
ISeCure
The ISC Int'l Journal of
Information Security

July 2022, Volume 14, Number 2 (pp. 193–213)

http://www.isecure-journal.org

Attacks to Some Recently Proposed CL-SC Schemes and

Presenting a Secure Scheme with KSSTIS ∗∗

Parvin Rastegari 1,∗
1Electrical and Computer Engineering Group, Golpayegan College of Engineering, Isfahan University of Technology,
Golpayegan, 87717-67498, Iran

A R T I C L E I N F O.

Article history:

Received: January 7, 2021

Revised: July 3, 2021

Accepted: February 12, 2022

Published Online: February 20, 2022

Keywords:
Certificateless Signcryption,

KSSTIS, Standard Model,

Random Oracle Model

Type: Research Article

doi: 10.22042/ISECURE.2022.

266258.602

dor: 20.1001.1.20082045.2022.
14.2.7.9

A B S T R A C T

The certificateless public key cryptography (CL-PKC) setting, makes it possible

to overcome the problems of the conventional public key infrastructure and the

ID-Based public key cryptography, concurrently. A certificateless signcryption

(CL-SC) scheme is an important cryptographic primitive which provides the

goals of a signature scheme and an encryption scheme both at once, in a

certificateless setting. In addition to the basic security requirements of a CL-SC

scheme (i.e. the unforgeability and the confidentiality), a new security notion

called as the known session specific temporary information security (KSSTIS)

has been proposed in the literature, recently. This security notion guarantees

the confidentiality of the message even if the temporary information, used for

creating the signcryption on the message, reveals. However, as discussed in the

literature, there are not any secure CL-SC schemes in the standard model (i.e.

without the assumption of random oracles) which guarantees the KSSTIS. In

this paper, three recently proposed CL-SC schemes (Caixue, Shan and Ullah

et al.’s schemes) are analyzed and it is shown that these schemes not only do

not satisfy the KSSTIS, but also they do not even provide the basic security

requirements of a CL-SC scheme. Furthermore, an enhanced secure CL-SC

scheme is proposed in the standard model which satisfies the KSSTIS.

c© 2020 ISC. All rights reserved.

1 Introduction

T he conventional public key infrastructure (PKI)
makes difficulties for the certificate authority

(CA), as it must manage the creation, the storage
and the propagation of the certificates of all users’
public keys. In order to overcome this problem, the
concept of the ID-based public key cryptography (ID-
PKC) was proposed in which a private key generation

∗ Corresponding author.
∗∗This article is an extended/revised version of an ISCISC’17

paper.

Email address: p.rastegari@iut.ac.ir

ISSN: 2008-2045 c© 2020 ISC. All rights reserved.

center (PKG) creates the private keys for the users
from the unique identifier information of the users
without requiring the corresponding public keys to be
certified [1]. However ID-PKC suffers from a major
problem called as the key escrow problem, as PKG
knows the private keys of all users. The well-known
certificateless public key cryptography (CL-PKC) set-
ting provides solutions for overcoming the problems
of the conventional PKI and ID-PKC, simultaneously
[2]. In a CL-PKC, a part of the private keys is gener-
ated by a key generation center (KGC) and the other
part is created by the user himself/herself.

In 1997, Zhang introduced the notion of the sign-
cryption scheme which is an important primitive in

ISeCure

194 Attacks to Some Recently Proposed CL-SC Schemes and Presenting a SS with KSSTIS — Rastegari

public key cryptography to satisfy the confidentiality
and the unforgeability both at once, in an approach
much more efficient than encrypting and signing mes-
sages seperately [3].

In 2008, Barbosa and Farshim proposed the notion
of the signcryption scheme in the ceritificateless set-
ting, called as the certificateless signcryption (CL-SC)
scheme [4]. A CL-SC scheme should satisfy two basic
security requirements of a signcryption scheme (i.e.
the confidentiality and the unforgeability) against two
types of attackers named as the public key replace-
ment attacker (AI) and the malicious KGC attacker
(AII) in the literature. The researchers had not pro-
posed any CL-SC schemes without the assumption
of the random oracles till 2010. Note that according
to the Rogaway’s discussions in [5], the schemes with
the security proofs in the random oracle model may
be insecure when the real-world primitives (such as
hash functions) are used instead of the random ora-
cles. So, it is desirable to provide the security proofs
in the standard model, i.e. without the assumption of
the random oracles. In 2010, Liu et al. proposed the
first CL-SC scheme in the standard model [6] which
was later attacked in several papers [7–9]. These at-
tacks break the confidentiality and the unforgeability
of the proposal in [6] against both malicious KGC
and public key replacement attackers. Consequently,
researchers worked more on this topic and tried to
propose some CL-SC schemes without random ora-
cles [10–20]. However, the proposed scheme in [10] is
still vulnerable against the malicious KGC attacks
proposed in [8]. Furthermore, the proposal in [13] is
vulnerable in the sense of both the confidentiality and
the unforgeability against the key replacement and
the malicious KGC attacks proposed in [21].

In 2018, the authors in [17] introduced a new secu-
rity notion called as the known session specific tem-
porary information security (KSSTIS) for a CL-SC
scheme. This security notion guarantees the confiden-
tiality of the message even if the temporary informa-
tion, used for creating the signcryption on it, reveals.
Furthermore, the authors in [17] proposed a CL-SC
scheme with the claim of satisfying both the basic
security requirements (i.e. the unforgeability and the
confidentiality against AI and AII) and the KSSTIS
in the standard model. However, their proposal has
some errors in its construction and is insecure accord-
ing to the discussions in [20] and [22]. The authors
in [20] tried to propose another CL-SC scheme with
KSSTIS in the standard model. The authors in [23]
analyzed the scheme in [20] and designed an attack
against its confidentiality, however their attack is too
weak, as the attacker needs to know the private key
of the sender to break the confidentiality. So, to the
best of the author’s knowledge, there are not any

secure CL-SC scheme in the standard model which
satisfies the KSSTIS, in the literature.

As a result of the previous discussions, the CL-
SC schemes in [11, 12, 14, 16, 18, 19] are the only
CL-SC schemes without random oracles in the lit-
erature which any attacks have not been proposed
against them till now. However, as discussed in [20]
and will discuss in this paper, none of these schemes
do not satisfy the KSSTIS. In this paper, the author
will enhance the scheme in [16] to provide the first
CL-SC scheme with KSSTIS in the standard model.
Note that the scheme in [16] is more efficient than
the previously proposed schemes, i.e. the schemes in
[11, 12, 14]. Furthermore, although the new proposed
CL-SC schemes in [18], [19] and [24] are claimed to
be more efficient than the proposal in [16], however
none of them are secure according to the attacks will
be presented in this paper (Note that the proposed
scheme in [24] is not proved in the standard model).
As a result, the proposal in [16] seems to be the best
candidate among all the CL-SC schemes in the stan-
dard model to enhance for providing the KSSTIS.

1.1 Contributions:

The contributions of this work can be categorized as
follows:

• The recently proposed CL-SC schemes [18, 19,
24] are analyzed and some attacks are designed
which show the vulnerabilities of these schemes.
Moreover, it is shown that none of these schemes
guarantee the KSSTIS. So, these new proposed
CL-SC schemes not only do not satisfy the
KSSTIS, but also they do not even provide the
basic security requirements of a CL-SC scheme.
As a result none of them seem to be a good can-
didate for improving to provide the enhanced
security notion KSSTIS.

• The CL-SC scheme in [16] (which seems to
be the best candidate among all the CL-SC
schemes according to the previous descriptions)
is enhanced to provide the first CL-SC scheme
with KSSTIS in the standard model. The new
proposal not only inherits the basic security re-
quirements (i.e. the unforgeability and the con-
fidentiality against AI and AII) from [16], but
also guarantees the enhanced security notion
KSSTIS.

The rest of the paper is prepared as follows. Some
required preliminaries are provided in Section 2. In
Section 3, the concept of the CL-SC scheme and its
security requirements are described. In Section 4, the
author analyzes Caixue’s CL-SC Scheme [18] and de-
signs an attack against its unforgeability. In Section 5,
the author analyzes Shan’s CL-SC Scheme [19] and

ISeCure

July 2022, Volume 14, Number 2 (pp. 193–213) 195

designs malicious KGC attacks against its unforge-
ability and confidentiality. In Section 6, the author
analyzes Ullah et al.’s CL-SC Scheme [24] and shows
the errors and weaknesses of this scheme. In Sec-
tion 7, the author proposes her CL-SC scheme with
the KSSTIS security in the standard model. In Sec-
tion 8, a comparison of CL-SC schemes is provided.
Finally, the paper is concluded in Section 9.

2 Preliminaries

2.1 Bilinear Pairings

Let G1 and G2 be multiplicative cyclic groups of
prime order p and g be a generator of G1. An admissi-
ble bilinear pairing is a mapping e : G1 ×G1 −→ G2

which satisfies the following properties:

(1) Bilinearity: For all a, b ∈ Z∗p, e(ga, gb) =

e(g, g)ab.
(2) Non-degeneracy: e(g, g) 6= 1G2

.
(3) Computability: There exists an efficient algo-

rithm to calculate e(g, g).

2.2 Related Complexity Assumptions

k+1-Computational-Diffie-Hellman-Exponent (k+1-

CDHE) Problem [25]: Given g, ga, . . . , ga
k ∈ G1 (for

unknown a ∈ Z∗p), compute ga
k+1 ∈ G1.

Definition 1. It is said that (t, ε)-k + 1-CDHE as-
sumption holds in G1 if there are not any algorithms
which can solve the k + 1-CDHE problem in G1 in
time at most t with probability at least ε.

(S, k)-Computational-Bilinear-Diffie-Hellman-
Exponent-Set ((S, k)-CBDHE-Set) Problem [25]: Let
S be a set of integers and S+p S = {i+ j mod λ(p) :
i, j ∈ S}, in which λ(p) is the order of elements
modulo p. Furthermore, consider another integer k /∈
S+p S. The (S, k)-CBDHE-Set problem is that given

{gai ∈ G1 : i ∈ S} (for unknown a ∈ Z∗p) compute

X = e(g, g)a
k

. Note that if S = Sj = {0, 1, . . . , j}
and k = 2j+ 1, the (Sj , 2j+ 1)-CBDHE-Set problem

is that given g, ga, ga
2

, . . . ga
j ∈ G1 (for unknown

a ∈ Z∗p) compute X = e(g, g)a
2j+1

.

Definition 2. It is said that (t, ε)-(S, k)-CBDHE-
Set assumption holds in (G1, G2) if there are not any
algorithms which can solve the (S, k)-CBDHE-Set
problem in (G1, G2) in time at most t with probabil-
ity at least ε.

(S, k)-Decisional-Bilinear-Diffie-Hellman-Exponent-
Set ((S, k)-DBDHE-Set) Problem [25]: Let S be
a set of integers and S +p S = {i + j mod λ(p) :
i, j ∈ S}, in which λ(p) is the order of elements
modulo p. Furthermore, consider another integer

k /∈ S +p S. The (S, k)-DBDHE-Set problem is that

given {gai ∈ G1 : i ∈ S} (for unknown a ∈ Z∗p)
and X ∈ G2, decide whether X = e(g, g)a

k

or not.
Note that if S = Sj = {0, 1, . . . , j} and k = 2j + 1,
the (Sj , 2j + 1)-DBDHE-Set problem is that given

g, ga, ga
2

, . . . ga
j ∈ G1 (for unknown a ∈ Z∗p) and

X ∈ G2, decide whether X = e(g, g)a
2j+1

or not.

Definition 3. It is said that (t, ε)-(S, k)-DBDHE-
Set assumption holds in (G1, G2) if there are not any
algorithms which can solve the (S, k)-DBDHE-Set
problem in (G1, G2) in time at most t with probabil-
ity at least ε.

Remark 1. The security of our proposal in
Section 7 is based on the (S1, 3)-DBDHE-Set,
(S2, 5)-DBDHE-Set, 2-CDHE, 3-CDHE and (S2, 5)-
CBDHE-Set assumptions.

3 CL-SC Scheme

3.1 Syntax

A key generation center (KGC), a sender (A) and
a receiver (B) are three entities in a CL-SC scheme
which has seven algorithms as follows [6] (note that
in the following algorithms the user u may be the
sender A or the receiver B):

• Setup. The KGC runs this phase, as it takes
a security parameter λ as input and returns
system parameters Params which will be prop-
agated and a master secret key msk which is a
secret for the KGC.

(Params,msk)←− Setup(λ).

• Extract Partial Private Key (ExtPPK).
When a user u asks KGC for a partial private
key, the KGC generates a a partial private key
du, on inputs Params, msk and the identity
of the user IDu and sends it to u via a secure
channel.

du ←− ExtPPK(Params,msk, IDu).

• Set Secret Value (SetSV). The user u
chooses a secret value xu for himself/herself,
on inputs Params and IDu.

xu ←− SetSV (Params, IDu).

• Set Private Key (SetPrK). The user u cal-
culates his/her full private key SKu, on inputs
Params, IDu, xu and du and keeps it secret.

SKu ←− SetPrK(Params, IDu, xu, du).

• Set Public Key (SetPuK). The user u cal-
culates his/her public key PKu, on inputs
Params, IDu, xu and (sometimes) du and
publishes it.

PKu ←− SetPuK(Params, IDu, xu, (du)).

