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Abstract

In this study, we propose a secure communication scheme based on the
synchronization of two identical fractional-order chaotic systems. The
fractional-order derivative is in Caputo sense, and for synchronization, we use a
robust sliding-mode control scheme. The designed sliding surface is taken simply
due to using special technic for fractional-order systems. Also, unlike most
manuscripts, the fractional-order derivatives of state variables can be chosen
differently. The stability of the error system is proved using the Lyapunov
stability of fractional-order systems. Numerical simulations illustrate the ability
and effectiveness of the proposed method. Moreover, synchronization results
are applied to secure communication using the masking method. The security
analysis demonstrates that the introduced algorithm has a large keyspace, high
sensitivity to encryption keys, higher security, and the acceptable performance
speed.

c© 2020 ISC. All rights reserved.

1 Introduction

In recent years, fractional-order systems have been
enormously used in different sciences, such as secure

communication [1–3], viscoelastic systems [4], heat
conduction [5], chemical reactor system [6], image en-
cryption [7], modeling electrical circuits [8], estimate
the crankability of lead-acid batteries [9], modeling
human T-cell lymphographic virus [10], infection of
CD4+ T-cells [10, 11], some finance systems [12].

Researchers have considered chaos and chaotic be-
havior as real-world phenomena in recent years. The
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behavior of some fractional dynamical systems can
be chaotic. Chaotic systems, as nonlinear determin-
istic systems, display complex and unusual behav-
iors. A chaotic system at least has one positive Lya-
punov exponents. Researchers have studied some of
the fractional-order chaotic systems such as fractional-
order Lorenz system [13], fractional-order Rössler sys-
tem [14], fractional-order chemical reactor model [6],
fractional-order Chen system [15], fractional-order Lü
system [16], complex fractional-order T-system [17]
and some other fractional-order chaotic systems that
can be fined in [4, 8, 12, 18].

Although at the beginning of the introduction of
chaotic systems, synchronization seemed impossible.
The synchronization of chaotic systems was firstly
discussed in 1990 by Pecora and Carrol [19]. Then, the
synchronization of chaotic systems has been widely
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investigated in theory and application such as secure
communications, chemical systems, modeling brain
activities, etc. [20–26].

In ordinary dynamical system different methods
such as adaptive control, active control, sliding-mode
control, nonlinear and linear control were used for
synchronization [21, 26–30]. Recently the extension of
control and synchronization methods in the integer-
order dynamical system to the fractional-order dy-
namical system have been considered. Because, in
the case of a fractional system, the presence of an or-
der parameter increases the size of the keyspace and
therefore increases the security of encryptions. For
example, the methods active control [31], projective
synchronization [32], adaptive synchronization [33],
complete and generalized synchronization [34], ex-
ponential synchronization [35], linear and nonlinear
feedback synchronization [36] were successfully ap-
plied for synchronization of fractional-order systems.
Many researchers have studied the using of synchro-
nizing of fractional-order dynamical systems such as
viscoelastic and electromagnetic [37, 38], control the-
ory and robotics [39], gyroscope [40], physiology [41],
and physical sciences [42–44].

One of the most important applications of chaos
synchronization is secure communication. The gen-
eral idea for secure communication via chaotic sys-
tems is that an information signal is embedded in
a transmitter system, which produces a chaotic sig-
nal. Then, the sending information signal recovered
by the chaotic receiver such that the transmitter
and receiver system are synchronized with choosing
proper controllers. Chaos and synchronization in the
fractional-order dynamical systems have caused these
systems to be attention in secure communication. Se-
cure communication based on chaotic techniques in-
cludes chaos masking, chaos modulation, and chaos
shift keying. In chaos masking, an information signal
is combined with a chaotic signal before it is sent.
Chaos modulation is based on the synchronization
such that the information signal is injected into the
transmitter system. In chaos shift keying, an infor-
mation signal is a binary signal that is mapped into
the transmitter and the receiver. In these three cases,
the recovering of information signal achieved based
on the synchronization of the transmitter and the
receiver [45–47]. More information about the chaos
masking approach, chaotic shift keying and modu-
lation method can be found in [20, 26, 48–53]. Re-
cently, several fractional-or integer-order chaotic sys-
tems have been introduced and the synchronization
of them discussed via methods such as adaptive, frac-
tional sliding-mode, and nonlinear feedback control.
Some manuscripts used these systems for secure com-
munication [7, 20, 24, 54–58]. The used sliding-mode

method in most papers is very complex and designed
controllers for synchronization are composed of frac-
tional derivative or fractional integral [40, 59].

