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A B S T R A C T

A non-interactive (t, n)-publicly verifiable secret sharing scheme

(non-interactive (t, n)-PVSS scheme) is a (t, n)-secret sharing scheme in which

anyone, not only the participants of the scheme, can verify the correctness

of the produced shares without interacting with the dealer and participants.

The (t, n)-PVSS schemes have found a lot of applications in cryptography

because they are suitable for real-life scenarios in which an external verifier is

required to check the correctness of the produced shares without interacting

with the dealer and participants. In this paper, we propose a non-interactive

(t, n)-PVSS scheme using the non-homogeneous linear recursions (NHLRs),

and prove its security with a formal method. We compare the computational

complexity of our scheme with that of Schoenmakers’s scheme and show

that our non-interactive (t, n)-PVSS scheme runs faster than Schoenmakers’s

scheme when n ≥ 5 and n ≥ t ≥ d 2n+9
n e. The communicational complexity of

our scheme is almost equal to that of Schoenmakers’s scheme.

c© 2020 ISC. All rights reserved.

1 Introduction

A (t, n)-secret sharing scheme is a method of shar-
ing a secret among a set of participants P , where

|P |= n, in such a way that only subsets of the par-
ticipants with at least t elements (so called, qualified
subsets) are able to reconstruct the secret by pooling
the received shares and subsets of the participants
with at most t− 1 elements (so called, unqualified sub-
sets) are unable to obtain the secret. The collection of
all qualified subsets of P is called the access structure.
In general, access structures have the monotone in-
creasing property, that is, every superset of a qualified
subset is a qualified subset. For the first time, the se-
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cret sharing schemes were introduced by Shamir [21]
and Blakley [3]. The introduced schemes by Shamir
and Blakley are (t, n)-secret sharing schemes also they
have the unconditional security, that is, the partic-
ipants of the unqualified subsets cannot obtain any
information about the secret in an information the-
oretical sense. Secret sharing schemes have found a
lot of applications in cryptography since they were
introduced. For example, in the distributed public
key cryptography, key-escrow cryptosystems [18], elec-
tronic cash schemes [24], electronic voting schemes
[22] and archive systems [12] secret sharing schemes
have applications.

1.1 Publicly Verifiable Secret Sharing
Schemes

In secret sharing schemes like Shamir’s and Blakley’s,
the dealer and participants are assumed to be honest,
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while the dealer and participants may be malicious in
real applications. In other words, in real-life scenarios
a malicious dealer may give incorrect shares to the par-
ticipants and the malicious participants may submit
incorrect shares during reconstructing the secret. To
address this drawback of the secret sharing schemes,
verifiable secret sharing schemes (VSS schemes) have
been proposed. In non-interactive VSS schemes, the
dealer publishes a witness in addition to producing the
shares and any participant can verify the correctness of
his share using the published witness. In such schemes,
qualified subsets of participants recover the same se-
cret using the received shares. For the first time, Chor
et al. introduced the VSS schemes [5]. In [8], Feldman
proposed a non-interactive VSS scheme. Pedersen pro-
posed an efficient non-interactive VSS scheme whose
security is based on the hardness of solving the discrete
logarithm problem [19]. In [6, 7, 13, 16], the authors
proposed verifiable multi-secret sharing schemes (A
verifiable multi-secret sharing scheme (VMSS scheme)
is a VSS scheme in which the dealer distributes sev-
eral secrets among the participants and one share is
kept by each of the participants).

Although, VSS schemes and VMSS schemes are
secure against a malicious dealer and malicious par-
ticipants, however in such schemes only the partici-
pants of the schemes can verify the correctness of the
received shares while sometimes it is required that
anyone, not only the participants of the scheme, is
able to verify the correctness of the produced shares.
For example, consider an external verifier that is go-
ing to check the correctness of the shares of partic-
ipants without interacting with the dealer and par-
ticipants of a VSS scheme. To address this drawback
of the VSS schemes, publicly verifiable secret shar-
ing schemes (PVSS schemes) have been proposed. In
the non-interactive (t, n)-PVSS scheme, the dealer
distributes a secret among a set of participants P ,
where |P |= n, such that any subset of P with at least
t participants can recover the secret. As well as, the
dealer publishes a proof string ProofD to show that
the shares have correctly been produced. Anyone can
verify the correctness of the shares using ProofD. Sup-
pose the participants of A ⊂ P , where |A|≥ t, are
going to recover the secret in the non-interactive (t, n)-
PVSS scheme. To this end, each participant p ∈ A
publishes a proof string Proofp to show that his share
is correct and anyone can verify the correctness of
the share of p using Proofp. If each participant of A
submits a correct share, then the participants of A
recover the secret using their shares. Since communi-
cation over private channels is not publicly verifiable,
in PVSS schemes the dealer has to use public channels
to send data for the participants, and therefore the
security of the PVSS scheme is computational at most.

