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1 Introduction

B ioinformatics is a multi-disciplinary field where
computer science, information technology, statis-

ABSTRACT

Motif discovery is a challenging problem in bioinformatics. It is an essential
step towards understanding gene regulation. Although numerous algorithms
and tools have been proposed in the literature, the accuracy of motif finding is
still low. In this paper, we tackle the motif discovery problem using ensemble
methods. A review and classification of current ensemble motif discovery tools
is presented. We then propose our cluster-based ensemble motif discovery tool
(CEMD) which is based on k-medoids clustering of state-of-art stand-alone
motif finding tools. We evaluate the performance of CEMD on benchmark
datasets, and compare the results to both stand-alone and similar ensemble
tools. Experimental results indicate that CEMD has better sensitivity than
state-of-art stand-alone tools when dealing with human datasets. CEMD also
obtains better values of sensitivity when motifs are implanted in real promoter
sequences. As for the comparison of CEMD with ensemble motif discovery
tools, results indicate that CEMD achieves better results than MEME-ChIP
on all evaluation measures. CEMD shows comparable performance to RSAT
peak-motifs and MODSIDE.

© 2020 ISC. All rights reserved.

understand, and facilitate discovery of hidden knowl-
edge in this huge amount of data. Sequential patterns
are one important kind of hidden knowledge buried in
biological sequences (DNA,RNA jorprotein). Such pat-

tics, and engineering coincide, in order to organize
and understand biological data [1]. The field emerged
as a result of the continuing growth of available biolog-
ical data produced by high-throughput technologies.
Thus, there is a need to solutions in order to analyze,
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terns, also motifs, are responsible for critical biological
functions in the cell. The problem of finding recurring
patterns is called the motif discovery problem.

Motif discovery plays an important role in under-
standing gene regulation, disease detection, and drug
discovery [2]. However, it remains one of the most
challenging problems in bioinformatics. Discovering
motifs in the wet lab is a difficult and time-consuming
task. Thus, computational approaches have been
developed to solve this problem. Today, many stand-
alone tools are available for the discovery of motifs
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in sequential data. However, research shows that the
performance of these tools in terms of accuracy is
still limited [3]. This is because motifs are very short
segments ranging in size from 8 to 20 bases [4]. They
are hidden within enormous amounts of DNA data.
In addition, motifs are not exact patterns; they allow
some variability while preserving the same biological
function. Motif variations are not well understood,
so this leads to a very large search space. In fact, it
has been shown that the motif discovery problem is
inherently NP-hard [5].

In order to enhance prediction accuracy, studies have
started investigating the potential of using ensemble
methods, also called pipelines or meta-servers. The
term ensemble is borrowed from machine learning lit-
erature. An ensemble combines the results of multiple
weak classifiers to enhance the accuracy of predictions.
Recent years have witnessed an increasing interest in
using ensemble methods in bioinformatics [6-8]. The
main idea is for multiple stand-alone tools to cooper-
ate by combining their individually obtained results
[9]. Ensemble methods have unique advantages in
dealing with smaller sample sizes, high-dimensionality,
and complex data structures [10]. Although several
ensemble tools have been proposed for motif finding
over the years, the accuracy of these tools still needs
improvement.

The motif discovery problem can be formulated
as follows: Given a set of N promoter regions S =
$1,82,...,5N, corresponding to co-regulated genes,
each s; € S is defined over the alphabet > . Given
two integers {e, gle > 0,2 < ¢ < N}, find all repeated
patterns that are present in at least q promoters such
that any motif occurs with at most e mismatches.

In this paper, we address the motif discovery problem
using ensemble methods. We present the following
contributions. First, we review the ensemble motif
discovery literature. Then, we classify ensemble motif
discovery tools into a number of categories: clustering-
based ensembles, machine learning ensembles, comple-
mentary search space ensembles, and motif ranking
ensembles. Next, we propose our cluster-based ensem-
ble motif discovery tool (CEMD), which is based on
k-medoids clustering of state-of-art stand-alone motif
finding tools. We evaluate the prediction performance
of CEMD using benchmark datasets and compare
the obtained results with similar approaches in the
literature.