Motivated by the applicability of chaotic fractional-
order systems and synchronization of them, in this
paper, we discuss the synchronization of two iden-
tical fractional-order chaotic systems and use it in
secure communication. For synchronization, we con-
sider fractional-order chaotic dynamical systems that
the diameter of the matrix linear part of the system is
non-positive. The robust sliding-mode control scheme
with a simple surface is used for synchronization. The
stability of the method is investigated by the Lya-
punov stability lemma in the fractional-order system.
In most articles, Lyapunov functions for synchroniz-
ing of two systems were chosen such that the obtained
controller has fractional derivative or fractional inte-
gral. In this paper, to overcome this difficulty, we use
the method introduced in [60]. The designed sliding-
mode controller is simple and does not compose of
fractional derivative or fractional integral. In this pa-
per, unlike most manuscripts, the fractional-order
derivative of state variables can be different and also,
the designed sliding surface is simple.

Moreover, the synchronization result is applied to
secure communication via the masking method. A
digital image and a continuous signal are used to
demonstrate the efficiency of the proposed method.
We analyze the validity of the proposed scheme by
using several security test measures, such as keyspace
analysis, key sensitivity analysis, histogram analysis,
and speed analysis. The results demonstrate that
higher security, large keyspace, and the acceptable
encryption speed can be guaranteed to resist all kinds
of brute-force and statistical attacks.

The rest of this paper is organized as follows: Sec-
tion 2 briefly introduces the fractional calculus and
stability of fractional-order systems. In Section 3,
the synchronization of two identical fractional-order
chaotic systems and numerical simulations are ad-
dressed. In Section 4, the discussed synchronization is
applied in secure communication based on the mask-
ing method. The effectiveness of the proposed scheme
is evaluated with simulations for continuous signals
and digital images. The security analysis of the pro-
posed secure communication method is presented in
Section 5. The speed analysis is explained in Section 6
Finally, concluding remarks are presented in Section
7.

2 Fractional Calculus and Stability
of Fractional-Order Systems

In this section, we review some fundamental defini-
tions of fractional calculus. Also, we present some
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useful stability lemmas of fractional-order dynamical
systems.

In fractional calculus, the traditional definitions of
the integral and derivative of a function were gener-
alized from integer orders to real orders. There are
several definitions for fractional derivatives of order
α ≥ 0, but the Caputo definition in 1 has been used
in most engineering applications; Because this defi-
nition is suitable for fractional order problems with
initial conditions. Because the initial condition for
Caputo definition is integer-order derivatives at t = 0,
therefore Caputo is more suited to engineering appli-
cations. This definition is suitable for fractional-order
problems with initial conditions.
Definition 1. [61] The Caputo fractional derivative
for function f ∈ Cn[0,+∞] is:

CDα
0 f(τ) =

1

Γ(n− α)

∫ τ

0

(τ − t)(n−α−1)f (n)(t)dt,

(1)
where α > 0, n = [α] + 1, CDα is Caputo fractional
derivative and Γ is Gamma function

Γ(α) =

∫ ∞
0

tα−1etdt.

In this paper, for simplicity, we use the notation Dα

to denote CDα
0 .

For stability analysis of the fractional-order system,
consider

Dα1x1 = f1[x1, x2 · · · , xn]

Dα2x2 = f2[x1, x2 · · · , xn]

... (2)

Dαnxn = fn[x1, x2 · · · , xn],

where 0 < αi < 1, i = 1, 2, · · · , n are real numbers.
In this paper, we use the described method in [60]
for asymptotic stability analysis of the obtained er-
ror system from synchronization of master and slave
systems.
Lemma 1. [60]. If x(t) ∈ R be continuous and
derivable function, then for any time instant t > 0

1

2
Dαx2(t) ≤ x(t)Dαx(t), ∀α ∈ (0, 1). (3)

This property can be extended to vector functions.
Lemma 2. [60]. The Lemma 1 also holds in the case
that x is a vector. It mains ∀α ∈ (0, 1) and ∀t > 0

1

2
DαxT (t)x(t) ≤ xT (t)Dαx(t), ∀α ∈ (0, 1). (4)

Using of Lemma 2 we have
Theorem 1. [60] Let x = 0 is an equilibrium point
of

Dαx(t) = f(x(t)). (5)

If condition

x(t)T f(x(t)) ≤ 0, ∀x (6)

is satisfied, then the origin of the system (5) is stable.
And if

x(t)T f(x(t)) < 0, ∀x 6= 0, (7)

then the origin of the system (5) is asymptotically
stable.