For the first time, Stadler introduced PVSS schemes
[24]. Jhanwar et al. proposed (t, n)-PVSS schemes in
[14, 15]. Other PVSS schemes have been proposed
using the bilinear pairings in [11, 15, 17, 26]. Also, Gan
et al. proposed a PVSS scheme whose security is based
on the decisional bilinear Diffie-Hellman assumption
[10]. In [22], Schoenmakers proposed a simple and
efficient non-interactive (t, n)-PVSS scheme using the
Sigma protocols. Schoenmakers’s scheme is the most
efficient non-interactive (t, n)-PVSS scheme which has
been proposed by now.

1.2 Motivation and Contribution

Schoenmakers’s scheme is more efficient than other
non-interactive (t, n)-PVSS schemes [14, 22], however
the dealer of Schoenmakers’s scheme must perform
nt−n+1 group-exponentiations to produce the shares
and 3n+t group-exponentiations to produce the proof
string ProofD. Also, n(2t+ 1) group-exponentiations
must be performed to verify the correctness of the pro-
duced shares in Schoenmakers’s scheme. In this study,
we propose a non-interactive (t, n)-PVSS scheme us-
ing the NHLRs and we prove its security with a formal
method (see Scheme 1). Compared with Schoenmak-
ers’s scheme, our scheme has the following advantages:

• The dealer of our scheme performs n+ 1 group-
exponentiations to produce the shares.

• The dealer of our scheme performs 3n+1 group-
exponentiations to produce the proof string
ProofD.

• In our scheme, one can verify the correctness of
the produced shares using n(3 + t) + 1 group-
exponentiations.

• Our scheme runs faster than Schoenmakers’s
scheme when n ≥ 5 and n ≥ t ≥ d 2n+9

n e.
• In our scheme, the participants of the qualified

subsets can use a faster algorithm to reconstruct
the secret.

The non-interactive (t, n)-PVSS schemes have been
used in designing cryptographic schemes such as
threshold software key escrow schemes, revocable
electronic cash schemes and electronic voting schemes
[22]. Using our results, it can be said that our non-
interactive (t, n)-PVSS scheme can be used in de-
signing efficient cryptographic schemes for real-life
scenarios.

1.3 Paper Structure

Section 2 presents some notations and the required
background on non-interactive (t, n)-PVSS schemes.
In Section 3, we present our non-interactive (t, n)-
PVSS scheme and analyze its security and computa-
tional complexity. Section 4 concludes the paper.
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2 Materials and Methods

In this paper, we will use the following notations:

• [a, b] =⇒ the set of integers {a, a+ 1, . . . , b}.
• a||b =⇒ the bit concatenation of two positive

integers a and b.
• |a|=⇒ the bit length of an integer a.
• a′ ∈R [a, b] =⇒ a uniformly random choosing

from [a, b].
• a⊕ b =⇒ the bitwise xor of integers a and b.
• |A|=⇒ the number of elements of a set A.

A function f(n) : (.) 7 −→ R+ is called a negligible
function if for every constant c > 0 there exists a
constant nc > 0 such that f(n) < 1

nc for all n > nc,
where R+ is the set of positive real numbers.
Suppose p and q are two primes such that p = 2q + 1.
Also, suppose g is a random generator of the multi-
plicative group Z∗p . Decisional Deffie-Hellman assump-

tion (DDH assumption) states that given gα, gβ and
gγ , where α, β, γ ∈R [0, q− 1], it is infeasible to deter-
mine whether gγ = gαβ or gγ 6= gαβ .
Suppose P = {p1, . . . , pn} is a set of participants and
A = {pi1 , . . . , pis} ⊂ P . The index set of A, denoted
by Υ(A), is the set of integers {i1, . . . , is}.

2.1 Non-homogeneous Linear Recursions

Let t be a positive integer and c0, . . . , ct−1, a1, . . . , at ∈
R. A non-homogeneous linear recursion (NHLR) of
degree t is defined by the following relation:

NHLR :

 u0 = c0, u1 = c1, . . . , ut−1 = ct−1,

ui+t + a1ui+t−1 + · · ·+ atui = f(i),

where i ≥ 0, c0, . . . , ct−1 and a1, . . . , at are constants,
and f(i) is an arbitrary function in i . Suppose the
sequence (ui) is defined by a NHLR as:

NHLR :

 u0 = c0, u1 = c1, . . . , ut−1 = ct−1,∑t
j=0

(
t
j

)
ui+t−j = (−1)ici, i ≥ 0

where c0, . . . , ct and c are constants. Then, ui =
p(i)(−1)i, where p(i) is a polynomial of the form A0 +
A1i+ . . .+At+1i

t+1. For more details about NHLRs
see [2, 6].

2.2 Definition of the Non-interactive
(t, n)-PVSS Schemes

Suppose P = {p1, . . . , pn} is a set of participants and
t ≤ n is an integer. A non-interactive (t, n)-PVSS
scheme consists of the following phases:

(1) Initialization phase (Ini-phase): In this
phase, the dealer obtains system parameters
SP on input (λ, P, t), where λ ∈ N is the secu-

rity parameter. Also, each pi ∈ P chooses his
private key ski and registers his public key pki.

