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Abstract

In this paper, we propose a new method of differential fault analysis of SHA-3
which is based on the differential relations of the algorithm. Employing those
differential relations in the fault analysis of SHA-3 gives new features to the
proposed attacks, e.g., the high probability of fault detection and the possibility
of re-checking initial faults and the possibility to recover internal state with
22-53 faults. We also present two improvements for the above attack which are
using differential relations in reverse direction to improve that attack results
and using the algebraic relations of the algorithm to provide a second way to
recover the internal state of SHA-3. Consequently, we show that with 5-8 faults
on average, SHA-3’s internal state can be fully recovered.

© 2019 ISC. All rights reserved.

1 Introduction

SHA-3 is a secure hash algorithms standard by NIST
at 2015 [1, 2]. SHA-3’s applications can be Massage
Authentication Codes (MACs), with being a stream
cipher or a quasi-random generator second in line. As
the new standard, in near future SHA-3 will be used
more and more in cryptographic and security systems
and protocols, making its security a critical factor in
these systems. This fact has motivated extensive stud-
ies of this primitive in recent years, e.g. [3–12]. Cryp-
tographic systems are sensitive to random/intentional
errors caused by environmental factors such as tem-
perature, X-rays or adversarial attacks such as fault
attacks. For a cryptographic system, random faults
generate false results which make them unreliable. An
attacker can also apply temporary faults to a cryptog-
raphy system and analyze the results to get the key
or system’s sensitive data. These attacks are known
as fault analysis attacks, among them is differential
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fault analysis (DFA), but not limited to it and other
type/concepts of attack was introduced such as blind
fault attack, fault sensitivity analysis, statistical fault
attack and differential fault intensity analysis attacks.
However, in this paper, we concentrate on DFA at-
tack. DFA was first induced in [13] to recover secret
key of DES or an unknown function and then this
technique has been applied to Triple-DES [14], AES
[15], SKINNY [16], SHA-1 [17], Grφstl [18] and many
more algorithms.

So far, several successful instances for fault analysis
of SHA-3 have been proposed in related literature [19–
22]. In 2015, the first DFA on SHA-3 was proposed
by Bagheri et al. [19]. They proposed DFA for two
members of the SHA-3 family, i.e., SHA-3-384 and
SHA-3-512, with injection fault on one-bit of the state
at a time, as the DFA model. In 2016, Luo et al. [20]
targeted all four hash members of the SHA-3, with 1-
byte faults. They later extended their work [21], where
a SAT solver is used to improve the fault detection
process. However, the basic idea of fault detection
remaining the same: setting 0, 1 and x (unknown) as
possible stands for differences. More recently, a new
instance of SHA-3’s fault attacks [22] was published
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which should be considered as an extension over [21]’s
authors. Same as the previous one, an SAT solver is
used but with recovering SHA-3’s state bits as the
primary goal. With this change, usage of 1-byte fault
for all four SHA-3 members, 2-byte fault for SHA-3-
256 and 4-byte fault for SHA-3-512 become possible.
In addition, with injecting fault to rounds 23 and 24,
the 2-byte fault can also be used for SHA-3-224.

To improve the fault analysis, we use the differen-
tial relations of the ciphers components as the fault
signature. Using these differential relations in our
DFA gives the features to our analysis:

• The ability to use 1 to 6-byte faults in the
attack,
• The process can be applied to all four members

of SHA-3,
• Our work only needs fault injection to a single

round
• Since our attack is self-improving, rechecking
the faulty outputs that were not fully used is
possible,
• SHA-3’s internal state full-recovery, given 5 to

8 faulty hash/Tag, is possible.

The rest of the paper is structured as follows: Sec-
tion 3 gives a brief description of how SHA-3’s com-
ponents work. The concept of differential relations of
SHA-3 is introduced in Section 4. In Section 5, the
method of recovering SHA-3’s internal state bits with
fault analysis is explained. Our proposed methods to
improve the attack along with simulation results are
presented in Section 6. Finally, Section 7 concludes
the paper.