Assume that the results of Theorem 1 are satisfied
and V (x) = 1

2 ||x||
2= 1

2x
Tx. Then we can result

DαV ≤ x(t)TDαx(t) = x(t)T f(x(t)) ≤ 0 ∀x (8)

and

DαV = x(t)TDαx(t) = x(t)T f(x(t)) < 0 ∀x 6= 0.

(9)
Therefor V (x) is a Lyapunov function respect system
(5).

3 Synchronization via Modified
Sliding-Mode Controller

For synchronization of two identical fractional chaotic
systems, we consider the master system as form

Dαx = f(x) = Ax+ F (x), (10)

where x = [x1, x2, · · · , xn]T , f = [f1, f2, · · · , fn]T ,
Dαx = [Dα1x1, D

α2x2, · · · , Dαnxn]T and F =
[F1, F2, · · · , Fn]T . In (10) Ax is linear part with prop-
erty aii ≤ 0, i = 1, 2, · · · , n such that aij is element of
A = (aij)n×n and F (x) is a nonlinear part of system.
We define the slave system as follow

Dαy = f(y) = Ay + F (y) + u, (11)

where u = (u1, u2, · · · , un)T is control signal. The
synchronization error is defined e = y − x. Then,
the fractional-order error system between master and
slave systems is

Dαe = f(y)− f(x) = Ae+ F (y)− F (x) + u

= Ae+ F (e+ x)− F (x) + u.
(12)

Our aim of synchronization is to design a simple
sliding surface and simple controller u, so that for
any initial condition y0 and x0:

lim
t→∞
‖e‖= lim

t→∞
‖y(t)− x(t)‖= 0,

where ‖.‖ is the Euclidean norm.

One of the most important methods in the area of
robust control is sliding-mode control [62, 63]. The
capability of the sliding-mode control approach is
its application for systems with uncertainty. In the
sliding-mode control scheme, the discontinuous feed-
back law replaced with high-gain linear feedback. Re-
cently, the sliding-mode method has been used for
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synchronization of fractional-order systems, such that,
the designed controllers and sliding surface are very
complex [40, 59]. In this paper, we design the sliding
surface and controllers similarity the integer-order dy-
namical systems but prove the stability of the method
based on the Lyapunov theorem in fractional-order
system [60]. The first step, to design sliding-mode
control is selecting an appropriate sliding surface
[40, 62, 63]. In most of the papers the sliding surface
has been given in complicated form due to fractional
integration. In this paper, we choose it in a simple
form

S(t) = [s1, s2, · · · , sn] = [λ1e1, λ2e2, · · · , λnen],
(13)

where λi are positive constants. This choice simplifies
the later calculations. The next step is to determine
the amount of control signal u such that the error
system trajectories reach the sliding surface S(t) = 0.

To achieve the stability of the error system in the
sliding surface, we assume that each element of the
main diagonal of matrix A is non-positive. So, we
have the following results.
Theorem 2. Consider the error system (12) with
α1 = α2 = · · · = αn and

u = −F (y) + F (x)− (A−D)e− ηsign(e), (14)

where η = (η1, η2, · · · , ηn) and D is the diagonal of
A with non-positive elements. Then the error system
will converge to zero and synchronization properties
between two master and slave system will achieve.

Proof. We define the Lyapunov function on surface
S in (13), as follow

V (t) = 1
2SS

T =
∑n
i=1

s2i
2λ2
i

. (15)

Therefor

DαV =
∑n
i=1

siD
αsi
λ2
i

=
∑n
i=1 eiD

αei = e(Dαe)T

= e(Ae+ F (e+ x)− F (x) + u)T

= e(Ae+ F (e+ x)− F (x)− F (y) + F (x)

−(A−D)e− ηsign(e))

= e(De− ηsign(e))

=
∑n
i=1(e2i aii − ηi|ei|).