(2) Secret distribution phase (SD-phase):
In this phase, the dealer first produces the
encrypted shares (σ1, . . . , σn) using the Dis-
algorithm.
Dis-algorithm: Take as input K,SP , (pk1, . . .,
pkn). Then output the encrypted shares
(σ1, . . . , σn).
The dealer proves the correctness of the en-
crypted shares by running the Proof-algorithm.
Proof-algorithm: Take as input SP, (pk1, . . .,
pkn), (σ1, . . . , σn) and the shares (s1, . . . , sn).
Then output the proof string ProofD.
After producing (σ1, . . . , σn) and ProofD, the
dealer publishes them.
Anyone can verify the correctness of the pub-
lished shares using the Ver-algorithm.
Ver-algorithm: Take as input SP, (pk1,
. . . , pkn), (σ1, . . . , σn), and the proof string
ProofD. Then output 1 if the dealer has cor-
rectly produced the shares, otherwise output
(0, C), where C is the set of participants whose
shares are inconsistent.

(3) Decryption phase (Dec-phase): In this
phase, each participant pi ∈ P obtains his share
si using his private key ski.

(4) Secret reconstruction phase (SR-phase):
Suppose A ⊆ P is a set of participants with at
least t elements whose participants are going to
compute the secret. At the first, each pi ∈ A
produces a proof string Proofi by running the
SRProof-algorithm.
SRProof-algorithm: Take as input SP, ski,
pki, σi, and si. Then output a proof string
Proofi to show the correctness of the share si.
Anyone can verify the correctness of the share of
each participant pi ∈ A by running the SRVer-
algorithm.
SRVer-algorithm: Take as input SP, pki, σi,
si, and Proofi. Then output 1 if si is the cor-
rect share of pi ∈ A, otherwise output 0.
For each pi ∈ A if the SRVer-algorithm outputs
1, then the participants of A recover the secret
K by running the Rec-algorithm, otherwise
they abort the scheme.
Rec-algorithm: Take as input SP , and the
shares of the participants of A, then output the
secret K.

A non-interactive (t, n)-PVSS scheme Σ with compu-
tational security must satisfy the following security
requirements:
Correctness: If the dealer honestly follows the SD-
phase of Σ, then the Ver-algorithm outputs 1 with
probability 1. If each pi ∈ P honestly follows the Dec-
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phase and the SRProof-algorithm of Σ, then anyone
accepts the share of pi with probability 1 using the
SRVer-algorithm. Furthermore, every qualified subset
A ⊆ P obtains the secret if dealer follows honestly
the SD-phase of Σ and the participants of A honestly
follow the Dec-phase and the SR-phase of Σ.
Soundness: If the Ver-algorithm outputs 1, then for
every qualified subsets B1, B2 ⊂ P of honest partic-
ipants the following property holds: if K1 and K2

are the reconstructed secrets by B1 and B2, respec-
tively, then K1 = K2 with high probability. Also, the
SRVer-algorithm outputs 0 with high probability, if a
malicious participant submits a fake share during the
SR-phase of the scheme.
Privacy: The privacy of the scheme Σ is defined by
the following game, say G, between an adversary A
and a challenger C:

(1) A publishes a set of participants P =
{p1, . . . , pn} and a threshold t ≤ n;

(2) C runs the Ini-phase and produces the security
parameters SP . Also, C chooses private keys
and public keys for all participants, then sends
SP and all public keys to A;

(3) A publishesB ⊂ P of the corrupted participants
such that |B|≤ t− 1;

(4) C sends the private keys of the participants of
B to A;

(5) A chooses a secret K and the secret distribution
oracle sends n valid encrypted shares of the
secretK toA. Also, the secret distribution oracle
sends the proof string of the shares of secret K
to A. This step can be repeated a polynomial
number of times;

(6) A chooses two different secrets K0 and K1 and
sends them to C;

(7) C chooses τ ∈R {0, 1}, executes SD-phase on the
secret Kτ and sends (σ1, . . . , σn) and ProofD
to A;

(8) A can repeat the step 5 a polynomial number
of times;

(9) Finally, A outputs a bit τ ′ and wins if τ = τ ′.

The privacy property (or indistinguishably of the se-
crets) holds for the non-interactive (t, n)-PVSS scheme
Σ if AdvG,A = |Pr[τ = τ ′]− 1

2 | is a negligible function
in λ, for every polynomial-time adversary A [14].

2.3 Proving Equality of Discrete Logarithms

Suppose p and q are two primes, with p = 2q + 1,
and Z∗p is a multiplicative group. In [1], the authors
proposed a sigma protocol to prove that two group
elements y1, y2 ∈ Z∗p satisfy the relation y1 = gx1 , y2 =
gx2 (see the following scheme).

Scheme DLogEq(g1, g2, y1, y2)

(1) The prover chooses r ∈R [0, q−1] and computes
a = (a1, a2) = (gr1, g

r
2). Then, the prover sends

a to the verifier;
(2) The verifier chooses c ∈R [0, q − 1] and sends c

to the prover.
(3) The prover computes b = (r+c)x−1 mod q and

sends b to the verifier.
(4) The verifier accepts the prover if yb1 = a1g

c
1 and

yb2 = a2g
c
2.