2 Notation

Throughout the paper, we use the notations repre-
sented in Table 1.

Table 1. Notations used in this paper

Notation

θ, ρ, π, χ, ι SHA-3’s inner functions

An Output of inner function “A” at round n

Xn A bit of χ23’s input (used in equations)

A(x, y, z) A bit of inner state “A"

∆ik / ∆ok Difference of bit “k" of Input / Output

Vi / Vo A row of χ24’s Input / Output

3 SHA-3 Hash Function

A cryptographic hash/MAC function takes an arbi-
trary string as the input and produces a constant
length output. The hash/MAC function’s input is
called “message", and its output is called “hash/TAG"

or message digest. Hashes are often used as a unique
digest for the message. SHA-3 is the latest standard
of secure hash algorithms which is based on Keccak
[2], winner of the SHA-3 competition [23], which also
supports MAC applications. In the following, a brief
description, of how it works, is presented.

SHA-3 family is composed of four hash functions
and two extendable-length output functions (EXOs).
The four SHA-3 hash functions are SHA-3-224, SHA-
3-256, SHA-3-384, and SHA-3-512, where x in SHA-
3-x denotes the output length. All members of SHA-
3 have a common data absorbing structure called
“SPONGE" structure [1], which is illustrated in Fig-
ure 1.
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Figure 1. SPONGE structure [1]

SPONGE structure uses a permutation f as the
main building block. This permutation, f , has a con-
stant length input and output, which are called inter-
nal state or simply “state”. The first r bits of it are
called the rate bits, and the other c = b− r bits are
called capacity bits [1]. To generate a hash/Tag for a
message, that message needs to be divided into r-bit
blocks with 1{0}∗1 padding. Then each block will be
combined with rate bits of the state followed by the
application of compression function. After absorbing
message blocks and after that the squeezing calcula-
tion finishes, first d-bits of state are presented as the
output. In the following equations, “A” represents the
state.

All members of the SHA-3 family use the same
internal functions (sub-permutations): θ, ρ, π, χ, ι.
Application of all five inner functions, as follows, is
known as a round:

Roundi = ιi ◦ χ ◦ π ◦ ρ ◦ θ(A) (1)

The calculations of the internal functions are de-
scribed in the following. In SHA-3, the permutation
function (Keccak-f) is composed of 24 rounds of inner
functions on a 1600-bit state:

Keccak-f : for i = 0 to 23 Roundi(A) end (2)

In the internal functions of SHA-3, the state is
represented by a three-dimensional matrix with 1600
cells as bits. In Figure 2, the internal state, and its
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sub-strings are specified. For example, a sub-string of
internal states whose bits have the same component
y and z is called the row (y, z).

Figure 2. SHA-3’s state and it’s substrings [20]

The first internal function, θ, combines state bits
in y-direction as:

θ : A′(x, y, z) = A(x, y, z)⊕
5∑

i=0

A(x− 1, i, z)

⊕
5∑

i=0

A(x+ 1, i, z − 1)

(3)

The next round-function is ρ, which rotates state
bits in z-direction. The number of rotations are pre-
defined offsets which can be seen in Table 2.

Table 2. Offsets of ρ

x = 3 x = 4 x = 0 x = 1 x = 2

y = 2 22 39 3 10 43

y = 1 55 20 36 46 6

y = 0 28 72 0 1 62

y = 4 56 14 20 2 61

y = 3 21 8 41 45 15

The third round-function, π, rotates state bits in
x and y direction. (x′, y′) in the following equation
are the updated value of these components after π’s
application:

x′
y′

 =

0 1

2 3

×
x
y

 (4)

The round-function χ is the only nonlinear function
on each round which updates a bit with the help
of the next two bits along the x-direction. Figure 3
illustrates the application of χ on a row of a state.

Figure 3. A row’s update in χ [1]

The last of the internal functions, ι, updates state
by combining a 64-bit array, dependent on the round
number, with the first 64-bit of the state. These arrays
originally are produced by an LFSR. However, their
values do not effect on our analyses here.

