manchester in 1997.
His research interests include coding theory and cryp-
tography.

Mohammad Reza Aref received
his B.Sc. in 1975 from University of
Tehran, his M.Sc. and Ph.D. in 1976
and 1980, respectively, from Stanford
University, all in Electrical Engineer-
ing. He was a faculty member of Is-
fahan University of Technology from
1982 to 1995. He has been a Professor of Electrical
Engineering at Sharif University of Technology since
1995. His current research interests include communi-
cation theory, information theory, and cryptography.

Hoda Jannati is providing consul-
tancy services in the field of infor-
mation security to MCI R&D center.
She was a post-doctoral researcher
in the School of Computer Science
at Institute for Research in Funda-
mental Sciences (IPM) from 2014 to




July 2022, Volume 14, Number 2 (pp. 215-227)

2018, Iran. She received the B.Sc. degree in Electrical
Engineering in 2006, the M.Sc. degree in Cryptogra-
phy Communications in 2008, and the Ph.D. degree
in Communications Systems in 2014. Her main re-

search interests include security in wireless communi-
cation systems specially in RFID and sensor network
systems, localization algorithms and location privacy.

ISeﬂur@

~l




	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Homomorphic Encryption
	3.2 Paillier Cryptosystem
	3.3 Encryption Domain Matrix Multiplication

	4 Protocol Model
	4.1 System Model
	4.2 Adversary Model

	5 Protocol Description
	5.1 Overview of the Protocol
	5.2 Protocol Details
	5.3 Efficiency Improvement

	6 Privacy Analysis
	7 Complexity Analysis
	7.1 Computational Complexity
	7.2 Communicational Complexity
	7.3 Comparison with Other Works

	8 Simulation Results
	9 Conclusion