The DLogEq(g1, g2, y1, y2) can be made non-
interactive using the Fiat-Shamir method [9] as
follows: The prover chooses r ∈R [0, q − 1] and com-
putes a1 = gr1, a2 = gr2, c = H(g1||g2||y1 ||y2||a1||a2)
and b = (r + c)x−1 mod q, where H is a collision
resistant hash function. The prover sends (b, c) to
the verifier. The verifier accepts the prover if c =
H(g1||g2||y1||y2||yb1g−c1 ||yb2g

−c
2 ).

3 Results and Discussions

In this section, we propose a new non-interactive
(t, n)-PVSS scheme using the NHLRs (see Scheme 1).
In Scheme 1, we use P = {p0, . . . , pn−1} to denote
the set of participants. All exponentiations and multi-
plications are performed in a multiplicative group Z∗p
of prime order q or in module q.

Scheme 1: A new non-interactive (t, n)-PVSS
scheme using NHLRs.
Ini-phase: Dealer chooses two primes p and q such
that p = 2q + 1, |q|≥ λ, and computing discrete log-
arithms in the multiplicative group Z∗p is infeasible.
Also, dealer chooses two random generators g,G ∈ Z∗p
and values c0, . . . , ct−1, c ∈R [0, q − 1]. Each partici-
pant pi ∈ P chooses a private key xi ∈R [0, q− 1] and
publishes yi = Gxi as his public key. Dealer publishes
SP = (λ, P, t, Z∗p , g,G, c,H) as the system parame-

ters, where H : {0, 1}∗ → {0, 1}λ is a cryptographic
secure hash function and λ ∈ N is the security param-
eter. Suppose aj =

(
t
j

)
for each j ∈ [1, t].

SD-phase: To distribute the secret K ∈ Z∗p , dealer
first constitutes the following NHLR: u0 = c0, u1 = c1, . . . , ut−1 = ct−1,

ui+t + a1ui+t−1 + · · ·+ atui = ci(−1)i mod q,

where i ≥ 0. After constituting the NHLR, dealer
executes the Dis-algorithm.

Dis :



input: K,SP, {yi}i∈[0,n−1], {ui}i∈[0,n];

compute D = GunK;

compute Yi = yui
i , for each i ∈ [0, n− 1];

output: (D, {Yi}i∈[0,n−1])

Now, dealer executes the Proof-algorithm (see be-
low) and obtains the proof string. Dealer publishes
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the proof string ({ζi}i∈[0,n+2]\{n}, {bi}i∈[0,n+2]\{n},
{Xi}i∈[0,n+2]), the encrypted shares {Yi}i∈[0,n−1] and
the values D,Sn+1 and Sn+2.
Anyone can verify the correctness of the produced
shares using the Ver-algorithm (see below).
Dec-phase: If the produced shares are correct, then
each participant pi ∈ P can compute his share (i.e.,

Gui) as Si = (Yi)
x−1
i . Otherwise, the participants

abort the scheme.
SR-phase: Suppose A ⊆ P is a qualified subset of
participants, i.e., |A|≥ t. Each pi ∈ A produces a
proof string using the SRProof-algorithm.

SRProof :



input: SP, yi, Yi, Si, xi;

choose vi ∈R [0, q − 1];

compute

wi = H(G||Si||yi||Yi||Gvi ||Svii );

compute zi = (wi + vi)x
−1
i mod q;

output (wi, zi).

Each participant pi ∈ A submits (wi, zi) and Si. Any-
one can check the correctness of the share Si using
the SRVer-algorithm:

SRVer :



input: SP, yi, Yi, Si, wi, zi;

compute

w′i = H(G||Si||yi||Yi||yzii G−wi ||Y zii S−wi
i );

output 1 if wi = w′i, otherwise output 0.

If for each pi ∈ A the SRVer-algorithm outputs 1, then
the participants of A can recover the secret using one
of the following methods, otherwise they abort the
scheme:

Rec1 :



input: SP,A, {Si}i∈Υ(A), Sn+1, Sn+2, D;

for each i ∈ Υ(A) ∪ {n+ 1, n+ 2} compute

λi =
∏
{j∈Υ(A)∪{n+1,n+2},j 6=i}

n−j
i−j mod q;

for each i ∈ Υ(A) ∪ {n+ 1, n+ 2} compute

S′i = (Si)
(−1)−i

;

compute E′ =
∏
{i∈Υ(A)∪{n+1,n+2}}(S

′
i)
λi ;

compute E = (E′)(−1)n ;

output K = DE−1 as the secret;

If A is a sequential qualified subset (i.e., A =
{pi, . . . , pi+t−1}, where i ∈ [0, n− t]), then the partic-
ipants of A can compute the secret using the following
algorithm:

Rec2 :



input: SP,A, {Sj}j∈[i,i+t−1], D;

for each j ∈ [i, i+ t− 1] set Guj = Sj ;

compute Gun using the following relation :

Guj = G((−1)j−t(j−t)c)∏t
k=1(Guj−k)−ak ,

where j ∈ [i+ t, n];

output K = D(Gun)−1 as the secret;

Remark 1. Note that the SRProof-algorithm of
Scheme 1 uses the non-interactive version of the pro-
tocol DLogEq to show that Yi = Sxi

i and yi = Gxi ,
where xi is the private key of the participant pi ∈ A.
Also, in the SRVer-algorithm of Scheme 1, if w′i = wi
for some pi ∈ A, then Yi = Sxi

i and yi = Gxi . This
shows that Si is the correct share of the participant
pi ∈ A.