ISeCure

196 Attacks to Some Recently Proposed CL-SC Schemes and Presenting a SS with KSSTIS — Rastegari

• Signcryption (SC). The sender A creates
a signcryption δ on a message m, on inputs
Params, m, IDA, SKA, IDB and PKB . Then
A sends δ to B.

δ ←− SC(Params,m, IDA, SKA, IDB , PKB).

• Unsigncryption (USC). Upon receiving δ
from A, the receiver B decrypts and verifies
δ, on inputs Params, δ, IDA, PKA, IDB and
SKB . Then B returns m for a valid and ⊥ for
an invalid signcryption.

USC(Params, δ, IDA, PKA, IDB , SKB) = m/⊥.

It is clear that if a message m is correctly signcrypted
by the SC algorithm, the USC algorithm must return
m (correctness).

3.2 Security Requirements

In a certificateless setting in public key cryptography,
there are two types of adversaries [16]:

• The type I adversary AI who can replace public
keys of the users, but does not have access to
the master secret key which is called as the key
replacement attacker. In adversarial models in
the literature, AI is assumed to have access to
the Public-Key, Partial-Private-Key, Replace-
Public-Key, Private-Key, Signcrypt and Unsign-
crypt oracles.

• The type II adversary AII who has access to
the master secret key, but is not able to replace
public keys which is called as the malicious KGC
attacker. In adversarial models in the literature,
AII is assumed to have access to the Public-
Key, Private-Key, Signcrypt and Unsigncrypt
oracles.

A CL-SC scheme must satisfy two basic security re-
quirements, i.e. the confidentiality and the unforge-
ability against both AI and AII . These security re-
quirements are defined by the corresponding games
against AI and AII , as follows.

3.2.1 Confidentiality

The two following games are useful to define the
confidentiality of a CL-SC scheme in the sense of
IND-CCA against AI and AII , respectively [16, 20].

Game 1. This game is executed between a chal-
lenger C and AI , as follows:

• Initialization. On input a security parameter
λ, C produces Params and msk. Then C gives
Params to AI and keeps msk secret.

• Phase 1 Queries. In this phase, C must re-
spond to all polynomially bounded number of
AI ’s queries from Public-Key, Partial-Private-

Key, Replace-Public-Key, Private-Key, Sign-
crypt and Unsigncrypt oracles.

• Challenge. In this step, AI chooses two equal
lengths messages m0 and m1 and two identities
IDA∗ and IDB∗ and sends them to C. C flips a
coin to pick a random γ ∈R {0, 1} and creates a
signcryption δ∗ of mγ from A∗ to B∗ and sends
it to AI .

• Phase 2 Queries. AI issues polynomially
bounded number of queries to the oracles sim-
ilar to that in Phase 1 Queries and C must
respond to them.

• Guess. AI returns γ∗.

AI is the winner of Game 1 if:

(1) γ∗ = γ.
(2) AI cannot obtain SKB∗ .
(3) AI cannot obtain SKu of a user u, if the corre-

sponding public key has already been replaced.
(4) AI cannot obtain dB∗ if PKB∗ has been re-

placed before the challenge step.
(5) In phase 2 queries, AI is not allowed to send

an Unsigncrypt query on δ∗ of IDA∗ to IDB∗ ,
unless PKA∗ or PKB∗ , used to signcrypt mγ ,
has been replaced after sending the challenge.

Game 2. This game is executed between a chal-
lenger C and AII , as follows:

• Initialization. On input a security parameter
λ, C produces Params andmsk and gives them
to AII .

• Phase 1 Queries. In this phase, C must re-
spond to all polynomially bounded number of
AII ’s queries from Public-Key, Private-Key,
Signcrypt and Unsigncrypt oracles.

• Challenge. In this step,AII chooses two equal
lengths messages m0 and m1 and two identities
IDA∗ and IDB∗ and sends them to C. C flips a
coin to pick a random γ ∈R {0, 1} and creates a
signcryption δ∗ of mγ from A∗ to B∗ and sends
it to AII .

• Phase 2 Queries. AII issues polynomially
bounded number of queries to the oracles sim-
ilar to that in Phase 1 Queries and C must re-
spond to them.

• Guess. AII returns γ∗.

AII is the winner of Game 2 if:

(1) γ∗ = γ.
(2) AII cannot obtain SKB∗ .
(3) In phase 2 queries, AII is not allowed to send

an Unsigncrypt query on δ∗ of IDA∗ to IDB∗ .

Definition 4. A CL-SC scheme is (t, ε, qPK , qd,
qRPK , qSK , qSC , qUSC)-confidential in the sense of
indistinguishability of encryptions against adap-

ISeCure

July 2022, Volume 14, Number 2 (pp. 193–213) 197

tive chosen ciphertext attack (IND-CCA), if there
are not any adversaries (AI and AII) which can
win Game 1 and Game 2 in time at most t, with
probability at least 1

2 + ε, by issuing at most qPK
Public-Key queries, qd Partial-Private-Key queries
(qd = 0 for AII), qRPK Replace-Public-Key queries
(qRPK = 0 for AII), qSK Private-Key queries, qSC
Signcrypt queries and qUSC Unsigncrypt queries.

3.2.2 Unforgeability

The two following games are useful to define the
unforgeability of a CL-SC scheme in the sense of
EUF-CMA against AI and AII , respectively [16].

Game 3. This game is executed between a chal-
lenger C and AI , as follows:

• Initialization. On input a security parameter
λ, C produces Params and msk. Then C gives
Params to AI and keeps msk secret.

• Queries. In this phase, C must respond to
all polynomially bounded number of AI ’s
queries from Public-Key, Partial-Private-Key,
Replace-Public-Key, Private-Key, Signcrypt
and Unsigncrypt oracles.

• Forgery. AI forges a signcryption δ∗ on a mes-
sage m∗ from IDA∗ to IDB∗ .

AI is the winner of Game 3 if:

(1) δ∗ is a valid signcryption on m∗ from IDA∗ to
IDB∗ .

(2) AI cannot obtain SKA∗ .
(3) AI cannot obtain SKu of a user u, if the corre-

sponding public key has already been replaced.
(4) AI cannot obtain dA∗ .
(5) AI is not allowed to send a Signcrypt query on

m∗ from IDA∗ to IDB∗ .

Game 4. This game is executed between a chal-
lenger C and AII , as follows:

• Initialization. On input a security parameter
λ, C produces Params andmsk and gives them
to AII .

• Queries. In this phase, C must respond to all
polynomially bounded number of AII ’s queries
from Public-Key, Private-Key, Signcrypt and
Unsigncrypt oracles.

• Forgery. AII forges a signcryption δ∗ on a
message m∗ from IDA∗ to IDB∗ .

AII is the winner of Game 4 if:

(1) δ∗ is a valid signcryption on m∗ from IDA∗ to
IDB∗ .

(2) AII cannot obtain SKA∗ .
(3) AII is not allowed to send a Signcrypt query

on m∗ from IDA∗ to IDB∗ .

Definition 5. A CL-SC scheme is (t, ε, qPK , qd,
qRPK , qSK , qSC , qUSC)-unforgeable in the sense of
unforgeability against adaptive chosen message at-
tack (EUF-CMA), if there are not any adversaries
(AI and AII) which can win Game 3 and Game 4 in
time at most t, with probability at least ε, by issuing
at most qPK Public-Key queries, qd Partial-Private-
Key queries (qd = 0 for AII), qRPK Replace-Public-
Key queries (qRPK = 0 for AII), qSK Private-Key
queries, qSC Signcrypt queries and qUSC Unsign-
crypt queries.

3.2.3 Known Session Specific Temporary
Information Security (KSSTIS)

In [17], the authors introduced the notion of KSSTIS,
which guarantees that the message will be kept confi-
dential, even if the temporary information used for
creating the signcryption reveals. In this paper, the
following game is considered for defining the KSSTIS
of a CL-SC scheme against an adversary A who has
a signcryption δ∗ on a message m∗ from A∗ to B∗

and the corresponding temporary information used
for creating δ∗.

Game 5. This game is executed between a chal-
lenger C and an adversary A, as follows:

• Initialization. On input a security parameter
λ, C produces Params and msk. Then C gives
Params to A and keeps msk secret.

• Queries. In this phase, C must respond to all
polynomially bounded number of A’s queries
from Public-Key, Partial-Private-Key, Private-
Key, Signcrypt and Unsigncrypt oracles.

• Output. A returns the message m∗∗. (Note
that A has a signcryption δ∗ on a message m∗

from A∗ to B∗. Moreover, A knows the corre-
sponding temporary information used for cre-
ating δ∗.)

A is the winner of Game 5 if:

(1) m∗∗ = m∗.
(2) A cannot obtain SKB∗ .
(3) A is not allowed to send an Unsigncrypt query

on δ∗ of IDA∗ to IDB∗ .

Definition 6. A CL-SC scheme is (t, ε, qPK , qd, qSK ,
qSC , qUSC)-KSSTIS, if there are not any adver-
saries A which can win Game 5 in time at most t,
with probability at least ε, by issuing at most qPK
Public-Key queries, qd Partial-Private-Key queries,
qSK Private-Key queries, qSC Signcrypt queries and
qUSC Unsigncrypt queries.

ISeCure

198 Attacks to Some Recently Proposed CL-SC Schemes and Presenting a SS with KSSTIS — Rastegari

4 On the Security of Caixue’s CL-SC
Scheme

4.1 Algorithms of Caixue’s Scheme

Caixue has designed the algorithms of his CL-SC
scheme as follows [18]:

• Setup. The KGC gets a security parameter 1k

as input. Then it chooses two cyclic groups G1

and G2 of a prime order p, a random generator
g of G1, a bilinear pairing e : G1 ×G1 −→ G2,
a hash function H1 : {0, 1}∗ −→ Z∗p, two ran-
dom values s ∈R Z∗p and h1 ∈R G1. Then it
sets g1 = gs and also selects a bijection φ :
{0, 1}2l −→ G2, where l is the bit length of the
message. The public parameters are Params =
{G1, G2, e, g, g1, h1, H1, φ} and the master se-
cret key is msk = s.

• ExtPPK. When a user u with identity IDu ∈
Z∗p requests the KGC for the partial private key,
the KGC picks a random ru ∈R Z∗p, calculates:

du = (d1,u, d2,u) = ((h1.g
−ru)

1
s−IDu , ru),

and sends it to u. (If IDu = s, the KGC aborts.)
• SetSV. u picks xu ∈R Z∗p as his/her se-

cret value.
• SetPrK. u sets

SKu = (SK1,u, SK2,u, SK3,u) = (d1,u, d2,u, xu)

as his/her full private key.
• SetPuK. u sets

PKu = (PK1,u, PK2,u) = (gxu , (g1.g
−IDu)xu)

as his/her public key.
• SC. In order to produce a signcryption δ on a

message m ∈ {0, 1}l for B, A chooses t1, t2 ∈R
Z∗p, T ∈R {0, 1}l and computes:

δ1 = φ(m||T).e(PK1,B , PK1,B)−t1 .e(g, h1)−t2 ,

δ2 = gt21 .g
−t2IDB , δ3 = e(g, g)t1 ,

δ4 = e(g, g)t2 , δ5 = SK2,A,

δ6 = SK1,A.PK
SK3,A.w
1,A , (1)

where in Eq. (1), w = H1(T, IDA, IDB , PKA,
PKB , δ1, δ2, δ3, δ4, δ5). Then A assigns δ =
(δ1, δ2, δ3, δ4, δ5, δ6) and sends it to B.

• USC. In order to decrypt and verify the sign-
cryption δ = (δ1, δ2, δ3, δ4, δ5, δ6), B computes:

m||T = φ−1(δ1.e(δ2, SK1,B).δ
SK2,B

4 .δ
SK2

3,B

3).

Afterwards B, who has the value of m||T now,
is able to extract m (the first l bits of m||T)
and T (the second l bits of m||T) and obtain
w = H1(T, IDA, IDB , PKA, PKB , δ1, δ2, δ3, δ4, δ5).

Finally, B accepts δ as a valid signcryption on
m if the equation:

e(g1g
−IDA , δ6) = e(g, h1g

−δ5).e(PK2,A, PK
w
1,A)

holds, otherwise B rejects δ.

4.2 Cryptanalysis of Caixue’s Scheme

In his paper, Caixue has claimed that his proposal
is confidential and unforgeable against both AI
and AII without the assumption of random ora-
cles. However, the author has designed an attack
which shows that Caixue’s CL-SC scheme is easily
forgeable. Suppose that B receives two signcryp-
tions δ′ = (δ′1, δ

′
2, δ
′
3, δ
′
4, δ
′
5, δ
′
6) on a message m′ and

δ′′ = (δ′′1 , δ
′′
2 , δ
′′
3 , δ
′′
4 , δ
′′
5 , δ
′′
6) on a message m′′ from A.

We have:

δ′1 = φ(m′||T ′).e(PK1,B , PK1,B)−t
′
1 .e(g, h1)−t

′
2 ,

δ′2 = g
t′2
1 .g
−t′2IDB , δ′3 = e(g, g)t

′
1 ,

δ′4 = e(g, g)t
′
2 , δ′5 = SK2,A,

δ′6 = SK1,A.PK
SK3,A.w

′

1,A ,

where w′ = H1(T ′, IDA, IDB , PKA, PKB , δ
′
1, δ
′
2, δ
′
3,

δ′4, δ
′
5), and:

δ′′1 = φ(m′′||T ′′).e(PK1,B , PK1,B)−t
′′
1 .e(g, h1)−t

′′
2 ,

δ′′2 = g
t′′2
1 .g

−t′′2 IDB , δ′′3 = e(g, g)t
′′
1 ,

δ′′4 = e(g, g)t
′′
2 , δ′′5 = SK2,A,

δ′′6 = SK1,A.PK
SK3,A.w

′′

1,A ,

where w′′ = H1(T ′′, IDA, IDB , PKA, PKB , δ
′′
1 , δ
′′
2 , δ
′′
3

, δ′′4 , δ
′′
5).