(16)
According to aii ≤ 0, we have

DαV =
∑n
i=1(e2i aii − ηi|ei|) ≤ 0. (17)

Then the slave system is synchronized with master
system via the sliding-mode control.

Despite of theorem 2 in the following theorem we
let αi (i = 1, ..., n) be different.
Theorem 3. Consider the error dynamical system
(12) with αi 6= αj for some i and j and controller
(14). Then the error system will converge to zero and
synchronization properties between two master and
slave system will achieve.

Proof. We define a Lyapunov function in surface S
given (13) in vector form

V (t) = (V1, V2, · · · , Vn) = 1
2 (

s21
λ2
1
,
s22
λ2
2
, · · · , s

2
n

λ2
n

). (18)

Therefor

DαV = (Dα1V1, D
α2V2, · · · , DαnVn)

= (
s1D

α1s1
λ21

,
s2D

α2s2
λ22

, · · · , snD
αnsn
λ21

)

= (e1D
α1e1, e2D

α2e2, · · · , enDαnen)

= (e1(f1(y)− f1(x) + u1), · · · ,
en(fn(y)− fn(x) + un). (19)

Now by substituting u = (u1, u2, · · · , un) from (14)
in (19), we have

DαV = (e21a11 − η1|e1|, e22a22 − η2|e2|, · · · ,

e2nann − ηn|en|).
(20)

Considering aii ≤ 0, we conclude

e2i aii − ηi|ei|≤ 0. (21)

So the condition of Lemma 1 is satisfied for any
element of error system. It implies the error system is
stable. Then the master-slave system is synchronized
via the sliding-mode control.

Remark 1. [64] The sign(ei) function, as a rigid
switcher, in the control law (14), may cause unde-
sirable oscillations. In order to avoid this problem,
the sign(ei) function in the controller (14) is approx-
imated by the tanh(ei).

3.1 Numerical Simulation of
Synchronization

In this subsection, a numerical simulation is given
to illustrate the theoretical results of the mentioned
theorems. For this purpose, we consider the chaotic
fractional-order Lorenz system

Dα1x1 = σ(x2 − x1)

Dα2x2 = ρx1 − x2 − x1x3
Dα3x3 = x2x1 − βx3,

(22)

where σ = 10, ρ = 28, β = 8
3 and 0.993 ≤ αi < 1 [13].
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Figure 1. Synchronization of two identical Lorenz fraction-
al-order systems with same order

Assume the system (22) is the master system and
define the slave system as follow

Dα1y1 = σ(y2 − y1) + u1

Dα2y2 = ρy1 − y2 − y1y3 + u2

Dα3y3 = y2y1 − βy3 + u3.

(23)

According to Theorems 2, 3 and Remark 1, we have

u1 = −3 tanh(y1 − x1)− σ(y2 − x2)

u2 = −5 tanh(y2 − x2)− (ρ+ x3)(y1 − x1)

+(y3 − x3)y1

u3 = −2 tanh(y3 − x3)− x1(y2 − x2)

−x2(y1 − x1)− (y1 − x1)(y2 − x2).

(24)

Numerical simulations are given for the following
cases

• The order of derivatives be same
Let α1 = α2 = α3 = 0.995 and assume the

initial conditions x(0) = (0.1, 4, 5) and y(0) =
(−5, 0, 1). The results are given in Figure 1 and
Figure 2.
• The order of derivatives be different

Let α1 = 0.995, α2 = 0.997 and α3 = 0.994,
and assume the initial conditions x(0) =
(−0.1, 1, 5) and y(0) = (−4,−1, 3). The results
are given in Figure 3 and Figure 4.