Algorithm 1 Proof-algorithm

1: Input:SP, {yi}i∈[0,n−1], {Yi}i∈[0,n−1], {ui}i∈[0,n+2];
2: For each i ∈ [0, n+ 2] compute Xi = gui ;
3: Compute Sn+1 = Gun+1 and Sn+2 = Gun+2 ;
4: For each i ∈ [0, n+2]\{n} choose ri ∈R [0, q−1];
5: For each i ∈ [0, n − 1] compute ζi =
H(g||yi||Xi||Yi||gri ||yrii );

6: For each i ∈ [n + 1, n + 2] compute ζi =
H(g||G||Xi||Si||gri ||Gri);

7: Compute ζ = ζ0 ⊕ · · · ⊕ ζn−1 ⊕ ζn+1 ⊕ ζn+2;
8: For each i ∈ [0, n + 2] \ {n} compute bi = (ri +
ζ)u−1

i mod q;
9: Output ({ζi}i∈[0,n+2]\{n}, {bi}i∈[0,n+2]\{n},
{Xi}i∈[0,n+2], Sn+1, Sn+2).

Remark 2. The Proof-algorithm uses the non-
interactive version of the protocol DLogEq to show
that Yi = yui

i and Xi = gui for all i ∈ [0, n − 1]. As
well as, Si = Gui andXi = gui for all i ∈ [n+1, n+2].

Remark 3. In the Ver-algorithm, if ζ ′j = ζj for some

j ∈ [0, n + 2] \ {n}, then Yj = y
uj

j and X ′′j = guj .
Therefore, uj satisfies the relation ut+a1ut−1 + · · ·+
at−juj + · · ·+ atu0 = 0 mod q if j ∈ [0, t− 1]. Also,
uj satisfies the relation uj + a1uj−1 + · · ·+ atuj−t =
(−1)j−t(j − t)c mod q if j ∈ [t, n + 2] \ {n}. This
shows that the share of the participant pj ∈ P has
correctly been produced by the dealer.

3.1 Security Analysis of Scheme 1

Here, we prove that our non-interactive (t, n)-PVSS
scheme satisfies the correctness, soundness and privacy
properties of the (t, n)-PVSS schemes.
Theorem 1. Scheme 1 satisfies the correctness prop-
erty of the non-interactive (t, n)-PVSS schemes.

Proof. Consider the Ver-algorithm. If the dealer
follows honestly the Ini-phase and the SD-phase of
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Algorithm 2 Ver-algorithm

1: Input:SP, {yi}i∈[0,n−1], {Yi}i∈[0,n−1], {Xi}i∈[0,n+2],
Sn+1, Sn+2, {ζi}i∈[0,n+2]\{n}, {bi}i∈[0,n+2]\{n};

2: Set C = ∅;
3: For each i ∈ [0, t − 1] compute X ′i =
Xt

∏
j∈[0,t−1],j 6=iX

at−j

j ;

4: For each i ∈ [0, t − 1] compute X ′′i =

(X ′i)
(−at−i)

−1

;
5: For each i ∈ [t, n + 2] \ {n} compute X ′′i =

(
∏t
j=1X

−aj
i−j )gαi−t , where αi−t = (−1)i−t(i− t)c;

6: Compute ζ = ζ0 ⊕ · · · ⊕ ζn−1 ⊕ ζn+1 ⊕ ζn+2;
7: For each i ∈ [0, n − 1] compute ζ ′i =

H(g||yi||X ′′i ||Yi||(X ′′i )big−ζ ||Y bii y
−ζ
i );

8: For each i ∈ [n + 1, n + 2] compute ζ ′i =
H(g||G||X ′′i ||Si||(X ′′i )big−ζ ||Sbii G−ζ);

9: For each i ∈ [0, n − 1] ∪ {n + 1, n + 2} compute
C = C ∪ {i} if ζ ′i 6= ζi;

10: Output 1 (i.e., the shares are correct) if C = ∅;
11: Otherwise output (0, C) (i.e., the dealer produced

incorrect shares for elements of C).

Scheme 1, then for each pi ∈ P it holds Yi = yui
i .