B can easily find m′||T ′ and m′′||T ′′ by decrypting
δ′ and δ′′, compute w′, w′′ and obtain:

PK
SK3,A

1,A = (
δ′6
δ′′6

)(w
′−w′′)−1

,

SK1,A =
δ′6

(PK
SK3,A

1,A)w′
=

δ′′6

(PK
SK3,A

1,A)w′′
,

SK2,A = δ′5 = δ′′5 .

By obtaining PK
SK3,A

1,A , SK1,A and SK2,A from the
above equations, B can forge a signcryption δ∗ on
any message m∗ from A to any other receiver B∗ by
picking random values t∗1, t

∗
2 ∈R Z∗p, T ∗ ∈R {0, 1}l

and computing:

δ∗1 = φ(m∗||T ∗).e(PK1,B∗ , PK1,B∗)
−t∗1 .e(g, h1)−t

∗
2 ,

δ∗2 = g
t∗2
1 .g

−t∗2IDB∗ , δ∗3 = e(g, g)t
∗
1 ,

δ∗4 = e(g, g)t
∗
2 , δ∗5 = SK2,A,

δ∗6 = SK1,A.(PK
SK3,A

1,A)w
∗
,

where w∗ = H1(T ∗, IDA, IDB∗ , PKA, PKB∗ , δ
∗
1 ,

δ∗2 , δ
∗
3 , δ
∗
4 , δ
∗
5).

Note that the designed attack is done by a receiver
B, as he/she can decrypt δ′ and δ′′ to obtain m′||T ′
and m′′||T ′′ and the corresponding w′ and w′′, re-
spectively. Moreover, Caixue has claimed that his

ISeCure

July 2022, Volume 14, Number 2 (pp. 193–213) 199

scheme is secure even if the adversary has access to
the Private-Key oracle, which returns the private key
of an entity (except the private key of the target
receiver in the proof of the confidentiality and the
private key of the target sender in the proof of the
unforgeability) to the adversary (see Definition 4 and
Definition 5). As a result, the proposed attack shows
that a receiver B (or every entity who has obtained
SKB from the Private-Key oracle) can easily forge a
signature from A (a sender who produces δ′ and δ′′

and sends them to B) to any other receiver B∗.

4.3 On KSSTIS of Caixue’s Scheme

It is easy to see that the Caixue’s CL-SC Scheme
does not satisfy the KSSTIS, as if the temporary in-
formation t1, t2 which is used to create a signcryption
δ = (δ1, δ2, δ3, δ4, δ5, δ6) from A to B reveals, one can
easily obtain m||T as follows:

m||T = φ−1(δ1.e(PK1,B , PK1,B)t1 .e(g, h1)t2),

and obtains the message m (the first l bits of m||T).

5 On the Security of Shan’s CL-SC
Scheme

5.1 Algorithms of Shan’s Scheme

Shan has designed the algorithms of her CL-SC
scheme as follows [19]:

• Setup. The KGC gets a security parameter
l ∈ Z+ as input. Then it selects a prime p
of the length l-bits, two multiplicative cyclic
groups G and Gt of order p, a generator g of
G, a random g̃ ∈R G, a bilinear pairing e :
G × G −→ Gt, a hash function H : Gt −→
Zp and s, x, y ∈R Z∗p. The public parameters

are Params = {p,G,Gt, e, g, g̃, S̃ = g̃s, X̃ =
g̃x, Ỹ = g̃y, X = gx, Y = gy} and the master
secret key is msk = (s, x, y).

• ExtPPK. When a user u with identity IDu ∈
Z∗p requests the KGC for the partial private key,
the KGC calculates:

du = (d1,u, d2,u, d3,u) = (g
x

s+IDu , g
y

s+IDu , g
1

s+IDu)

and sends it to u.
• SetSV. u picks xu ∈R Z∗p as his/her secret

value.
• SetPrK. u sets SKu = (xu, du) as his/her pri-

vate key.
• SetPuK. u sets PKu = g̃xu as his/her public

key.
• SC. In order to produce a signcryption δ on a

message m ∈ Gt for B, A chooses r1, r2 ∈R Z∗p
and computes:

U = (d1,A)r1 .(d2,A)H(m)r1 .(d3,A)xAr1 , (2)

N = gr1 , V = (d3,A)r1 ,

L = Ỹ
xA
r1 , (3)

c = m.e(g, PKB)−r2 , Z = S̃r2 .g̃r2IDB .

Then A assigns δ = (U,N, V, L, c, Z) and sends
(IDA, IDB , δ) to B.

• USC. In order to decrypt and verify the sign-
cryption (IDA, IDB , δ = (U,N, V, L, c, Z)), B
computes:

m = c.e(d3,B , Z)xB , (4)

T = S̃.g̃IDA , W = X̃.PKA.Ỹ
H(m).g̃.

Then B is convinced to accept δ as a valid
signcryption on m if the equation:

e(U.V, T).e(N,L) = e(N,W).e(Y, PKA),

holds, otherwise B rejects δ.

5.2 Cryptanalysis of Shan’s Scheme

In her paper, Shan has claimed that her proposal is
confidential and unforgeable against both AI and AII
without the assumption of the random oracles. How-
ever, the author has designed malicious KGC attacks
which break the confidentiality and the unforgeability
of her scheme against AII . In the proposed attack,
the malicious KGC (AII) generates all system param-
eters correctly as explained in the Setup algorithm of
the scheme, except g̃. For generating g̃, AII picks a
random γ ∈R Z∗p and assigns g̃ = gγ . By this malice,
AII can break the confidentiality and unforgeability
of Shan’s scheme, as described in the following two
subsections. Note that AII is a malicious KGC and it
knows msk = (s, x, y) and du = (d1,u, d2,u, d3,u) (but
not xu) of all users.

5.2.1 Malicious KGC Attack Against the
Confidentiality

By selecting g̃ = gγ , given a signcryption (IDA, IDB ,
δ = (U,N, V, L, c, Z)), AII can easily decrypt and
verify it. For this purpose, AII computes:

m = c.e(PKγ−1

B , Z)
1

s+IDB (5)

T = S̃.g̃IDA , W = X̃.PKA.Ỹ
H(m).g̃,

and accepts δ if:

e(U.V, T).e(N,L) = e(N,W).e(Y, PKA).

It is easy to check the correctness of Eq. (5), as:

m = c.e(PKγ−1

B , Z)
1

s+IDB = c.e(g̃xBγ
−1

, Z)
1

s+IDB

= c.e(gγxBγ
−1

, Z)
1

s+IDB = c.e(gxB , Z)
1

s+IDB

= c.e(g
1

s+IDB , Z)xB = c.e(d3,B , Z)xB ,

which indicates Eq. (4).

ISeCure

200 Attacks to Some Recently Proposed CL-SC Schemes and Presenting a SS with KSSTIS — Rastegari

As a result, AII can verify every signcryption δ
from A to B and obtain the message m without the
knowledge of B’s full private key SKB. Therefore,
Shan’s scheme is not confidential against AII .

5.2.2 Malicious KGC Attack Against the
Unforgeability

By selecting g̃ = gγ , AII can easily forge a signcryp-
tion δ on m from A to B, by picking r1, r2 ∈R Z∗p
and computing:

U = (d1,A)r1 .(d2,A)H(m)r1 .(PKγ−1

A)
r1

s+IDA , (6)

N = gr1 , V = (d3,A)r1 ,

L = PKA

y
r1 , (7)

c = m.e(g, PKB)−r2 , Z = S̃r2 .g̃r2IDB .

It is easy to check the correctness of Eq. (6) and
Eq. (7) as:

U = (d1,A)r1 .(d2,A)H(m)r1 .(PKγ−1

A)
r1

s+IDA

= (d1,A)r1 .(d2,A)H(m)r1 .(g̃xAγ
−1

)
r1

s+IDA

= (d1,A)r1 .(d2,A)H(m)r1 .(gγxAγ
−1

)
r1

s+IDA

= (d1,A)r1 .(d2,A)H(m)r1 .(g
1

s+IDA)xAr1

= (d1,A)r1 .(d2,A)H(m)r1 .(d3,A)xAr1 ,

which indicates Eq. (2), and:

L = PKA

y
r1 = (g̃xA)

y
r1 = (g̃y)

xA
r1 = Ỹ

xA
r1 ,

which indicates Eq. (3).

As a result, AII can forge a signcryption δ on a
desired message m from A to B without knowing the
A’s full private key SKA. Therefore, Shan’s scheme
is not unforgeable against AII .

5.3 On KSSTIS of Shan’s Scheme

It is easy to see that the Shan’s CL-SC Scheme does
not satisfy the KSSTIS, as if the temporary informa-
tion r2 which is used to create a signcryption δ =
(U,N, V, L, c, Z) from A to B reveals, one can easily
obtain m as follows:

m = c.e(g, PKB)r2 .

6 On the Security of Ullah et al.’s
CL-SC Scheme

In [24], Ullah et al. have proposed a CL-SC scheme
and claimed that their scheme is more efficient than
the previous schemes including our proposal in [16],
but there are two important comments on their paper,
as follows:

(1) It should be noted that Ullah et al.’s compari-
son is not fair at all, since our proposal in [16]

is provable secure in the standard model and as
discussed in [16], it is more efficient than all pre-
viously proposed schemes in the standard model.
Additionally, according to the vulnerability of
the two recently proposed CL-SC schemes in
the standard model, i.e. the proposed schemes
in [18] and [19], which are described in Section 4
and Section 5, our proposal in [16] is still the
most efficient CL-SC scheme in the standard
model. However, Ullah et al. have not presented
any proofs for the security of their scheme, even
in the random oracle model, and they discussed
on the security of their scheme heuristically,
which is not acceptable nowadays.

(2) There are errors in the algorithms of their
scheme which will be described as follows.

6.1 Algorithms of Ullah et al.’s Scheme

The algorithms of the Ullah et al.’s CL-SC scheme
are briefly described as follows [24]:

• Setup. The KGC picks a random s ∈R Z∗n as
the master secret key and produces and pub-
lishes PKpub = sD, where D is the divisor of
a hyper elliptic curve. It also picks two hash
functions H,H1 : {0, 1}∗ −→ Z∗n and publishes
them.

• ExtPPK. When a user u with identity IDu

requests the KGC for the partial private key, the
KGC picks a random ru ∈R Z∗n and calculates:

du = (Lu, αu) = (ruD, ru+sH1(IDu,Lu,Yu)),

where Yu is a part of the user’s public key.
• SetSV. u picks xu ∈R Z∗n as his/her secret

value.
• SetPrK. u sets SKu = (xu, αu) as his/her

private key.
• SetPuK. u computes Yu = xuD and sets
PKu = (Yu,Lu) as his/her public key.

• SC. In order to produce a signcryption δ on m
for B, the sender A chooses t,Nc ∈R Z∗n and
computes:

γ = LB +H1(IDB ,LB ,YB)PKpub,

Z = tD,
K = (t(YB + γ), Z, IDB ,LB ,YB),

C = EncK(m, IDA, Nc),

where EncK is a symmetric encryption algo-
rithm with key K. A also computes:

h = H(m, IDA, Nc),

S = xA + h(t+ αA)

Then A assigns δ = (C, S, h, Z) and sends it to
B.

• USC. In order to decrypt and verify the sign-
cryption δ = (C, S, h, Z), B computes:

ISeCure

July 2022, Volume 14, Number 2 (pp. 193–213) 201

K = ((xB + αB)Z,Z, IDB ,LB ,YB)

(m, IDA, Nc) = DecK(C),

where DecK is the symmetric decryption algo-
rithm with key K. Then B calculates:

β = LA +H1(IDA,LA,YA)PKpub,

and accepts the signature if the following equa-
tion holds:

S.D = β + h(Z + YA), (8)

where h = H(m, IDA, Nc).

6.2 Cryptanalysis of Ullah et al.’s Scheme

As said, there are errors in Ullah et al.’s CL-SC
scheme. for example:

(1) The verification algorithm in Eq. (8) is not
correct, as:

S.D = (xA + h(t+ αA)).D
= xAD + h(tD + αAD)

= YA + h(Z + (rA + sH1(IDA,LA,YA))D)

= YA + h(Z + rAD +H1(IDA,LA,YA)sD)

= YA + h(Z + LA +H1(IDA,LA,YA)PKpub)

= YA + h(Z + β),

which is not satisfied by Eq. (8).
(2) Another concern about this scheme is that the

KGC uses Yu (a part of the user’s public key)
to generate du. However, in a CL-PKC, the
KGC must generate the partial private keys of
the users independently, before the users set
their keys, except when we require the security
against the level-3 KGC according to Girault’s
categorization [26], which is not discussed in
Ullah et al.’s paper. Readers can refer to [27, 28]
for more details on this topic.