The figures 1-4 display that the slave and master
systems are synchronized after a short time. For more
explanation, the synchronization times are given in
Table 1. Also, figures 5 and 6 shows the numerical
simulation of controllers, such that the controllers,
like the error synchronization, arrive to zero after a
short time.
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Figure 2. Error synchronization of two identical Lorenz frac-
tional-order systems with same order
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Figure 3. Synchronization of two identical Lorenz fraction-
al-order systems with different order

0 1 2 3 4 5

0

2

4

e
1

0 1 2 3 4 5
−1

0

1

2

e
2

0 1 2 3 4 5
−1

0

1

2

e
3

t

Figure 4. Error synchronization of two identical Lorenz frac-
tional-order systems with different order
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Table 1. Synchronization time

Error of state e1 e2 e3

Same order 0.38 0.85 0.93

Different order 0.35 0.75 0.90
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Figure 5. Control signal for synchronization of different order
fractional-order Lorenz system
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Figure 6. Control signal for synchronization of same order
fractional-order Lorenz system

4 Secure Communication based on
Masking Method

This section addresses masking method for secure
communication scheme based on synchronization of
two fractional-order chaotic systems.

According Theorems 2 and 3, the architecture of the
proposed secure communication scheme is established
by two fractional-order chaotic systems and designed
sliding mode controllers. The overall process of the
secure communication is shown in Figure 7.

At the transmitter side, fractional-order system (10)

Figure 7. Diagram of secure communication based on syn-
chronization of two identical fractional-order system

with state variables xi(t) generates chaotic signals, are
used as the master system. In the receiver side, system
(11) has the same structure as system (10) with state
variables yi(t), such that the sliding mode controller
is employed to synchronizing the two fractional-order
chaotic systems. At the transmitter side, the original
message M(t) is combined by the chaotic signal x1(t).
The combined message is shown with T (t) and is
defined

T (t) = M(t) + x1(t). (25)

M(t) must be well chosen in a way that it can be
successfully masked by x1(t). Otherwise, the original
message M(t) is multiplied by a scaling factor [23] is
used for resizing the original message.

For sending all signals (state variables and T (t))
from a transmitter to receiver, a public channel is used.
By Theorems 2 and 3, the chaotic synchronization
will be achieved by the sliding mode controller. After
Tc a time greater than Ts (Ts is the synchronization
time) synchronization will occur. The received signal
by the receiver is recoverable with following equation:

R(t) = T (t)− y1 ∼= M(t). (26)

Because, according to the concept of synchronization
we have:

R(t) = M(t) + x1(t)− y1(t) ∼= M(t). (27)

The encrypted signal is transmitted through the
public channel, which is open to any intruder. How-
ever, the infiltrators are not able to decode the mes-
sage, even if they are aware of the structure of the
chaotic system in the sender. Since the initial condi-
tions, the designed controller, and the synchronized
time Tc are completely unknown, it would be ex-
tremely difficult for an intruder to recover the masked
messages. It is also noted that even an extremely
small deviation of the correct encryption keys will
lead to a completely different result due to the sys-
tems chaotic nature, thus increasing the difficulty
for intruders to recover the original message. There-
fore, the secure communication design based on the
masking technique and the proposed method for the
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original picture encrypted picture recovered picture

Figure 8. Secure communication based on synchronization for
Black-white digital image

Original picture encrypted picture recovered picture

Figure 9. Secure communication based on synchronization for
colored digital image

synchronization of fractional-order systems by the
sliding method is stable and practical.

In subsection 3.1, the numerical simulation of the
synchronization of fractional-order Lorenz system via
the sliding mode control method was discussed. To
evaluate the feasibility of the proposed secure com-
munication scheme, numerical simulations are given
in the following subsection.

4.1 Numerical Simulation of Secure
Communication

To check the validity of the mentioned technic, we il-
lustrate the simulation results for the encryption and
decryption of continuous signal and digital images.
All the simulations are carried out by the MATLAB
software. We assume the initial conditions and re-
quirement parameters similar to those in subsection
3.1. Encryption and decryption happen after synchro-
nization time Ts. When an image is obtained using
MATLAB in data form in a matrix, directly combined
with the signal dynamical system is not possible. So
we first convert the obtained matrix in a vector form
with elements that are written in double format. For
illustrating the ability of the presented method we
apply it on the continues signal M(t) = 0.8 sin(10πt),
black-white and color digital images. Simulation re-
sults are shown in figures 8-10 with encryption and
decryption rules (25) and (26).
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−20

0

20
encrypted signal
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(t
)
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recovered signal

R
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)

t

Figure 10. Secure communication based on synchronization
for continuous signal

Table 2. Comparison of our proposed method and some other
cryptosystems.