Also, for each i ∈ [0, n+ 2] \ {n}, it holds X ′′i = gui .
Therefore, the Ver-algorithm outputs 1. In the SR-
phase, if the participant pi ∈ A follows honestly the
Dec-phase and SRProof-algorithm, then Sxi

i = Yi
and yi = Gxi . Therefore, the SRVer-algorithm out-
puts 1. Now, suppose A ⊂ P is a qualified subset
of the participants. We prove that the participants
of A can compute the secret by executing the Rec1-
algorithm. To this end, it suffices to show that∏
{i∈Υ(A)∪{n+1,n+2}}(S

′
i)
λi = Gp(n). Using the prop-

erties of the NHLRs, we know that there exists a poly-
nomial p(x) of degree t + 1 such that ui = p(i)(−1)i

mod q, for each i ∈ Υ(A)∪{n+ 1, n+ 2}. Therefore,∑
{i∈Υ(A)∪{n+1,n+2}}

λiui(−1)−i = p(n) mod q. (1)

Using Relation 1, S′i = (Si)
(−1)−i

, and Si = Gui ,
where i ∈ Υ(A) ∪ {n+ 1, n+ 2}, we have∏

{i∈Υ(A)∪{n+1,n+2}}

(S′i)
λi =

G

∑
{i∈Υ(A)∪{n+1,n+2}}

λiui(−1)−i

= Gp(n).

(2)

Hence, the participants of A can compute the secret
K by executing the Rec1-algorithm. It can easily be
verified that if A is a sequential qualified subset, then
the participants of A can compute the secret K by
executing the Rec2-algorithm.

Theorem 2. Scheme 1 satisfies the soundness prop-
erty of the non-interactive (t, n)-PVSS schemes.

Proof. Suppose B1, B2 ⊂ P are two qualified subsets
of participants. Since the Ver-algorithm outputs 1, for

each pi ∈ P we have X ′′i = gui , and therefore

ui+t + a1ui+t−1 + · · ·+ atui = ic(−1)i mod q

for each i ∈ [0, n+ 2− t]. Suppose K1 and K2 are the
secrets recovered by the subsets B1 and B2, respec-
tively. Using the properties of the NHLRs, we know
that there exists a polynomial p(x) of degree t+1 such
that ui = p(i)(−1)i mod q for each i ∈ [0, n + 2].
Therefore, ∏

{i:i∈Υ(B1)∪{n+1,n+2}}

(S′i)
λi =

∏
{i:i∈Υ(B2)∪{n+1,n+2}}

(S′i)
λi ,

(3)

where S′i = (Si)
(−1)−i

and Si = Gui . Using the rela-
tion 3, it can be said that K1 = K2. Now, consider
the SRVer-algorithm. Suppose pi ∈ P is a malicious
participant that submits a fake share Sf during the
SR-phase. Then Sxi

f 6= Yi, and thereforew′i 6= wi with
high probability.

At the follows, we prove that Scheme 1 satisfies the
privacy property of the non-interactive (t, n)-PVSS
schemes. We will use a reduction and show that if an
attacker can break the privacy of Scheme 1, then it
can be used to break the DDH assumption. The heart
of the reduction is a simulator B. Given an instance of
the DDH assumption as input, B acts as the challenger
of G and plays G with an attacker that is able to break
the privacy of Scheme 1. Then, B uses the attacker to
break the DDH assumption.
Theorem 3. Scheme 1 satisfies the privacy property
of the non-interactive (t, n)-PVSS schemes.

Proof. Suppose A is an attacker that can break the
privacy of Scheme 1. Suppose p and q are two primes,
with p = 2q + 1, and g is a random generator of the
multiplicative group Z∗p . Given gα, gβ and gγ , where
α, β, γ ∈R [0, q − 1], B tries to determine whether
gγ = gαβ or gγ 6= gαβ . B plays the game G with A as
follows:
The step 1 of G: A publishes P = {p0, . . . , pn−1} as the
set of participants and an integer t ≤ n as a threshold.
The step 2 of G: Using the Ini-phase of Scheme 1,
the simulator B obtains SP = (λ, P, t, Z∗p , g,G, c,H),
where P = {p0, . . . , pn−1} is the set of participants
and G = gα. For each pi ∈ P , B assigns a private key
xi ∈R [0, q − 1] and computes yi = Gxi as his public
key. B then sends SP and {yi}n−1

i=0 to A.
The step 3 of G: A publishes a subset of the corrupted
participants B ⊂ P such that |B|≤ t − 1. Without
loss of the generality suppose B = {pn−t, . . . , pn−1}.
The step 4 of G: B sends the private keys {xi}n−1

i=n−t
to A.
The step 5 of G: A chooses a secret K ∈ Z∗p and
gives it to the secret distribution oracle. The secret
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distribution oracle gives K to B and B follows the
following procedure:

(1) for each i ∈ [n − t, n + 2] \ {n}, choose ci ∈R
[0, q − 1] and set ui = ci;

(2) for each i ∈ [n− t, n+ 2] \ {n}, compute Gi =
Gui and set Gn = gγ ;

(3) compute λi,j =
∏
e∈[n−t,n+2]\{i}

j−e
i−e mod q,

for each i ∈ [n− t, n+ 2] and j ∈ [0, n− t− 1];
(4) for each j ∈ [0, n − t − 1], compute G′j =∏

i∈[n−t,n+2](Gi)
(−1)−iλi,j ;

(5) compute Gj = (G′j)
(−1)j , for each j ∈ [0, n −

t− 1];
(6) for each k ∈ [0, n − 1] compute Yk = (Gk)xk .