2 Related Work

In ensemble motif discovery, complementary algo-
rithms are combined to improve the accuracy of motif
prediction. As shown in Figure 1, an ensemble motif
discovery tool is composed of three main components:
weak classifiers, learning rule, and an output reporting
module. Several stand-alone motif discovery tools are
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used to process the same input data sequences. Then,
a learning rule is used to aggregate the results together
and rank the final motif predictions using an appro-
priate scoring function. Finally, results of the final fil-
tered outcomes are reported by selecting top-ranking
motifs in different formats such as text files and visual
graphs. Efforts in ensemble motif discovery started
in 2005. Since then, many tools have been proposed
in the literature with the goal of improving accuracy
of motif prediction. Here, we classify and discuss the
currently available ensemble tools for DNA motif find-
ing. Based on the available literature, we propose the
following classification: clustering-based ensembles,
machine learning ensembles, complementary search
space ensembles, and motif ranking ensembles.
Clustering is the process of placing similar objects into
groups (clusters). In motif discovery, motifs predicted
by different tools are pooled together and divided into
groups based on similarity. The main idea is that sim-
ilar motifs predicted by different tools are more likely
to represent real motifs. RGSMiner [11] is a clustering-
based ensemble that combines three popular motif
discovery programs: Gibbs Sampler [12], MEME [13],
and AlignACE [14].

MultiFinder [15] is one of the early ensemble algo-
rithms for motif discovery. It includes four motif dis-
covery programs: MDscan [16], BioProspector [17],
AlignACE [14, 18] and MEME [13]. The results from
these tools are merged and ranked using hierarchi-
cal clustering. Other examples include: EMD [19],
WebMotifs [20], MEMOFinder [21], MotifVoter [22],
Complete MOTTF's [23], and Gimme Motifs [24]. In
the machine learning literature, ensemble methods
refer to combining the results of weak classifiers to
enhance the accuracy of predictions. Machine learn-
ing ensemble techniques include: Bayesian averaging,
error-correcting output coding, Bagging, and boosting
[25]. Examples of machine learning motif discovery
tools include: MotifBooster [26], SVMotifPWM [27],
and W-ChIPMotifs [28].

In the motif discovery literature, some tools that are
based on combining stand-alone tools that target dif-
ferent search spaces. For example: SCOPE [29, 30]
and MEME-ChIP [31, 32]. Other tools such as BEST
[33], Promzea [34], MODSIDE [35] do not actually
combine the results of individual tools, but work on
optimizing and enhancing the predictions of each com-
ponent tool. We found that the majority of ensemble
tools are clustering-based. They incorporate the most
accurate component modules such as: MEME, Bio-
prospector, Weeder, AlignACE and MDscan. Some
of the ensemble tools, such as EMD, MotifVoter, and
CE3 [36], have the ability to be extended with new
component modules. There are many challenges facing
current ensemble motif discovery tools. Some tools are
offered as stand-alone software that take a long time




November 2020, Volume 12, Number 3 (pp. 29—36)

FASTA flike
=Sl

2 AACAAATTTTAGAACAATAGCA AGGT ACTICCACATAGTTAGE
g e
l s TCCAACGTACCCOTAAATTTCOGC CCATACGTACGGAATTTOCA
B =S
g COCAACTAACTTAGCTCAACGTTAGT TAAACTGCACATTTCCAR
—_ >Seqd
COBATAACCGAT AGCA ACGTCCATGTACCOO TAAATTTCATCD
g L l Y
= .
2 MEME Weeder  BioProspector
&
g |
{s'
3 A T L
w . -
E Predacted Predicted Predicied
o o Motifs 1 Motifs 2 Motifs 3
2 =
E &
(2h 2 = *
- = Y Y
=
P
= +  Sumof squared
e k-medoids distance (S8D)
& + Average log likelihood
£ : ) ratios (ALLR)
E Clustering technique | | . cogne wmglarity
2
i
Comven s wequence:
ACGTACGT
-
=
(3 E..
= 1
(=]

Figure 2. CEMD architecture

to download and install. Sometimes libraries and pack-
ages are required for proper installation. As for online
web-based tools, maintenance and support teams are
needed to keep the tool alive. Some online tools are
no longer available, such as RGSMiner [11], SCOPE
[29, 30], and BEST [33]. Motif discovery tools based
on machine learning techniques need to have a train-
ing dataset with known labels for the classifiers, which
is difficult to obtain.
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Figure 1. Basic components of an ensemble tool

3 CEMD Architecture

In this section, we describe the components of CEMD,
our proposed cluster-based ensemble motif discovery
tool. Figure 2 shows the architecture of CEMD, which
is composed of the following modules: motif discovery
programs, learning rule, and output. The motif dis-

covery programs produce the initial set of predicted
motifs. Then, the learning rule, which is a cluster-
ing ensemble in our work, predicts motifs using the
k-mediods algorithm. Finally, motifs are scored and
presented to the user.