Algorithm keyspace size Encryption Time (seconds)

The proposed algorithm 2558 < 0.23

Ref. [66] 2144 > 0.22

Ref. [67] 296 10.9689

Ref. [56] 2280 1.25

Ref. [68] 240 2.901

5 Security Analysis

In this section, we analyzed the effectiveness of the
proposed secure communication scheme by several se-
curity tests, such as keyspace analysis, key sensitivity
analysis, statistical analysis, and speed analysis. We
consider the color digital image in the case that the
order of derivatives is the same. The security analysis
of other cases is similar.

5.1 Keyspace Analysis

From the standpoint of encryption, the size of the
keyspace should be greater than 2100 to confirm higher
security [65]. The introduced scheme contains twelve
key parameters. When the precision is 10−14, the
keyspace size is 10168 ≈ 2558, which is large to resist
all kinds of brute-force attacks. This amount is larger
than those in references [56, 66–68]. Table 2 shows
the comparison of the keyspace analysis between the
proposed encryption method and other image cryp-
tosystems in [56, 66–68].

5.2 Key Sensitivity Analysis

To analyze sensitivity, we change the key parameter
x2(0) = 4 to x2(0) = 4 + 10−3. The encrypted picture
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(b)(a)

(d)(c)

(f)(e)

Figure 11. Key sensitivity test. (a) Original picture; (b) en-
crypted picture with the secret key x2(0) = 4; (c) encrypted pic-
ture with the secret key x2(0) = 4+10−3; (d) difference picture;
(e) decrypted picture (b) with the correct key x2(0) = 4 and (f)
decrypted picture (b) with the incorrect key x2(0) = 4 + 10−3.

with x2(0) = 4, the encrypted one with x2(0) =
4 + 10−3 and the difference between two encrypted
pictures are shown in Figure 11(b), Figure 11(c)
and Figure 11(d), respectively. The black pixels in
Figure 11(d) are the same parts in two encrypted
picture. The results show that the difference ratio
is really high. That means the proposed algorithm
is highly sensitive to key parameters. Also, the test
results in decryption process are shown in Figure 11.
The decrypted pictures by the correct key x2(0) = 4
and the incorrect key x2(0) = 4 + 10−3 are displayed
in Figure 11(e) and Figure 11(f), respectively. As we
see in Figure 11(e) and Figure 11(f), only one correct
key can decrypt an encrypted picture. The sensitivity
of the other parameters are similar to x2(0).

5.3 Histogram Analysis

A histogram of image is a type of histogram that acts
as a graphical representation of the tonal distribu-
tion in a digital image. It plots the number of pixels
for each tonal value. By looking at the histogram for
a specific image a viewer will be able to recognize
the entire tonal distribution at a glance. Histogram
images are plotted to show the distribution of tonal
in the encrypted image. For more detail, interesting
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Figure 12. Histograms of (a) original picture; (b) encrypted
picture.

reader can see [7, 69]. The histograms of picture
(Figure 11(a)) and encrypted picture (Figure 11) in
each channel are shown in Figure 12. The histograms
of the encrypted picture are almost uniformly dis-
tributed and noticeably different from those of the
original image.

6 Speed Analysis

The speed performance is tested in a personal com-
puter with an Intel(R) Core(TM) i7-7700K CPU 4.20
GHz, 8.00GB Memory and 1TB hard-disk capacity,
by using Matlab 8.2 and the operating system is Win-
dows 7. The average time used for encryption and
decryption on Figure 11(a) with size 256×256 for 10
times is 0.12 s. We can see that the operation speed
of this scheme is very fast compared to the other en-
cryption methods such as [56, 66–68]. Table 2 shows
the comparison of the speed analysis between the
proposed scheme and other image cryptosystems in
[56, 66–68, 70].
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7 Conclusions

In this paper, a secure communication based on syn-
chronization of two identical chaotic fractional-order
system via masking method presented. For synchro-
nization, a robust sliding mode controller was de-
signed to study the synchronization of two identical
fractional-order systems. The obtained control was
satisfied Lyapunov stability theorem of fractional-
order. In comparing similar works, the considered
sliding surface was simple. The results of the synchro-
nization showed that the errors are asymptotically
convergent. Security analysis of the proposed masking
secure communication method showed the effective-
ness of the proposed method. In future work, we will
try to implement the modulation method to fraction
order differential equations with different orders and
unknown parameters.
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