Furthermore, set Sn+1 = Gun+1 and Sn+2 =
Gun+2 ;

(7) for each i ∈ [n− t, n+ 2] \ {n}, compute Xi =
gui and set Xn = gβ ;

(8) for each j ∈ [0, n − t − 1], compute X ′j =∏
i∈[n−t,n+2](Xi)

(−1)−iλi,j ;

(9) for each j ∈ [0, n − t − 1], compute Xj =

(X ′j)
(−1)j .

B chooses b0, . . . , bn−1, bn+1, bn+2, ζ0, . . . , ζn−1,
ζn+1, ζn+2 ∈R [0, q − 1]. For each i ∈ [0, n − 1], B
defines

ζi = H(g||yi||Xi||Yi||(Xi)
big−ζ ||(Yi)biy−ζi ),

where ζ = ζ0 ⊕ · · · ⊕ ζn−1 ⊕ ζn+1 ⊕ ζn+2. For each
i ∈ [n+ 1, n+ 2], B also defines

ζi = H(g||G||Xi||Si||(Xi)
big−ζ ||(Si)biG−ζ).

Then, B saves the defined values in the H-Table. If
A requests from the random oracle a hash query of
a value e and H(e) has not been previously defined,
then B chooses a random value e′ ∈ [0, q − 1] and
defines H(e) = e′. B then saves H(e) = e′ in the
H-Table and the random oracle returns e′ to A. If
H(e) has previously been defined, then the random
oracle returns e′, where H(e) = e′ has beforehand
been saved in the H-Table.
Now, B computes D = KGn and sends the following
values to the secret distribution oracle,

({ζi}i∈[0,n+2]\{n}, {bi}i∈[0,n+2]\{n},

{Xi}i∈[0,n+2]), {Yi}i∈[0,n−1], D, Sn+1, Sn+2.

The secret distribution oracle sends them to A. This
step can be repeated a polynomial number of times.
The step 6 of G: A chooses two different secrets
K0,K1 ∈ Z∗p and sends them to B.
The step 7 of G: B chooses τ ∈R {0, 1}. Like the step
5, B obtains a new proof string ({ζi}i∈[0,n+2]\{n},
{bi}i∈[0,n+2]\{n}, {Xi}i∈[0,n+2]), new encrypted

shares {Yi}n−1
i=0 , and new values Sn+1 and Sn+2.

Also, B computes Dτ = KτGn. Then, B sends the
following values to A,

({ζi}i∈[0,n+2]\{n}, {bi}i∈[0,n+2]\{n}, {Xi}i∈[0,n+2]),

{Yi}n−1
i=0 , Dτ , Sn+1, Sn+2.

The step 8 of G: A can repeat the step 5 a polynomial
number of times and asks the proof string and the
encrypted shares of different secrets form the secret
distribution oracle.
The step 9 of G: Finally, A outputs a bit τ ′.
It can easily be verified that if gγ = gαβ , then un =
β and A will guess Kτ with probability greater than
1
2 + η(λ), where η(λ) is a non-negligible function. If
gγ 6= gαβ , then un is a random value from [0, q − 1]
and A can guess Kτ with probability 1

2 . Therefore, if
τ = τ ′ then B decides gγ = gαβ , otherwise B decides
gγ 6= gαβ . This shows that B can break the DDH
assumption if B has access to A, and this contradicts
the DDH assumption. Hence, Scheme 1 satisfies the
privacy property of the non-interactive (t, n)-PVSS
schemes.

3.2 The Computational Complexity of
Scheme 1

In this paper, the computational complexity of the
schemes is measured according to the number of group-
exponentiations required for running the schemes
(one group exponentiation is denoted by tex), because
the computational cost of other cryptographic func-
tions, such as group-multiplication, hash function and
group-inversion, is negligible compared with heavier
computational cost of the group exponentiation. In
Table 1, we mention the computational complexity
of Scheme 1, Schoenmakers’s scheme and Jhanwar’s
scheme (note that Schoenmakers’s scheme and Jhan-
war’s scheme are the most efficient non-interactive
(t, n)-PVSS scheme which have been proposed by now
[14]). Using Table 1, it can be said that:

(1) The computational complexity of the Dis-
algorithm in Scheme 1 (in Schoenmakers’s
scheme) is equal to (n+ 1)tex ((nt− n+ 1)tex,
respectively). Therefore, the Dis-algorithm of
Scheme 1 runs almost t − 1 times faster than
that of Schoenmakers’s scheme. Also, the Dis-
algorithm of Scheme 1 runs (t+ 3) times faster
than the Dis-algorithm of Jhanwar’s scheme.