(3) At last, this scheme is not a signcryption at all!
Since in this scheme, A computes C which is in
fact an encryption of m with a random key K
and then creates a signature S on m. Therefore,
this scheme actually applies the algorithms of
a symmetric encryption scheme and then the
algorithms of a signature scheme on m. How-
ever in a signcryption scheme the signature and
encryption on a message m should be produced
both at once by the public key cryptographic
methods [3].

Totally, in contrast to Ullah et al.’s claims, their
scheme is not comparable with the signcryption
schemes in the standard model. Moreover, the secu-
rity and even the correctness of the algorithms of
their scheme is questionable as discussed above.

7 Proposed CL-SC Scheme

In this section, the author enhances the proposal
in [16] to guarantee the KSSTIS security.

7.1 Algorithms of the Proposal

The algorithms of the proposal are as follows:

• Setup. Given a security parameter λ, the
KGC creates and publishes Params =
{G1, G2, p, e, g, g1, T, u

′, v′, U, V,H1, H2, Hu},
where G1 and G2 are multiplicative cyclic
groups of a large prime order p, e is a bilinear
pairing as e : G1 ×G1 −→ G2, g is a generator
of G1, g1 = gα where α ∈R Z∗p, T = e(g1, g1),
u′, v′ ∈R G1, U = (ui)

nu
i=1 and V = (vj)

nm
j=1 are

two vectors of lengths nu and nm that their ele-
ments are selected from G1 randomly and Hu :
{0, 1}∗ −→ {0, 1}nu , H1 : G2×G4

1×{0, 1}∗ −→
{0, 1}nm , H2 : G3

1 × {0, 1}∗ −→ Z∗p are three
collision resistant hash functions. Furthermore,
the KGC computes msk = gα1 and keeps it
secret.

• ExtPPK. Suppose that U = Hu(IDu) and
U [i] denotes the i-th bit of U . Define the set
Uu = {i|U [i] = 1, i = 1, 2, . . . , nu}. The KGC
picks a random ru ∈R Z∗p and computes the
partial private key of the user u, du as follows:

du = (du,1, du,2) = (gα1 (u′
∏
i∈Uu

ui)
ru , gru).

• SetSV. u picks xu, r
′
u ∈R Z∗p as his/her secret

value.
• SetPrK. u computes his full private key as:

SKu = (SKu,1, SKu,2, SKu,3)

= (d
x2
u
u,1(u′

∏
i∈Uu

ui)
r′u , d

x2
u
u,2g

r′u , xu).

• SetPuK. u computes his/her public key as:

PKu = (PKu,1, PKu,2) = (gxu1 , g
1
xu
1).

• SC. Suppose that A wants to create a signcryp-
tion δ on a message m ∈ G2 for B. A Checks the
equality e(PKB,1, PKB,2) = T . If it does not
hold, A returns ⊥, otherwise A picks r1, r2 ∈R
Z∗p and computes:

δ1 = m.e(PK
r1+SKA,3
B,1 , PKB,1),

δ2 = gr1 , δ3 = (u′
∏
i∈UB

ui)
r1 , δ4 = SKA,2.g

r2 ,

δ5 = SKA,1.(u
′
∏
i∈UA

ui)
r2 .(PKh

A,1(v
′

∏
j∈Mm

vj))
r1 ,

where Mm = {j|M [j] = 1, j = 1, 2, . . . , nm},
in which M = H1(δ1, δ2, δ3, δ4, PKB,1, IDB) ∈
{0, 1}nm , and M [j] is the j-th bit of M . More-

ISeCure

202 Attacks to Some Recently Proposed CL-SC Schemes and Presenting a SS with KSSTIS — Rastegari

over, h = H2(PKA,1, δ2, δ4, IDA,M). Then A
sends δ = (δ1, δ2, δ3, δ4, δ5) to B.

• USC. Upon receiving δ, B checks the equal-
ity e(PKA,1, PKA,2) = T . If it does not
hold, B returns ⊥, otherwise B computes
M = H1(δ1, δ2, δ3, δ4, PKB,1, IDB), Mm =
{j|M [j] = 1, j = 1, 2, . . . , nm} and h =
H2(PKA,1, δ2, δ4, IDA,M) and verifies the
equality:

e(δ5, g) = e(PKA,1, PKA,1).e(u′
∏
i∈UA

ui, δ4)

.e(PKh
A,1(v′

∏
j∈Mm

vj), δ2). (9)

If the equally does not hold, B returns ⊥, oth-
erwise, B computes m as follows:

m = δ1.
e(δ3, SKB,2)

e(δ2, SKB,1).e(PK
SKB,3
A,1 , PKB,1)

,

(10)

else returns ⊥.

Remark 2. The proposed scheme is similar to the
proposal in [16] in all algorithms, except in com-
puting δ1, which includes SKA,3 in order to sat-
isfy KSSTIS and consequently the USC algorithm is
modified, too.

7.2 Security Analysis of the Proposal

7.2.1 Correctness

The correctness of Eq. (9) is easily satisfied as:

e(δ5, g) = e(SKA,1, g).e((u
′
∏
i∈UA

ui)
r2 , g)

.e((PKh
A,1(v

′
∏

j∈Mm

vj))
r1 , g)

= e(gα
2x2A(u′

∏
i∈UA

ui)
rAx

2
A+r′A , g)

.e((u′
∏
i∈UA

ui)
r2 , g)

.e((PKh
A,1(v

′
∏

j∈Mm

vj))
r1 , g)

= e(gα
2x2A , g)

.e((u′
∏
i∈UA

ui)
rAx

2
A+r′A+r2 , g)

.e((PKh
A,1(v

′
∏

j∈Mm

vj))
r1 , g)

= e(gxA1 , gxA1).e(u′
∏
i∈UA

ui, SKA,2g
r2)

.e(PKh
A,1(v

′
∏

j∈Mm

vj), g
r1)

= e(PKA,1, PKA,1).e(u
′
∏
i∈UA

ui, δ4)

.e(PKh
A,1(v

′
∏

j∈Mm

vj), δ2),

which shows the correctness of Eq. (9). Furthermore,
the correctness of Eq. (10) is easily satisfied as:

δ1.
e(δ3, SKB,2)

e(δ2, SKB,1).e(PK
SKB,3
A,1

, PKB,1)

=

m.e(PK
r1+SKA,3
B,1

, PKB,1).e((u
′
∏

i∈UB
ui)

r1 , g
rBx

2
B+r′B)

e(gr1 , g
αx2
B

1
(u′

∏
i∈UB

ui)
rBx

2
B

+r′
B).e(g

xAxB
1

, g1
xB)

=

m.e(g
xBr1
1

, g
xB
1

).e(g
xBxA
1

, g
xB
1

).e((u′
∏

i∈UB
ui)

r1 , g
rBx

2
B+r′B)

e(gr1 , g
αx2
B

1
(u′

∏
i∈UB

ui)
rBx

2
B

+r′
B).e(g

xAxB
1

, g1
xB)

=

m.e(gαxBr1 , gαxB).e(gr1 , (u′
∏

i∈UB
ui)

rBx
2
B+r′B)

e(gr1 , g
α2x2

B)e(gr1 , (u′
∏

i∈UB
ui)

rBx
2
B

+r′
B)

=
m.e(gr1 , g

α2x2B)

e(gr1 , g
α2x2

B)

= m,

which shows the correctness of Eq. (10).

7.2.2 Confidentiality

The confidentiality of the proposed scheme, according
to Definition 4, implies from two following lemmas:
Lemma 1. If (t, ε)-(S1, 3)-DBDHE-Set assumption
(according to Definition 3) holds in (G1, G2), the
proposal is (tI , εI , qPK , qd, qRPK , qSK , qSC , qUSC)-
confidential against AI , where:

ε ≥
εI

8qUSC(qd + qSK + qSC + qUSC + 1)(nm + 1)(nu + 1)
,

t ≤ tI + order(((qd + qSK + qSC + qUSC)nu

+ (qSC + qUSC)nm)TM

+ (qPK + qd + qSK + qSC + qUSC)TE

+ (qSC + qUSC)TP),

in which TM , TE and TP are the times required for a
multiplication and exponentiation in G1 and a pairing
computation, respectively.

Proof. See Appendix A.

Lemma 2. If (t, ε)-(S2, 5)-DBDHE-Set assumption
(according to Definition 3) holds in (G1, G2), the pro-
posal is (tII , εII , qPK , qSK , qSC , qUSC)-confidential
against AII , where:

ε ≥
εII

8qUSC(qSK + qSC + qUSC + 1)(nm + 1)(nu + 1)
,

t ≤ tII + order(((qSK + qSC + qUSC)nu

+ (qSC + qUSC)nm)TM

+ (qPK + qSK + qSC + qUSC)TE

+ (qSC + qUSC)TP),

Proof. See Appendix B.

Theorem 1. The proposed CL-SC scheme is confi-
dential (IND-CCA) according to Definition 4.

ISeCure

July 2022, Volume 14, Number 2 (pp. 193–213) 203

Proof. The proof implies from Lemma 1 and Lemma
2, directly.

7.2.3 Unforgeability

The unforgeability of the proposed scheme, according
to Definition 5, implies from two following lemmas:
Lemma 3. If (t, ε)-2-CDHE assumption (accord-
ing to Definition 1) holds in G1, the proposal is
(tI , εI , qPK , qd, qRPK , qSK , qSC , qUSC)-unforgeable
against AI , where:

ε ≥
εI

8qUSC(qd + qSK + qSC + qUSC + 1)(nm + 1)(nu + 1)
,

t ≤ tI + order(((qd + qSK + qSC + qUSC)nu

+ (qSC + qUSC)nm)TM

+ (qPK + qd + qSK + qSC + qUSC)TE

+ (qSC + qUSC)TP),

Proof. See Appendix C.

Lemma 4. If (t, ε)-3-CDHE assumption (accord-
ing to Definition 1) holds in G1, the proposal is
(tII , εII , qPK , qSK , qSC , qUSC)-unforgeable against
AII , where:

ε ≥
εII

8qUSC(qSK + qSC + qUSC + 1)(nm + 1)(nu + 1)
,

t ≤ tII + order(((qSK + qSC + qUSC)nu

+ (qSC + qUSC)nm)TM

+ (qPK + qSK + qSC + qUSC)TE

+ (qSC + qUSC)TP),

Proof. See Appendix D.

Theorem 2. The proposed CL-SC scheme is unforge-
able (EUF-CMA) according to Definition 5.

Proof. The proof implies from Lemma 3 and
Lemma 4, directly.

7.2.4 KSSTIS

In the proposed CL-SC scheme, the author considers
SKA,3 in the power of PKB,1 in computing δ1, which
guarantees KSSTIS. Note that as:

δ1 = m.e(PK
r1+SKA,3
B,1 , PKB,1),

even if the temporary information r1 reveals, m keeps
confidential. As a result, in contrast to the proposal
in [16] in which we have:

δ1 = m.e(PKr1
B,1, PKB,1),

and one can obtain m easily if r1 reveals, the new
scheme does not suffer from this weakness and satis-
fies the KSSTIS. The following theorem guarantees
this claim, more precisely.

Theorem 3. If (t, ε)-(S2, 5)-CBDHE-Set assumption
(according to Definition 2) holds in (G1, G2), the pro-
posal is (t′, ε′, qPK , qd, qSK , qSC , qUSC)-confidential
against A, where:

ε ≥
ε′

8(qd + qSK + qSC + qUSC)2(nu + 1)2
,

t ≤ t′ + order(((qd + qSK + qSC + qUSC)nu

+ (qSC + qUSC)nm)TM

+ (qPK + qd + qSK + qSC + qUSC)TE

+ (qSC + qUSC)TP),

Proof. See Appendix E.

In fact, the new scheme not only inherits the main
security requirements (i.e. the confidentiality and the
unforgeability against AI and AII) from the proposal
in [16], but also satisfies the KSSTIS property.

Remark 3. Note that in the security proofs, a sim-
ulator B is built to solve an instance of a hard prob-
lem by the use of the adversary as a sub-routine. To
this goal, B must play the role of the challenger C (In
Games 1, 2, 3, 4 and 5). If the simulator answers to all
adversaries’ queries without any ideal assumptions
(such as existing random oracles), the proof will be
in the standard model, but if some ideal assumptions
(such as existing random oracles) are considered in
the proof approach, the proof will be for example in
the ROM. The proofs in Appendixes are provided in
the standard model, which guarantee that the pro-
posal is secure against key replacement and malicious
KGC attackers.