3.1 Motif Discovery Programs

In order to develop CEMD, we selected three of the
best motif discovery tools as our component mod-
ules: [7] MEME, [37] Weeder, and [13] BioProspector.
MEME and Weeder were found to be the best mo-
tif discovery tools in the study of Tompa et al. [3].
In addition, we integrate the results of BioProspec-
tor, which is considered a fast, accurate and comple-
mentary searching tool [34]. Next, we provide a brief
description of each tool.

e MEME [37] is an expectation maximization
based algorithm for motif discovery. It optimizes
the expected value of a score based on the infor-
mation content. From each l-mer, the algorithm
iterates between the E-step and M-step collect-
ing candidates and updating the model with the
new sites that lead to higher expected values.
MEME searches for motifs of length 6 to 18 base
pairs. It then returns the top five discovered
motifs.

e Weeder [38] is a suffix-tree based word enumer-
ation algorithm. It compares the observed oc-
currences of a motif to the expected frequencies
in the promoter regions of the same organism.
Weeder searches for motifs of widths: 6, 8, 10, 12
and 14. It allows for mismatches between 1 and
4. The top ten discovered motifs are returned to
the user.

e BioProspector [39] is based on Gibbs sampling.
A zero to third-order Markov model is used to
model the background. This strategy enhances
the accuracy of the reported motifs. BioProspec-
tor allows input sequences to contain zero to
multiple copies of the motif. The top five discov-
ered motifs will be returned.

3.2 Learning Rule Module

The learning rule in our proposed ensemble consists of
a clustering algorithm, which is used to group similar
motifs together. The clustering algorithm employs
similarity measures that measure motif similarity.

3.2.1 Clustering Algorithm

CEMD is based on K-medoids, a well-known clustering
algorithm. First, CEMD runs the three motif discovery
programs to find motifs. CEMD then clusters the
motifs and outputs the most representative one. K-
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medoids allows motifs to move between clusters at any
point in the clustering process. K-medoids performs
the following steps:

1. Specify the number of clusters, K.

2. Select a total of K initial cluster representative
objects, called medoids, mi.

3. Assign the remaining objects to the cluster with
the closest medoid.

4. Randomly select another object, o, which is a
non-representative object.

5. Compute the distance between o and other ob-
jects in each cluster, if the total distance D < 0,
then swap m with o to form a new set of medoids.

6. Repeat steps 4 and 5 until the cluster quality
and convergence distance is satisfied.

A demonstration of D-medoids algorithm, where D =
2 is shown in Figure 3.

3.2.2 Similarity Measures

The similarity measures or scoring functions are used
in the clustering process to determine similarity. In
CEMD, we choose three distance metrics for motif
alignments: [7] Sum of squared distance, [37] Aver-
age log likelihood rations, and [13] Cosine similarity
with range. Based on previous research, these mea-
sures were found to produce promising results in motif
discovery [40, 41].

1 z

% %
° o — © ° —
o ©0 e ®0
°® ®

K=z Sebect initial medolds Assign objects 1o

nearest medoids

Randarnly select ebject &

Compute distance and
SWAPRINg m with o

Figure 3. K-medoids algorithm process

(1) Sum of squared distance (SSD):
T
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(2) Average log likelihood rations (ALLR):
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(3) Cosine similarity:
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CEMD users are allowed to select one measure from
these three distance metrics. Since the range of the
results from each scoring function is different, a scaling
function (see Equation 3) is used as a unified scale
for output results from all three scoring functions in
the CEMD tool, with Min = 0 meaning more similar,
and Maz = 1 meaning there is a difference.

T — min

MinMax — Scaling = (3)

max — min

3.3 Motif Representation Module

As discussed in Section 3.1, the CEMD tool contains
three motif discovery programs that produce differ-
ent output formats such as text files, XML files, and
HTML files. The motif representation module is re-
sponsible for converting the output motifs to a unified
representation (i.e. all motifs can be represented as a
consensus sequence). Each motif discovery program
will process the input file separately. The CEMD tool
will pool and integrate the output files to improve the
accuracy, and extract the motifs’ consensus sequences.

3.4 Output Module

Each motif that was extracted by the CEMD tool will
be represented by the following: consensus, instances,
component module, sequence logo, location, and po-
sition weight matrix. The final results are provided
on the CEMD webpage, and can be downloaded as a
text file, or sent to an email address as a text file with
all motifs’ graphical logos.

4 Experimental Results

Here, we evaluate the performance of CEMD and re-
port the prediction results. The performance of CEMD
is compared to other similar tools. CEMD was imple-
mented and tested on an IntelR CoreTM i7 Duo CPU
2.40 GHz machine, with 16GB RAM.