(2) The computational complexity of the Proof-
algorithm in Scheme 1 (in Schoenmakers’s
scheme and Jhanwar’s scheme) is equal to
(3n + 9)tex ((3n + t)tex, respectively). There-
fore, for large n and t ≈ n, the Proof-algorithm
of Scheme 1 runs 1.33 times faster than that of
Schoenmakers’s/Jhanwar’s scheme.

(3) The computational complexity of the Ver-
algorithm in Scheme 1 (in Schoenmakers’s
scheme and Jhanwar’s scheme) is equal to
(n(3 + t) + t+ 6)tex (n(2t+ 1)tex, respectively).
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Table 1. Computation cost of the scheme 1, Schoenmakers’s

scheme [22] and Jhanwar’s scheme [14]

Scheme 1 [22] [14]

Dis-algorithm (n + 1)tex (nt − n + 1)tex (n(t + 3) + 2)tex

Proof-algorithm (3n + 9)tex (3n + t)tex (3n + t)tex

Ver-algorithm (n(3 + t) + t + 6)tex n(2t + 1)tex n(2t + 1)tex

Dec-phase 1tex 1tex 1tex

SRProof-algorithm 2tex 2tex 2tex

SRVer-algorithm 4tex 4tex 4tex

Rec1-algorithm (t + 3)tex ttex ttex

Rec2-algorithm (n − t + 1)(t + 1)tex - -

Therefore, for large n, the Ver-algorithm of
Scheme 1 runs almost twice faster than that of
Schoenmakers’s/Jhanwar’s scheme.

(4) The computational complexity of the Dec-phase,
SRProof-algorithm and SRVer-algorithm in
Scheme 1 is the same as the computational com-
plexity of the Dec-phase, SRProof-algorithm
and SRVer-algorithm in Schoenmakers’s scheme
and Jhanwar’s scheme.

(5) In Scheme 1 (in Schoenmakers’s scheme and
Jhanwar’s scheme), the computational complex-
ity of the Rec1-algorithm is equal to (t+ 3)tex
(ttex, respectively). Note that in the Rec1-

algorithm of Scheme 1 the value S′i = (Si)
(−1)−i

,
for i ∈ Υ(A) ∪ {n+ 1, n+ 2}, can be computed
before running the Rec1-algorithm.

(6) Since the Rec2-algorithm needs fewer group-
multiplications than the Rec1-algorithm, the
participants of the sequential qualified subsets
can use the Rec2-algorithm to recover the secret
swiftly when n ≈ t. Schoenmakers’s scheme and
Jhanwar’s scheme do not have this property.

(7) In a nutshell, the computational complexity of
Scheme 1 is equal to (n(t+ 7) + 2t+ 26)tex, the
computational complexity of Schoenmakers’s
scheme is equal to (n(3t+3)+2t+8)tex, and the
computational complexity of Jhanwar’s scheme
is equal to (n(3t+ 7) + 2t+ 9)tex.

(8) For n ≥ 5 and n ≥ t ≥ d 2n+9
n e, Scheme 1

runs faster than Schoenmakers’s scheme. Also,
scheme 1 runs faster than Jhanwar’s scheme
when n ≥ 3 and n ≥ t ≥ d 17

2ne.

3.3 The Communicational Complexity of
Scheme 1

In this paper, the communicational complexity of
schemes is measured according to the number of val-
ues published during running schemes. In Table 2, we
state the storage and communicational complexity of
our scheme, Schoenmakers’s scheme and Jhanwar’s
scheme. Using Table 2, it can be said that the commu-
nicational complexity of our scheme is almost equal
to that of Schoenmakers’s scheme. Furthermore, the
communicational complexity of our scheme is less than

Table 2. Storage and communicational complexity of scheme

1, Schoenmakers’s scheme [22] and Jhanwar’s scheme [14]

Scheme 1 [22] [14]

Communicational 5n + 7 5n + 1 6n + t + 2

complexity

Storage for two integers two integers three integers

each participant

that of Jhanwar’s scheme.

4 Conclusion

In this paper, we presented a non-interactive (t, n)-
PVSS scheme using the NHLRs, and proved its secu-
rity with a formal method. In our scheme, the partici-
pants of the sequential qualified subsets can recover
the secret swiftly using the Rec2-algorithm, while
Schoenmakers’s scheme and Jhanwar’s scheme do not
have this property. For n ≥ 5 and n ≥ t ≥ d 2n+9

n e, our
scheme runs faster than Schoenmakers’s scheme. Also,
our scheme runs faster than Jhanwar’s scheme when
n ≥ 3 and n ≥ t ≥ d 17

2ne. Since the non-interactive
(t, n)-PVSS schemes are used in a lot of cryptographic
schemes, using our (t, n)-PVSS scheme one can design
efficient schemes for real-life scenarios.
Proactive secret sharing schemes are important cryp-
tographic schemes that are used to save sensitive and
long-lived data [12, 25]. Such schemes use Shamir’s
method to distribute data and to recover them. Our
results show that NHLRs can easily be applied to
proactive secret sharing schemes for designing efficient
proactive secret sharing schemes with verification ca-
pability.
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