8 Comparison

As mentioned in Section 1, after proposing the first
CL-SC scheme in the standard model by Liu et al.
in 2010 [6], the researchers have started to work on
this topic and proposed several CL-SC schemes in
the standard model [10–14, 16–20]. In Table 1, a com-
parison of these schemes is provided. In this table,
EG1

, EG2
and P denote an exponentiation in G1, an

exponentiation in G2 and a pairing computations, re-
spectively. Furthermore, |aG| shows the binary length
of a elements in G and nm is the binary length of the
message m. As shown in Table 1, the proposals in
[6, 10, 13, 17, 20] have some faults in their securities
according to the discussions provided in [7–9, 20–23],
as described in Section 1. Furtheremore, the propos-
als in [18] and [19] are not secure according to the
proposed attacks in Section 4 and Section 5, respec-
tively. As a result, the proposals in [11, 12, 14, 16] are
the only CL-SC schemes in the literature which have
not been attacked till now. Among these schemes, the
proposal in [16] is the most efficient one. Note that
although Shan in [19] and Ullah et al. in [24] have

ISeCure

204 Attacks to Some Recently Proposed CL-SC Schemes and Presenting a SS with KSSTIS — Rastegari

Table 1. Comparison of CL-SC schemes in the standard model

Scheme Signcrypt Unsigncrypt Ciphertext Proposed KSSTIS

valid signcryption invalid signcryption length attacks

[6] 1EG2
+ 3EG1

5P 3P |4G1|+|1G2| [7–9] ×

[10] 3EG2 + 3EG1 5P + 2EG2 3P + 2EG2 |4G1|+|1G2| [8] ×

[13] 1P + 1EG2
+ 5EG1

4P + 2EG1
6P + 2EG1

|4G1|+nm [21] ×

[17] 1P + 4EG1 6P + 2EG1 4P |2G1|+|1G2| [20, 22] X

[20] 2P + 4EG1
8P + 2EG1

5P + 1EG1
|4G1|+|1G2| [23] X

[18] 1P + 4EG2
+ 3EG1

4P + 5EG1
4P + 5EG1

|3G1|+|3G2| Section 4 ×

[19] 1P + 1EG2
+ 8EG1

5P + 1EG2
+ 2EG1

5P + 1EG2
+ 2EG1

|5G1|+|1G2| Section 5 ×

[11] 3P + 3EG2
+ 6EG1

8P + 2EG2
+ 3EG1

6P + 2EG2
+ 1EG1

|4G1|+|1G2| - ×

[12] 5P + 1EG2
+ 3EG1

10P 10P |4G1|+|1G2| - ×

[14] 2P + 3EG2
+ 5EG1

7P + 2EG1
7P + 2EG1

|4G1|+|2G2| - ×

[16] 2P + 7EG1 7P + 1EG1 5P + 1EG1 |4G1|+|1G2| - ×

proposed scheme 2P + 7EG1
7P + 1EG1

5P + 1EG1
|4G1|+|1G2| - X

claimed that their schemes are more efficient than the
proposal in [16], however Shan’s scheme [19] is not
secure according to the proposed attacks in Section 5
and Ullah et al.’s scheme has basic errors as discussed
in Section 6, e.g. it does not even satisfy the correct-
ness and there are not any security proofs even in
the random oracle model. Therefore, the author se-
lected the scheme in [16] for enhancing to satisfy the
KSSTIS and proposed the first secure CL-SC scheme
in the standard model which guarantees the KSSTIS.
As shown in Table 1, this enhancement do not affect
on the computation and communication costs of the
original scheme in [16].

9 Conclusion

In this work, the author provided a study on cer-
tificateless signcryption (CL-SC) schemes by focus-
ing on an enhanced security notion called as the
known session specific temporary information secu-
rity (KSSTIS). She firstly discussed that none of the
proposed CL-SC schemes in the standard model sat-
isfy the KSSTIS. Moreover, she showed that three
recently proposed CL-SC schemes in [18, 19, 24] not
only do not satisfy the KSSTIS, but also they do not
even satisfy the basic security requirements of a CL-
SC scheme (according to the designed attacks). Fi-
nally, She enhanced the proposal in [16] which seems
to be the best candidate (in the sense of both the
security and the efficiency) among CL-SC schemes in
the standard model to propose the first secure CL-
SC scheme in the standard model which satisfies the
KSSTIS. Security analysis show that the new scheme
not only inherits the basic security requirement from
the scheme in [16], but also satisfies the KSSTIS.
The new proposal is the first CL-SC scheme in the

standard model which guarantees the KSSTIS, too.
Appendix A

References

[1] Adi Shamir. Identity-based cryptosystems and
signature schemes. In Workshop on the the-
ory and application of cryptographic techniques,
pages 47–53. Springer, 1984.

[2] Sattam S Al-Riyami and Kenneth G Paterson.
Certificateless public key cryptography. In In-
ternational conference on the theory and appli-
cation of cryptology and information security,
pages 452–473. Springer, 2003.

[3] Yuliang Zheng. Digital signcryption or how to
achieve cost (signature & encryption) � cost
(signature) + cost (encryption). In Annual in-
ternational cryptology conference, pages 165–179.
Springer, 1997.

[4] Manuel Barbosa and Pooya Farshim. Certifi-
cateless signcryption. In Proceedings of the 2008
ACM symposium on Information, computer and
communications security, pages 369–372, 2008.

[5] Mihir Bellare and Phillip Rogaway. Random
oracles are practical: A paradigm for designing
efficient protocols. In Proceedings of the 1st ACM
Conference on Computer and Communications
Security, pages 62–73, 1993.

[6] Zhenhua Liu, Yupu Hu, Xiangsong Zhang, and
Hua Ma. Certificateless signcryption scheme
in the standard model. Information Sciences,
180(3):452–464, 2010.

[7] S Sharmila Deva Selvi, S Sree Vivek, and
C Pandu Rangan. Security weaknesses in two
certificateless signcryption schemes. IACR Cryp-
tol. ePrint Arch., 2010:92, 2010.

ISeCure

July 2022, Volume 14, Number 2 (pp. 193–213) 205

[8] Jian Weng, Guoxiang Yao, Robert H Deng, Min-
Rong Chen, and Xiangxue Li. Cryptanalysis of
a certificateless signcryption scheme in the stan-
dard model. Information Sciences, 181(3):661–
667, 2011.

[9] Songqin Miao, Futai Zhang, Sujuan Li, and
Yi Mu. On security of a certificateless signcryp-
tion scheme. Information Sciences, 232:475–481,
2013.

[10] Zhengping Jin, Qiaoyan Wen, and Hua Zhang.
A supplement to liu et al.’s certificateless sign-
cryption scheme in the standard model. IACR
Cryptol. ePrint Arch., 2010:252, 2010.

[11] Hu Xiong. Toward certificateless signcryption
scheme without random oracles. IACR Cryptol.
ePrint Arch., 2014:162, 2014.

[12] Lin Cheng and Qiaoyan Wen. An improved
certificateless signcryption in the standard model.
Int. J. Netw. Secur., 17(3):229–237, 2015.

[13] Xiao Zheng and Xudong Li. An efficient certifi-
cateless signcryption in the standard model. In
2016 IEEE International Conference on Cloud
Computing and Big Data Analysis (ICCCBDA),
pages 199–205. IEEE, 2016.

[14] Caixue Zhou, Guangyong Gao, and Zongmin
Cui. Certificateless signcryption in the stan-
dard model. Wireless Personal Communications,
92(2):495–513, 2017.

[15] Parvin Rastegari and Mehdi Berenjkoub. An
improved certificateless signcryption scheme.
In 2016 13th International Iranian Society of
Cryptology Conference on Information Security
and Cryptology (ISCISC), pages 106–111. IEEE,
2016.

[16] Parvin Rastegari and Mehdi Berenjkoub. An
efficient certificateless signcryption scheme in
the standard model. ISeCure, 9(1), 2017.

[17] Ming Luo and Yuwei Wan. An enhanced cer-
tificateless signcryption in the standard model.
Wireless Personal Communications, 98(3):2693–
2709, 2018.

[18] ZHOU Caixue. Certificateless signcryption
scheme without random oracles. Chinese Jour-
nal of Electronics, 27(5):1002–1008, 2018.

[19] Shan Shan. An efficient certificateless signcryp-
tion scheme without random oracles. Interna-
tional Journal of Electronics and Information
Engineering, 11(1):9–15, 2019.

[20] Parvin Rastegari, Willy Susilo, and Mohammad
Dakhlalian. Efficient certificateless signcryption
in the standard model: Revisiting luo and wan’s
scheme from wireless personal communications
(2018). The Computer Journal, 62(8):1178–1193,
2019.

[21] Parvin Rastegari and Mohammad Dakhilalian.
Cryptanalysis of a certificateless signcryption

scheme. In 2019 16th International ISC (Iranian
Society of Cryptology) Conference on Informa-
tion Security and Cryptology (ISCISC), pages
67–71. IEEE, 2019.

[22] Yumin Yuan. Security analysis of an enhanced
certificateless signcryption in the standard model.
Wireless Personal Communications, pages 1–8,
2020.

[23] Xi-Jun Lin, Lin Sun, Zhen Yan, Xiaoshuai Zhang,
and Haipeng Qu. On the security of a certifi-
cateless signcryption with known session-specific
temporary information security in the standard
model. The Computer Journal, 63(8):1259–1262,
2020.

[24] Insaf Ullah, Noor Ul Amin, Mahdi Zareei,
Asim Zeb, Hizbullah Khattak, Ajab Khan, and
Shidrokh Goudarzi. A lightweight and prov-
able secured certificateless signcryption approach
for crowdsourced iiot applications. Symmetry,
11(11):1386, 2019.

[25] Fangguo Zhang, Reihaneh Safavi-Naini, and
Willy Susilo. An efficient signature scheme from
bilinear pairings and its applications. In Inter-
national Workshop on Public Key Cryptography,
pages 277–290. Springer, 2004.

[26] Marc Girault. Self-certified public keys. In Work-
shop on the Theory and Application of of Cryp-
tographic Techniques, pages 490–497. Springer,
1991.

[27] Yi-Fan Tseng, Chun-I Fan, and Ching-Wen Chen.
Top-level secure certificateless signature scheme
in the standard model. IEEE Systems Journal,
13(3):2763–2774, 2019.

[28] Wenjie Yang, Shangpeng Wang, Wei Wu, and
Yi Mu. Top-level secure certificateless signature
against malicious-but-passive kgc. IEEE Access,
7:112870–112878, 2019.

A Proof of Lemma 1

Let AI be a (tIεI , qPK , qd, qRPK , qSK , qSC , qUSC)-
type I adversary, with the ability of winning Game 1
to break the IND-CCA of the proposed scheme. Then
one can build a simulator B which can apply AI as a
sub-routine to solve an instance of a (S1, 3)-DBDHE-
Set problem in time at most t with a probability at
least ε. It contradicts the (t, ε)-(S1, 3)-DBDHE-Set
assumption in (G1, G2). Let G1 and G2 be two mul-
tiplicative cyclic groups of a large prime order p, g
be a random generator of G1 and e : G1 × G1 −→
G2 be a bilinear pairing. Suppose that one gives
(g ∈ G1, C = ga ∈ G1, X ∈ G2) to B as a random
(S1, 3)-DBDHE-Set challenge and B should return

β = 1, if he decides that X = e(g, g)a
3

and β = 0,
otherwise. To this goal, B applies AI as a sub-routine,
simulates the challenger C (in Game 1) and responds

ISeCure

206 Attacks to Some Recently Proposed CL-SC Schemes and Presenting a SS with KSSTIS — Rastegari

to AI ’s queries from Public-Key, Partial-Private-
Key, Replace-Public-Key, Private-Key, Signcrypt
and Unsigncrypt oracles. Firstly, B generates a list
L = {(IDu, du, xu, PKu, Sku, stateu = 0)} which is
initially empty. Consequently, B executes Game 1
with AI as follows:

• Initialization: Suppose that lu = 2(qd +
qSK + qSC + qUSC + 1) and lm = 2qUSC with
assumptions lu(nu+1) < p and lm(nm+1) < p.
B chooses ku ∈R {0, 1, . . . , nu} and km ∈R
{0, 1, . . . , nm} (Note that the assumptions
lu(nu + 1) < p and lm(nm + 1) < p imply
0 ≤ kulu < p and 0 ≤ kmlm < p, respectively).
Moreover, B selects x′, x1, . . . , xnu ∈R Zlu ,
y′, y1, . . . , ynu ∈R Zp, z′, z1, . . . , znm ∈R Zlm
and w′, w1, . . . , wnm ∈R Zp. B keeps these
values secret and sets:

g1 = C = ga,

u′ = g−kulu+x
′

1 gy
′
,

ui = gxi1 g
yi (i = 1, 2, . . . , nu),

v′ = g−kmlm+z′

1 gw
′
,

vj = g
zj
1 g

wj (j = 1, 2, . . . , nm).

Furthermore, B calculates T = e(g1, g1)
and chooses three collision resistant hash
functions Hu : {0, 1}∗ −→ {0, 1}nu , H1 :
G2 × G4

1 × {0, 1}∗ −→ {0, 1}nm and H2 :
G3

1×{0, 1}∗ −→ Z∗p. Finally, B sends Params =
{G1, G2, p, e, g, g1, T, u

′, v′, U = (ui)
nu
i=1, V =

(vj)
nm
j=1, H1, H2, Hu} to AI . From the view of

AI , all distributions are similar to them in the
real world. We define the following functions to
follow the proof more easily:

F (u) = x′ +
∑
i∈Uu

xi − kulu,

J(u) = y′ +
∑
i∈Uu

yi,

K(m) = z′ +
∑

j∈Mm

zj − kmlm,

L(m) = w′ +
∑

j∈Mm

wj ,

where Uu and Mm are defined as described in
the proposed scheme. By These settings, we
have:

u′
∏
i∈Uu

ui = g
F (u)
1 gJ(u),

v′
∏

j∈Mm

vj = g
K(m)
1 gL(m).

Note that B doesn’t know msk = ga
2

and must
respond to AI ’s queries in Game 1 without the
knowledge of msk.