4.1 Dataset and Evaluation Measures

We use the benchmark dataset of Tompa et al., [3].
This dataset consists of 56 datasets representing four
different species: human, mouse, fly, and yeast. The
average number of sequences per dataset is 7. Each se-
quence has an average length of 1000 (approximately)
nucleotides. The benchmark dataset is divided into
three parts, each representing different types of back-
ground sequences. In the dataset, real transcription
factor binding sites are placed at their original posi-
tions. There are three types of background sequence:
real promoters, randomly chosen promoters from the
same genome, and sequences generated by a Markov
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Figure 4. The average sensitivity per species obtained for
CEMD and stand-alone motif finding tools

chain of order 3. The performance is measured using
the following measures calculated at the nucleotide
level:

e Sensitivity (Sn): the proportion of known nu-
cleotide positions that are correctly predicted.
TP
= 4
TP+ FN )

e Positive Predictive Value (PPV): the proportion
of predicted nucleotide positions that are known.

Sn

TP
TP+ FP (5)
e Specificity (Sp): the proportion of background
nucleotides that are correctly identified as back-
ground:

PPV

TN
Sy =—=—— 6
P TN+ FP (6)
Where TP refers to true positives, FN to false nega-
tives, TN to True Negatives, and FP to false positives.

4.2 Prediction Performance

In this section, we discuss the performance of CEMD
and compare it to stand-alone motif finding tools [3],
including: MEME and Weeder. We examine the pre-
diction performance species-wise and also with respect
to the type of background sequences in the dataset (i.e.
real, generic, or Markovian). In addition, we compare
the performance of CEMD to other ensemble motif
discovery tools [35].

Figure 4 shows the average sensitivity values of CEMD
as compared with fourteen stand-alone motif finding
tools. We observe that the obtained sensitivity val-
ues for CEMD are greater than the values of all the
tools when dealing with human datasets. CEMD also
achieved better results for the fly and mouse datasets.
In general, CEMD achieved better results than eleven
tools across all species. We now look at the average
sensitivity per background type. As shown in Figure 5,
CEMD performed similarly on the three types of back-
ground sequences. For the real datasets, CEMD ob-

Awgrage Sn per background
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Figure 5. The average sensitivity per background type ob-
tained for CEMD and stand-alone motif finding tools

tained better values of sensitivity than most stand-
alone tools. Also, CEMD was able to achieve better
results compared with some tools when dealing with
generic and Markovian datasets. As for specificity, Fig-
ure 6 and Figure 7 show that CEMD is comparable
to other tools.

In terms of positive predictive value, Figure 8 and
Figure 9 show the performance of CEMD and other
tools per species and per background type, respec-
tively. CEMD again performs better on fly and human
datasets. Figure 9 shows that CEMD performs better
than eleven tools on the real dataset.

We now compare CEMD to recently published ex-
perimental results using a subset of 16 datasets from
Tompa’s benchmark dataset. The datasets represent
three species: human, mouse, and yeast. The back-
ground sequences are either generic or Markovian. We
compare the performance of CEMD to the recently
published results presented with MODSIDE|[35]. Fig-
ure 10 shows the performance of CEMD compared to
the stand-alone motif finding tools ChIPMunk [42],
MEME [43], Weeder [38], XXMotif [44], and MOD-
SIDE [35]. CEMD outperforms MEME and XXMotif
on all evaluation measures. CEMD has better sen-
sitivity than ChIPMunk, but comparable values for
positive predictive value and specificity. Tran and
Huang [35] presented the performance of MEME-ChIP
[32], RSAT peak-motifs [45], and MODSIDE [35]. Fig-
ure 11 shows the performance of CEMD and ensemble
motif finding tools using 16 selected datasets. The
results indicate that CEMD achieves better results
than MEME-ChIP in terms of all evaluation measures.
However, RSAT peak-motifs and MODSIDE perform
better than CEMD.

5 Conclusion

In this paper, we present CEMD, a clustering based
ensemble for motif discovery. CEMD incorporates
three stateof-the-art stand-alone motif finding tools.
We used K-medoids in the learning rule as a clustering
algorithm. We also used three distance measures: sum
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of squared distance, average log likelihood rations,
and cosine similarity. The performance of CEMD was
evaluated using the gold standard benchmark dataset
developed by Tompa et al., [3]. CEMD showed better
performance than stand-alone tools when dealing with
human datasets and motifs planted in real promoter
sequences. Our tool has comparable performance to
RSAT peak-motifs and MODSIDE. CEMD may be
further enhanced by making it an extensible tool to
allow for the integration of advanced stand-alone motif
finding tools.
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Figure 6. The average specificity per species obtained for
CEMD and stand-alone motif finding tools
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Figure 7. The average specificity per background type ob-
tained for CEMD and stand-alone motif finding tools
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Figure 8. The average positive predictive value per species
obtained for CEMD and stand-alone motif finding tools
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Figure 9. The average positive predictive value per background
type obtained for CEMD and stand-alone motif finding tools
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Figure 10. Evaluation measures for CEMD and stand-alone
motif finding tools using sixteen selected datasets
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Figure 11. Evaluation measures for CEMD and ensemble
motif finding tools using sixteen selected datasets.
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