• Phase 1 Queries: In this step, B responds to
AI ’s queries from Public-Key, Partial-Private-
Key, Replace-Public-Key, Private-Key, Sign-
crypt and Unsigncrypt oracles as follows:
◦ Public-Key-Query: When AI requests the

public key of a user u, i.e. PKu, B firstly
checks the list L to find it. If PKu exists
in L, B returns it to AI . Otherwise, B
executes the SetPuK algorithm to create
PKu and sends it to AI . Furthermore, B
inserts PKu and its corresponding xu in
L.

◦ Partial-Private-Key-Query: When AI re-
quests the partial private key of a user u,
i.e. du, B firstly checks the list L to find
it. If du exists in L, B returns it to AI .
Otherwise, B tries to create du without
the knowledge of the master secret key as
follows:
− If F (u) = 0 mod p, B aborts.
− If F (u) 6= 0 mod p, B randomly se-

lects r ∈ Z∗p and creates du as fol-
lows:

du = (du,1, du,2)

= (g
− J(u)
F (u)

1 (u′
∏
i∈Uu

ui)
r, g
− 1
F (u)

1 gr).

Afterwards, B sends du to AI and
inserts it in L.
We can easily check that:

g
−J(u)/F (u)
1 (u′

∏
i∈Uu

ui)
r = gα

2
(u′

∏
i∈Uu

ui)
r̃,

g
−1/F (u)
1 gr = gr̃,

where r̃ = r−a/F (u). So, du which
is created by B, has the correct con-
struction.

◦ Replace-Public-Key-Query: Suppose that
AI requests to replace the public key
of a user u, i.e. PKu = (PKu,1, PKu,2)
corresponding to xu, with a new public
key PK ′u = (PK ′u,1, PK

′
u,2), correspond-

ing to x′u. B firstly checks the equality
e(PK ′u,1, PK

′
u,2) = T holds or not. If the

equality holds, B replaces (xu, PKu) with
(x′u, PK

′
u) in the list L. If there is not

any (xu, PKu) corresponding to the user
u in L, B directly inserts (xu, PKu) =
(x′u, PK

′
u) in L. After this replacement, B

assigns stateu = 1.
◦ Private-Key-Query: When AI requests the

private key of a user u, i.e. SKu, B firstly
checks the list L to find it. If SKu exists
in L, B returns it to AI . Otherwise, B
searches L for du. If du exists in L, B picks
it, otherwise B acts as follows:

ISeCure

July 2022, Volume 14, Number 2 (pp. 193–213) 207

− If F (u) = 0 mod p, B aborts.
− If F (u) 6= 0 mod p, B generates du

such that explained in responding to
Partial-Private-Key-Query.

Then, B gets (xu, PKu) (B picks (xu, PKu)
from L if exists and the correspond-
ing stateu = 0, otherwise B produces
(xu, PKu) by executing the SetPuK al-
gorithm). Then B can produce SKu by
executing the SetPrK algorithm, by the
use of xu and du. So B produces SKu,
sends it to AI and also inserts it in L.

◦ Signcrypt-Query: When AI requests for
a signcryption of a message m from a
sender A to a receiver B, B obtains
the private key of the sender SKA (as
explained in responding to the Private-
Key-Query) and produces a signcryption
δ = (δ1, δ2, δ3, δ4, δ5) on m by executing
the SC algorithm. Then B sends δ to AI .
If B cannot simulate SKA (i.e. F (A) = 0
mod p), B aborts the simulation.

◦ Unigncrypt-Query: When AI requests for
an unsigncryption of δ = (δ1, δ2, δ3, δ4, δ5)
from A to B, B firstly executes the verifi-
cation part of the USC algorithm accord-
ing to Eq. (9). If the verification fails, B
returns ⊥ to AI . Otherwise, B obtains m
as follows:
− If stateB = 0 (i.e. PKB has never

been replaced), B checks whether
SKB exists in the list L or not. If
so, B picks it. Otherwise, B obtains
SKB such that explained in respond-
ing to the Private-Key-Query (by the
assumption of F (B) 6= 0 mod p). Af-
terwards, B executes the unsigncrypt
part of the USC algorithm according
to Eq. (10) to obtain m and sends it
to AI .

− If stateB = 1 (i.e. PKB has been
replaced), B acts as follows:

If F (B) = 0 mod p, B aborts.
If F (B) 6= 0 mod p, B firstly
obtains gr11 as follows:

gr11 = (
δ3

δ
J(B)
2

)
1

F (B) .

Note that:

(
δ3

δ
J(B)
2

)
1

F (B)

= (
(u′

∏
i∈UB

ui)
r1

gr1.J(B)
)

1
F (B)

= (
(g
F (B)
1 gJ(B))

r1

gr1.J(B)
)

1
F (B)

= g
r1
1 .

Afterwards, B retrieves xB
corresponding to PKB from L
(Note that PKB is a replaced
public key). Then B extracts
m as follows:

m =
δ1

e(gr11 PKA,1, g
x2
B

1)
,

and sends it to AI .
• Challenge: In this step, AI chooses two iden-

tities IDA∗ and IDB∗ and two equal length
messages m0,m1 ∈ G2 as the challenge (AI has
never sent a Private-Key-Query for B∗). Then
AI sends {IDA∗ , IDB∗} and {m0,m1} to C (ac-
cording to Game 1). B simulates C as follows:
◦ If F (B∗) 6= 0 mod p or F (A∗) = 0 mod p,
B aborts.

◦ If F (B∗) = 0 mod p and F (A∗) 6= 0 mod
p, B picks a bit γ by flipping a fair coin
and produces a signcryption on mγ from
A∗ to B∗ as follows.
Let PKA∗ = (gxA∗1 , g

1/xA∗
1) and PKB∗ =

(gxB∗1 ,

g
1/xB∗
1) be the current public keys of A∗

and B∗, respectively. Remind that (g, C =
ga, X) is the input of the (S1, 3)-DBDHE-
Set problem which B is trying to solve it.
B retrieves xA∗ and xB∗ and assigns:

δ∗1 = mγ .X
x2
B∗ .e(PKB∗,1, PKB∗,1)xA∗ ,

δ∗2 = C = g1,

δ∗3 = CJ(B
∗),

δ∗4 = (Cx
2
A∗)

−1
F (A∗) gt

∗
, t∗ ∈R Z∗p.

LetMmγ = {j|Mγ [j] = 1, j = 1, 2, . . . , nm},
whereMγ = H1(δ∗1 , δ

∗
2 , δ
∗
3 , δ
∗
4 , PKB∗,1IDB∗)

and h∗ = H2(PKA∗,1, δ
∗
2 , δ
∗
4 , IDA∗ ,Mγ).

− If K(mγ) + xA∗h
∗ 6= 0 mod p, B

aborts.
− If K(mγ) + xA∗h

∗ = 0 mod p, B
assigns:

δ∗5 = (Ax
2
A∗)

−J(A∗)
F (A∗) (u′

∏
i∈UA∗

ui)
t∗AL(mγ),

and sends δ∗ = (δ∗1 , δ
∗
2 , δ
∗
3 , δ
∗
4 , δ
∗
5) to

AI .
It is straightforward to check that
if X = e(g, g)a

3

(i.e. (g,A = ga, X)
is a valid (S1, 3)-DBDHE-Set tuple),
δ∗ is a valid signcryption on mγ by
considering α, rA∗ , r

′
A∗ , r1 and r2 in

the proposed scheme as follows:
r1 = a,
α = a (i.e. msk = ga

2

and
g1 = ga = A),
r′A∗ + r2 = t∗,

ISeCure

208 Attacks to Some Recently Proposed CL-SC Schemes and Presenting a SS with KSSTIS — Rastegari

rA∗ = −a/F (A∗).
Otherwise, (if X is a random element

of G2 and not equal to e(g, g)a
3

), δ∗

is a random tuple which is not a valid
signcryption neither for m0 nor for
m1.

• Phase 2 Queries: AI sends queries to the
Public-Key, Partial-Private-Key, Replace-
Public-Key, Private-Key, Signcrypt and Un-
signcrypt oracles again and B responds to them
similar to that explained in the Phase 1 Queries
step. Note that AI is not permitted to send an
unsigncryption query on δ∗ from A∗ to B∗ un-
less PKA∗ or PKB∗ used to signcrypt mγ , has
been replaced after the challenge was issued.

• Guess: In thi step, AI returns a guess γ∗ of γ.
Finally, when Game 1 between AI and B

terminates, B acts as follows:
◦ If the simulation is aborted in any steps,
B randomly selects its guess β′ of β.

◦ Otherwise, if γ∗ = γ, B outputs a guess
β′ = 1, implying that X = e(g, g)a

3

, else B
outputs β′ = 0 to the (S1, 3)-DBDHE-Set
problem.

Time Analysis: According to the above descriptions,
B requires the time:

t ≤ tI + order(((qd + qSK + qSC + qUSC)nu

+ (qSC + qUSC)nm)TM

+ (qPK + qd + qSK + qSC + qUSC)TE

+ (qSC + qUSC)TP),

for solving the problem.
Probability Analysis: Let Pr[B wins] be the suc-
cess probability of B in solving the (S1, 3)-DBDHE-
Set problem and Pr[AI wins] be the success proba-
bility of AI in Game 1. Note that if the simulation is
aborted in any steps, B randomly chooses its guess
β′ of β and so Pr[B wins] = 1

2 . By the assumption of
Pr[AI wins] ≥ 1

2 + εI , we have:

Pr[B wins] = Pr[B wins|abort]Pr[abort]

+ Pr[B wins|abort]Pr[abort]

=
1

2
Pr[abort] + Pr[AI wins]Pr[abort]

≥ 1

2
(1− Pr[abort]) + (

1

2
+ εI)Pr[abort]

=
1

2
+ εIPr[abort]

B will not abort if all the following independent events
happen:

• E1: F (A∗) 6= 0 mod p, and F (u) 6= 0 mod p for
all Partial-Private-Key, Private-Key, Signcrypt
and Unsigncrypt queries.

• E2: F (B∗) = 0 mod p.

• E3: K(mγ) + xA∗h
∗ = 0 mod p.

It is easy to see that:

Pr[F (u) = 0 mod p] =
1

lu(nu + 1)
,

and:

Pr[K(mγ) + xA∗h
∗ = 0 mod p] =

1

lm(nm + 1)
.

So:

Pr[abort] ≥ Pr[E1

⋂
E2

⋂
E3] = Pr[E1].Pr[E2].Pr[E3]

≥ (1−
qd + qSK + qSC + qUSC + 1

lu(nu + 1)
).

1

lu(nu + 1)lm(nm + 1)

≥ (1−
qd + qSK + qSC + qUSC + 1

lu
).

1

lu(nu + 1)lm(nm + 1)

=
1

8qUSC(qd + qSK + qSC + qUSC + 1)(nu + 1)(nm + 1)
,

where the rightmost equality is implied from lu =
2(qd+qSK+qSC+qUSC+1) and lm = 2qUSC . Finally
we have:

Pr[B wins] ≥
1

2

+
εI

8qUSC(qd + qSK + qSC + qUSC + 1)(nm + 1)(nu + 1)
.

In other words, if AI wins Game 1 with a non-
negligible advantage εI (i.e. guesses γ correctly with
probability at least 1

2 + εI for a non-negligible value
of εI), then B can solve an instance of the (S1, 3)-
DBDHE-Set problem with a non-negligible advantage
ε (i.e. guess β correctly with probability at least 1

2 +ε),
where

ε ≥
εI

8qUSC(qd + qSK + qSC + qUSC + 1)(nm + 1)(nu + 1)
,

which is a contradiction with the (S1, 3)-DBDHE-Set
assumption in complexity theory.

B Proof of Lemma 2

Let AII be a (tII , εII , qPK , qSK ,
qSC , qUSC)-type II adversary, with the ability of
winning Game 2 to break the IND-CCA of the pro-
posed scheme. Then one can build a simulator B
which can apply AII as a sub-routine to solve an
instance of a (S2, 5)-DBDHE-Set problem in time
at most t with a probability at least ε. It contra-
dicts the (t, ε)-(S2, 5)-DBDHE-Set assumption in
(G1, G2). Let G1 and G2 be two multiplicative cyclic
groups of a large prime order p, g be a random gen-
erator of G1 and e : G1 × G1 −→ G2 be a bilinear
pairing. Suppose that one gives (C = h ∈ G1, D =

ha ∈ G1, E = ha
2 ∈ G1, X ∈ G2) to B as a random

(S2, 5)-DBDHE-Set challenge and B should return

β = 1, if he decides that X = e(h, h)a
5

and β = 0,
otherwise (Suppose that D = ha is a generator of
G1). To this goal, B applies AII as a sub-routine,
simulates the challenger C (in Game 2) and responds

ISeCure

July 2022, Volume 14, Number 2 (pp. 193–213) 209

to AII ’s queries from Public-Key, Private-Key, Sign-
crypt and Unsigncrypt oracles. Firstly, B generates
a list L = {(IDu, xu, PKu, Sku)} which is initially
empty. Consequently, B executes Game 2 with AII
as follows:

• Initialization: Suppose that lu = 2(qSK +
qSC + qUSC + 1) and lm = 2qUSC with as-
sumptions lu(nu + 1) < p and lm(nm + 1) <
p. B chooses a random α ∈R Z∗p as the
master secret key. In addition, B chooses
ku, km, x

′, x1, . . . , xnu , y
′, y1, . . . , ynu , z

′, z1, . . . ,
znm , w

′, w1, . . . , wnm such that explained in the
proof of Lemma 1 and sets:

g = D = ha,

g1 = gα = Dα

u′ = E−kulu+x
′
Dy′ ,

ui = ExiDyi (i = 1, 2, . . . , nu),

v′ = E−kmlm+z′Dw′ ,

vj = EzjDwj (j = 1, 2, . . . , nm).

Furthermore, B calculates T = e(g1, g1)
and chooses three collision resistant hash
functions Hu : {0, 1}∗ −→ {0, 1}nu , H1 :
G2 × G4

1 × {0, 1}∗ −→ {0, 1}nm and H2 :
G3

1×{0, 1}∗ −→ Z∗p. Finally, B sends Params =
{G1, G2, p, e, g, g1, T, u

′, v′, U = (ui)
nu
i=1, V =

(vj)
nm
j=1, H1, H2, Hu} and α to AII . Define four

functions F (u), J(u), K(m) and L(m) similar
to that explained in the proof of Lemma 1. By
these assignments we have:

u′
∏
i∈Uu

ui = EF (u)DJ(u),

v′
∏

j∈Mm

vj = EK(m)DL(m).

Note that (in contrast to the proof of Lemma

1) B knows msk = gα
2

and must respond to
AII ’s queries in Game 2 by this fact.

• Phase 1 Queries: In this step, B responds
to AII ’s queries from Public-Key, Private-Key,
Signcrypt and Unsigncrypt oracles as follows:
◦ Public-Key-Query: When AII requests the

public key of a user u, i.e. PKu, B firstly
checks the list L to find it. If PKu exists in
L, B returns it to AII . Otherwise, B picks
a random xu ∈R Z∗p and acts as follows:
− If F (u) = 0 mod p, B assigns PKu =

(PKu,1, PKu,2) = (Eαxu , Cα/xu).
Note that by this setting, the real se-
cret value of the user u is axu which
is unknown to B (as B doesn’t know
a).

− If F (u) 6= 0 mod p, B assigns PKu =

(PKu,1, PKu,2) = (gxu1 , g
1/xu
1).

Note that by this setting, the real
secret value of the user u is xu which
is known to B

Then, B sends PKu to AII and inserts
PKu and its corresponding xu in L.

◦ Private-Key-Query: When AII requests
the private key of a user u, i.e. SKu, B
firstly checks the list L to find it. If SKu

exists in L, B returns it to AII . Otherwise,
B acts as follows:
− If F (u) = 0 mod p, B aborts.
− If F (u) 6= 0 mod p, B checks whether

(xu, PKu) exists in L or not. If so,
B picks it. Otherwise, B creates
(xu, PKu) such that explained in
responding to the Public-Key-Query.
Then B obtains du by executing the
ExtPPK algorithm (note that B can
run this algorithm since he knows
α). Then B can generate SKu by
executing the SetPrK algorithm by
the knowledge of xu and du. So, B
creates SKu, sends it to AII and
inserts it in L.

◦ Signcrypt-Query: When AII requests
for a signcryption of a message m from
a sender A to a receiver B, B obtains
the private key of the sender SKA (as
explained in responding to the Private-
Key-Query) and produces a signcryption
δ = (δ1, δ2, δ3, δ4, δ5) on m by executing
the SC algorithm. Then B sends δ to AII .
If B cannot simulate SKA (i.e. F (A) = 0
mod p), B aborts the simulation.

◦ Unigncrypt-Query: When AII requests for
an unsigncryption of δ = (δ1, δ2, δ3, δ4, δ5)
from A to B, B firstly executes the ver-
ification part of the USC algorithm ac-
cording to Eq. (9). If the verification fails,
B returns ⊥ to AII . Otherwise, B checks
whether SKB exists in the list L or not. If
so, B picks it. Otherwise, B obtains SKB

such that explained in responding to the
Private-Key-Query (by the assumption of
F (B) 6= 0 mod p). Afterwards, B executes
the unsigncrypt part of the USC algorithm
according to Eq. (10) to obtain m and
sends it to AII .

• Challenge: In this step, AII chooses two iden-
tities IDA∗ and IDB∗ and two equal length
messages m0,m1 ∈ G2 as the challenge (AII
has never sent a Private-Key-Query for B∗).
Then AII sends {IDA∗ , IDB∗} and {m0,m1}
to C (according to Game 2). B simulates C as
follows:
◦ If F (B∗) 6= 0 mod p or F (A∗) = 0 mod p,

ISeCure

210 Attacks to Some Recently Proposed CL-SC Schemes and Presenting a SS with KSSTIS — Rastegari

B aborts.
◦ If F (B∗) = 0 mod p and F (A∗) 6= 0 mod
p, B picks a bit γ by flipping a fair coin
and produces a signcryption on mγ from
A∗ to B∗ as follows.
Note that PKA∗ = (gxA∗1 , g

1/xA∗
1) (since

F (A∗) 6= 0 mod p) and PKB∗ =
(EαxB∗ , Cα/xB∗) (since F (B∗) = 0 mod
p). Remind that (C = h ∈ G1, D = ha ∈
G1, E = ha

2 ∈ G1, X ∈ G2) is the input
of the (S2, 5)-DBDHE-Set problem which
B is trying to solve it. B retrieves xA∗ and
xB∗ and assigns:

δ∗1 = mγ .X
(αxB∗)

2

.e(PKB∗,1, PKB∗,1)xA∗ ,

δ∗2 = E = ha
2

,

δ∗3 = EJ(B
∗),

δ∗4 = (E(αxA∗)
2

)
−1

F (A∗) gt
∗
, t∗ ∈R Z∗p.

LetMmγ = {j|Mγ [j] = 1, j = 1, 2, . . . , nm},
whereMγ = H1(δ∗1 , δ

∗
2 , δ
∗
3 , δ
∗
4 , PKB∗,1IDB∗)

and h∗ = H2(PKA∗,1, δ
∗
2 , δ
∗
4 , IDA∗ ,Mγ).

− If K(mγ) + xA∗h
∗ 6= 0 mod p, B

aborts.
− If K(mγ) + xA∗h

∗ = 0 mod p, B
assigns:

δ
∗
5 =

(E
(αxA∗)

2
)
−J(A∗)
F (A∗) (u

′
∏
i∈UA∗

ui)
t∗
E
L(mγ)

,

and sends δ∗ = (δ∗1 , δ
∗
2 , δ
∗
3 , δ
∗
4 , δ
∗
5) to

AII .
It is straightforward to check that
if X = e(h, h)a

5

(i.e. (C = h ∈
G1, D = ha ∈ G1, E = ha

2 ∈
G1, X ∈ G2) is a valid (S2, 5)-
DBDHE-Set tuple), δ∗ is a valid
signcryption on mγ by considering α,
rA∗ , r

′
A∗ , r1 and r2 in the proposed

scheme as follows:
r1 = a,
r′A∗ + r2 = t∗,
rA∗ = −α2/aF (A∗).

Otherwise, (if X is a random element

of G2 and not equal to e(h, h)a
5

), δ∗

is a random tuple which is not a valid
signcryption neither for m0 nor for
m1.

• Phase 2 Queries: AII sends queries to the
Public-Key, Private-Key, Signcrypt and Unsign-
crypt oracles again and B responds to them
similar to that explained in the Phase 1 Queries
step. Note that AII is not permitted to send
an unsigncryption query on δ∗ from A∗ to B∗.

• Guess: In this step, AII returns a guess γ∗ of
γ.

Finally, when Game 2 between AII and B
terminates, B acts as follows:
◦ If the simulation is aborted in any steps,
B randomly selects its guess β′ of β.

◦ Otherwise, if γ∗ = γ, B outputs a guess
β′ = 1, implying that X = e(h, h)a

5

, else
B outputs β′ = 0 to the (S2, 5)-DBDHE-
Set problem.

Time and probability analysis are such that explained
in the proof of Lemma 1, but we must consider tII
and εII instead of tI and εI , respectively and qd = 0,
here.

C Proof of Lemma 3

Let AI be a (tI , εI , qPK , qd, qRPK ,
qSK , qSC , qUSC)-type I adversary, with the ability
of winning Game 3 to break the EUF-CMA of the
proposed scheme. Then one can build a simulator
B which can apply AI as a sub-routine to solve
an instance of a 2-CDHE problem in time at most
t with a probability at least ε. It contradicts the
(t, ε)-2-CDHE assumption in G1. Let G1 be a mul-
tiplicative cyclic groups of a large prime order p
and g be a random generator of G1. Suppose that
one gives (g ∈ G1, C = ga ∈ G1) to B as a random

2-CDHE challenge and B should return ga
2 ∈ G1.

To this goal, B applies AI as a sub-routine, simu-
lates the challenger C (in Game 3) and responds
to AI ’s queries from Public-Key, Partial-Private-
Key, Replace-Public-Key, Private-Key, Signcrypt
and Unsigncrypt oracles. Firstly, B selects a mul-
tiplicative group G2 of order p and a bilinear pair-
ing e : G1 × G1 −→ G2. Then B generates a list
L = {(IDu, du, xu, PKu, Sku, stateu = 0)} which is
initially empty. Consequently, B executes Game 3
with AI as follows:

• Initialization: This step is similar to the Ini-
tialization step in the proof of Lemma 1, except
that lu is considered as lu = 2(qd+qSK +qSC +
qUSC), here.

• Queries: This step is similar to the Phase 1
Queries step in the proof of Lemma 1.

• Forgery In this step (if the simulation is
not aborted in any steps), AI generates a
valid signcryption δ∗ = (δ∗1 , δ

∗
2 , δ
∗
3 , δ
∗
4 , δ
∗
5)

on a message m∗ from A∗ with public key

PKA∗ = (gxA∗1 , g
1/xA∗
1) to B∗ with public

key PKB∗ = (gxB∗1 , g
1/xB∗
1). Let Mm∗ =

{j|M∗[j] = 1, j = 1, 2, . . . , nm}, where M∗ =
H1(δ∗1 , δ

∗
2 , δ
∗
3 , δ
∗
4 , PKB∗,1IDB∗) and h∗ =

H2(PKA∗,1, δ
∗
2 , δ
∗
4 , IDA∗ ,M

∗).
◦ If F (A∗) 6= 0 mod p or K(m∗) + xA∗h

∗ 6=

ISeCure

July 2022, Volume 14, Number 2 (pp. 193–213) 211

0 mod p, B aborts.
◦ If F (A∗) = 0 mod p and K(m∗)+xA∗h

∗ =
0 mod p, B retrieves xA∗ and calculates:

ga
2

= (
δ∗5

(δ∗4)J(A∗)(δ∗2)L(m∗)
)

1

x2
A∗ .

Time Analysis: It is similar to the time analysis in
the proof of Lemma 1.
Probability Analysis: Let Pr[B wins] be the suc-
cess probability of B in solving the 2-CDHE problem
and Pr[AI wins] be the success probability of AI in
Game 3. By the assumption of Pr[AI wins] ≥ εI , we
have:

Pr[B wins] = Pr[abort
⋂
AI wins]

= Pr[AI wins].Pr[abort] ≥ εI .Pr[abort]

B will not abort if all the following independent events
happen:

• E1: F (u) 6= 0 mod p for all Partial-Private-
Key, Private-Key, Signcrypt and Unsigncrypt
queries.

• E2: F (A∗) = 0 mod p.
• E3: K(mγ) + xA∗h

∗ = 0 mod p.

So we have:

Pr[abort] ≥ Pr[E1

⋂
E2

⋂
E3] = Pr[E1].Pr[E2].Pr[E3]

≥ (1−
qd + qSK + qSC + qUSC

lu(nu + 1)
).

1

lu(nu + 1)lm(nm + 1)

≥ (1−
qd + qSK + qSC + qUSC

lu
).

1

lu(nu + 1)lm(nm + 1)

=
1

8qUSC(qd + qSK + qSC + qUSC)(nu + 1)(nm + 1)
,

where the rightmost equality is implied from lu =
2(qd + qSK + qSC + qUSC) and lm = 2qUSC . Then we
have:

Pr[B wins] ≥
εI

8qUSC(qd + qSK + qSC + qUSC)(nm + 1)(nu + 1)
.

In other words, if AI wins Game 3 with a non-
negligible advantage εI (i.e. forges a valid sign-
cryption with a non-negligible probability εI), then
B can solve an instance of the 2-CDHE prob-
lem with a non-negligible probability ε, where
ε ≥ εI

8qUSC(qd+qSK+qSC+qUSC)(nm+1)(nu+1) , which is

a contradiction with the 2-CDHE assumption in
complexity theory.

D Proof of Lemma 4

Let AII be a (tII , εII , qPK , qSK ,
qSC , qUSC)-type II adversary, with the ability of
winning Game 4 to break the EUF-CMA of the
proposed scheme. Then one can build a simulator
B which can apply AII as a sub-routine to solve
an instance of a 3-CDHE problem in time at most
t with a probability at least ε. It contradicts the

(t, ε)-3-CDHE assumption in G1. Let G1 be a multi-
plicative cyclic groups of a large prime order p and
g be a random generator of G1. Suppose that one
gives (C = h ∈ G1, D = ha ∈ G1, E = ha

2 ∈ G1)
to B as a random 3-CDHE challenge and B should
return ha

3 ∈ G1. To this goal, B applies AII as a
sub-routine, simulates the challenger C (in Game
4) and responds to AII ’s queries from Public-Key,
Private-Key, Signcrypt and Unsigncrypt oracles.
Firstly, B selects a multiplicative group G2 of order
p and a bilinear pairing e : G1 × G1 −→ G2. Then
B generates a list L = {(IDu, xu, PKu, Sku)} which
is initially empty. Consequently, B executes Game 4
with AII as follows:

• Initialization: This step is similar to the Ini-
tialization step in the proof of Lemma 2, except
that lu is considered as lu = 2(qSK + qSC +
qUSC), here.

• Queries: This step is similar to the Phase 1
Queries step in the proof of Lemma 2.

• Forgery In this step (if the simulation is
not aborted in any steps), AII generates a
valid signcryption δ∗ = (δ∗1 , δ

∗
2 , δ
∗
3 , δ
∗
4 , δ
∗
5) on

a message m∗ from A∗ to B∗. Let Mm∗ =
{j|M∗[j] = 1, j = 1, 2, . . . , nm}, where M∗ =
H1(δ∗1 , δ

∗
2 , δ
∗
3 , δ
∗
4 , PKB∗,1IDB∗) and h∗ =

H2(PKA∗,1, δ
∗
2 , δ
∗
4 , IDA∗ ,M

∗).
◦ If F (A∗) 6= 0 mod p or K(m∗) + xA∗h

∗ 6=
0 mod p, B aborts.

◦ If F (A∗) = 0 mod p and K(m∗)+xA∗h
∗ =

0 mod p, B retrieves xA∗ and calculates:

ha
3

= (
δ∗5

(δ∗4)J(A∗)(δ∗2)L(m∗)
)

1
(αxA∗)

2 .

Note that as F (A∗) = 0 mod p, we have
PKA∗ = (EαxA∗ , Cα/xA∗) according to
that explained in responding to the Public-
Key-Query in the proof of Lemma 2.

Time and probability analysis are such that explained
in the proof of Lemma 3, but we must consider tII
and εII instead of tI and εI , respectively and qd = 0,
here.

E Proof of Theorem 3

Let A be a (t, ε, qPK , qSK , qSC ,
qUSC)-adversary, with the ability of winning Game 5
to break the KSSTIS of the proposed scheme. Then
one can build a simulator B which can apply A as a
sub-routine to solve an instance of a (S2, 5)-CBDHE-
Set problem in time at most t with a probability at
least ε. It contradicts the (t, ε)-(S2, 5)-CBDHE-Set
assumption in (G1, G2). Let G1 and G2 be two multi-
plicative cyclic groups of a large prime order p, g be
a random generator of G1 and e : G1×G1 −→ G2 be
a bilinear pairing. Suppose that one gives (C = h ∈

ISeCure

212 Attacks to Some Recently Proposed CL-SC Schemes and Presenting a SS with KSSTIS — Rastegari

G1, D = ha ∈ G1, E = ha
2 ∈ G1) to B as a random

(S2, 5)-CBDHE-Set challenge and B should return

X = e(h, h)a
5

(Suppose that D = ha is a generator
of G1). To this goal, B applies A as a sub-routine,
simulates the challenger C (in Game 5) and responds
to A’s queries from Public-Key, Private-Key, Sign-
crypt and Unsigncrypt oracles. Firstly, B generates a
list L = {(IDu, du, xu, PKu, Sku)} which is initially
empty. Consequently, B executes Game 5 with A as
follows:

• Initialization: Suppose that lu = 2(qd +
qSK + qSC + qUSC) with the assumption
lu(nu + 1) < p. B chooses a random α ∈R Z∗p
as the master secret key. In addition, B chooses
ku, x

′, x1, . . . , xnu such that explained in the
proof of Lemma 1 and sets g = D = ha

and g1 = gα = Dα. Furthermore, B picks
u′, u1, . . . , unu , v

′, v1, . . . , vnm ∈R G1, calcu-
lates T = e(g1, g1) and chooses three collision
resistant hash functions Hu : {0, 1}∗ −→
{0, 1}nu , H1 : G2 × G4

1 × {0, 1}∗ −→ {0, 1}nm
and H2 : G3

1 × {0, 1}∗ −→ Z∗p. Finally, B sends
Params = {G1, G2, p, e, g, g1, T, u

′, v′, U =
(ui)

nu
i=1, V = (vj)

nm
j=1, H1, H2, Hu} to A. De-

fine F (u) such that explained in the proof of
Lemma 1, i. e:

F (u) = x′ +
∑
i∈Uu

xi − kulu.

• Queries: In this step, B responds to A’s queries
from Public-Key, Private-Key, Signcrypt and
Unsigncrypt oracles as follows:
◦ Public-Key-Query: When A requests the

public key of a user u, i.e. PKu, B firstly
checks the list L to find it. If PKu exists
in L, B returns it to A. Otherwise, B picks
a random xu ∈R Z∗p and acts as follows:
− If F (u) = 0 mod p, B assigns PKu =

(PKu,1, PKu,2) = (Eαxu , Cα/xu).
Note that by this setting, the real se-
cret value of the user u is axu which
is unknown to B (as B doesn’t know
a).

− If F (u) 6= 0 mod p, B assigns PKu =

(PKu,1, PKu,2) = (gxu1 , g
1/xu
1).

Note that by this setting, the real
secret value of the user u is xu which
is known to B

Then, B sends PKu to A and inserts PKu

and its corresponding xu in L.
◦ Partial-Private-Key-Query: When A re-

quests the partial private key of a user u,
i.e. du, B firstly checks the list L to find
it. If du exists in L, B returns it to A.
Otherwise, B obtains du by executing the

ExtPPK algorithm (note that B can run
this algorithm since he knows α). then B
sends du to A and also inserts it in L.

◦ Private-Key-Query: When A requests the
private key of a user u, i.e. SKu, B firstly
checks the list L to find it. If SKu exists
in L, B returns it to A. Otherwise, B acts
as follows:
− If F (u) = 0 mod p, B aborts.
− If F (u) 6= 0 mod p, B checks whether

(xu, PKu) exists in L or not. If so,
B picks it. Otherwise, B creates
(xu, PKu) such that explained in
responding to the Public-Key-Query.
Then B obtains du by executing the
ExtPPK algorithm (note that B can
run this algorithm since he knows
α). Then B can generate SKu by
executing the SetPrK algorithm by
the knowledge of xu and du. So,
B creates SKu, sends it to A and
inserts it in L.

◦ Signcrypt-Query: When A requests for
a signcryption of a message m from a
sender A to a receiver B, B obtains
the private key of the sender SKA (as
explained in responding to the Private-
Key-Query) and produces a signcryption
δ = (δ1, δ2, δ3, δ4, δ5) on m by executing
the SC algorithm. Then B sends δ to A.
If B cannot simulate SKA (i.e. F (A) = 0
mod p), B aborts the simulation.

◦ Unigncrypt-Query: When A requests for
an unsigncryption of δ = (δ1, δ2, δ3, δ4, δ5)
from A to B, B firstly executes the ver-
ification part of the USC algorithm ac-
cording to Eq. (9). If the verification fails,
B returns ⊥ to A. Otherwise, B checks
whether SKB exists in the list L or not. If
so, B picks it. Otherwise, B obtains SKB

such that explained in responding to the
Private-Key-Query (by the assumption of
F (B) 6= 0 mod p). Afterwards, B executes
the unsigncrypt part of the USC algorithm
according to Eq. (10) to obtain m and
sends it to A.

• Output: In this step, A (who has a signcryp-
tion δ∗ on a message m∗ from A∗ to B∗ and
knows r∗1 , r

∗
2) returns a message m∗∗. Then A

sends δ∗, m∗∗ and r∗1 to B.
Finally, when Game 5 between A and B ter-

minates, B acts as follows:
◦ If the simulation is aborted in any steps,
B aborts.

◦ Otherwise:
− If F (A∗) 6= 0 mod p or F (B∗) 6= 0

ISeCure

July 2022, Volume 14, Number 2 (pp. 193–213) 213

mod p, B aborts.
− If F (A∗) = 0 mod p and F (B∗) =

0 mod p, B retrieves xA∗ and xB∗ ,
then computes:

e(h, h)a
5

=

(
δ∗1

m∗∗.e(PKB∗,1, PKB∗,1)r
∗
1

)
1

α2x2
B∗xA∗ ,

(E.1)

as the output of the (S2, 5)-CBDHE-
Set problem. Note that as F (A∗) =
0 mod p and F (B∗) = 0 mod
p, PKA∗ = (PKA∗,1, PKA∗,2) =

(EαxA∗ , Cα/xA∗) and PKB∗ =
(PKB∗,1, PKB∗,2) = (EαxB∗ , Cα/xB∗).
In other words, the real secret values
of A∗ and B∗ are respectively axA∗
and axB∗ , which are both unknown
to B. By these descriptions, it is
easy to check the correctness of Eq.
(E.1) as:

(
δ∗1

m∗∗.e(PKB∗,1, PKB∗,1)
r∗
1

)

1

α2x2
B∗xA∗

= (
m∗.e(PK

r∗1+SKA∗,3
B∗,1 , PKB∗,1)

m∗∗.e(PKB∗,1, PKB∗,1)
r∗
1

)

1

α2x2
B∗xA∗

= e(PK
SKA∗,3
B∗,1 , PKB∗,1)

1

α2x2
B∗xA∗

= e(PKB∗,1, PKB∗,1)

SKA∗,3
α2x2

B∗xA∗

= e(EαxB∗ , EαxB∗)

axA∗
α2x2

B∗xA∗

= e(ha
2αxB∗ , ha

2αxB∗)

axA∗
α2x2

B∗xA∗

= e(h, h)a
5
,

which shows the correctness of Eq.
(E.1).

Time Analysis: According to the above descriptions,
B requires the time:

t ≤ t′ + order(((qd + qSK + qSC + qUSC)nu

+ (qSC + qUSC)nm)TM

+ (qPK + qd + qSK + qSC + qUSC)TE

+ (qSC + qUSC)TP),

for solving the problem.
Probability Analysis: Let Pr[B wins] be the suc-
cess probability of B in solving the (S2, 5)-CBDHE-
Set problem and Pr[A wins] be the success probabil-
ity of A in Game 5. We have:

Pr[B wins] = Pr[abort
⋂
A wins]

= Pr[A wins].Pr[abort] ≥ ε′.Pr[abort]

B will not abort if all the following independent events
happen:

• E1: F (u) 6= 0 mod p for all Partial-Private-
Key, Private-Key, Signcrypt and Unsigncrypt
queries.

• E2: F (A∗) = 0 mod p.
• E3: F (B∗) = 0 mod p.

It is easy to see that:

Pr[F (u) = 0 mod p] =
1

lu(nu + 1)
,

So:

Pr[abort] ≥ Pr[E1

⋂
E2

⋂
E3] = Pr[E1].Pr[E2].Pr[E3]

≥ (1−
qd + qSK + qSC + qUSC

lu(nu + 1)
).

1

l2u(nu + 1)2

≥ (1−
qd + qSK + qSC + qUSC

lu
).

1

l2u(nu + 1)2

=
1

8(qd + qSK + qSC + qUSC)2(nu + 1)2
,

where the rightmost equality is implied from lu =
2(qd + qSK + qSC + qUSC). Finally, we have:

Pr[B wins] ≥
ε′

8(qd + qSK + qSC + qUSC)2(nu + 1)2
.

In other words, if A wins Game 5 with a non-
negligible advantage ε′ (i.e. returns m∗ correctly with
probability at least ε′ for a non-negligible value of ε′),
then B can solve an instance of the (S2, 5)-CBDHE-
Set problem with a non-negligible advantage ε (i.e.

compute e(h, h)a
5

with probability at least ε), where

ε ≥ ε′

8(qd+qSK+qSC+qUSC)2(nu+1)2 , which is a contra-

diction with the (S2, 5)-CBDHE-Set assumption in
complexity theory.

Parvin Rastegari received the
B.Sc., M.Sc. and Ph.D. degrees in
electrical engineering from the De-
partment of Electrical and Computer
Engineering, Isfahan University of
Technology, Isfahan, Iran, in 2008,
2011 and 2019, respectively. Since

2020, she has been with the Electrical and Computer
Engineering Group, Golpayegan College of Engineer-
ing, Isfahan University of Technology, Golpayegan,
Iran, as an assistant professor. Her current special
fields of interest include information security, cryp-
tographic protocols and security challenges in smart
grids and internet of things.

ISeCure

	1 Introduction
	1.1 Contributions:

	2 Preliminaries
	2.1 Bilinear Pairings
	2.2 Related Complexity Assumptions

	3 CL-SC Scheme
	3.1 Syntax
	3.2 Security Requirements

	4 On the Security of Caixue's CL-SC Scheme
	4.1 Algorithms of Caixue's Scheme
	4.2 Cryptanalysis of Caixue's Scheme
	4.3 On KSSTIS of Caixue's Scheme

	5 On the Security of Shan's CL-SC Scheme
	5.1 Algorithms of Shan's Scheme
	5.2 Cryptanalysis of Shan's Scheme
	5.3 On KSSTIS of Shan's Scheme

	6 On the Security of Ullah et al.'s CL-SC Scheme
	6.1 Algorithms of Ullah et al.'s Scheme
	6.2 Cryptanalysis of Ullah et al.'s Scheme

	7 Proposed CL-SC Scheme
	7.1 Algorithms of the Proposal
	7.2 Security Analysis of the Proposal

	8 Comparison
	9 Conclusion
	A Proof of Lemma 1
	B Proof of Lemma 2
	C Proof of Lemma 3
	D Proof of Lemma 4
	E Proof of Theorem 3