4 Differential relations in SHA-3

The differential relations in this paper are a set of
binary functions which can determine the value of
difference in any bit of state, given the value of state(s)
before it. To calculate the differential relations of
SHA-3, first, we need to know the differential relations
of the operators employed in it. In SHA-3, four basic
operators are used: AND, XOR, NOT, and Shift. In
the following, differential relations of these operators
are presented:

AND: Given k and k′ are produced by multiplying
respectively (a, b) and (a′, b′), we would have:

{k, k′} = {a · b, a′ · b′} (5)

Now, to calculate the output difference, we do
following operation:

∆k = k ⊕ k′ = (a · b)⊕ (a′ · b′) = ∆a×∆b (6)

∆k = (a · b)⊕ ((a⊕∆a) · (b⊕∆b)) (7)

∆k = a · b⊕ ((a · b⊕ a ·∆b)⊕ (∆a · b⊕∆a ·∆b))
(8)

∆k = a ·∆b⊕∆a · b⊕∆a ·∆b =: ∆a×∆b (9)

Equation (9) shows that the output difference of
multiplication of two bits is dependent on the initial
and differential value of its input bits. Also, if we
know that one of input difference is ‘0’, the output
difference will only depend on that input bit’s initial
value. The same argument is valid for known initial
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values. Hence, to determine the output difference, the
adversary does not necessarily need the full knowledge
of input.

XOR: Suppose that k and k′ are produced by
applying XOR to (a, b) and (a′, b′) respectively i.e.:

k = a⊕ b , k′ = a′ ⊕ b′ (10)

So, the output difference will be as follows:

∆k = k ⊕ k′ = (a⊕ b)⊕ (a′ ⊕ b′) = ∆a⊕∆b (11)

Therefore, the difference in output only depends on
differences of inputs and can be calculated without
knowing the initial value of input bits.

NOT: An inverter logical effect is same as XOR
with ‘1’. If we use equation (11) with ∆b = 0, it is
proven that the input difference is not changed by
NOT operation.

Shift: The Shift operators in SHA-3 are circular
rotations, and they behave the same for differences.

With the help of the differential equations ex-
pressed above, we can obtain differential relations of
internal functions of SHA-3.

In function θ, each bit is combined with XORs of
its two adjacent columns. This means that differential
outputs can be calculated with the same method as
normal θ, just with differential bits as input. ρ and π
only rotate state bits, therefore they will also be the
same to the differential input.

Calculation of the differential relations in χ can be
divided into two steps: calculating differential outputs
of ANDs and then calculating the total differential
output. Figure 4 illustrates these two steps for a row
of state. In this Figure and the following equations,
X1−X5 represent the initial values of the row’s input.

Figure 4. Calculation of differential relations in χ [1]

The first step will be as equation (9) :

ANDn = ∆in × ∆in+1 = Xn · ∆in+1 ⊕ ∆in ·Xn+1 ⊕ ∆in · ∆in+1

(12)

and the output difference will be as equation (11) :

∆on = ∆in ⊕ANDn+1 (13)

We used equation (12) and (13) to calculate out-
put differential relation of some examples of input
differences, in Table 3.

With a closer look, we can see that in some of the
rows, only a portion of initial values, (X1, ..., X5),
are presented as a variable in output relations. In
another word, χ’s output differences are dependent
on input difference and a portion of initial bits.

The last function ι, only inverts some bits on lane
0. Therefore, it does not change its differential input.

The used approach: In this section, we described
a method to find the differential relations and our
approach to use them in a fault analysis attack. If we
consider the injected fault’s effects on the algorithm as
a differential input, differential relations can express
how they are going to be distributed between the
injection and compression point. For example, if there
is no χ function between them, output’s difference can
be calculated by only knowing the input difference.

In this paper, differential relations of 1.5 round
(1round plus θ, ρ and π of the next round) are used
as the resources of attack, for two reasons: first, they
only have one χ function between them and given that
χ is the only non-linear inner function in SHA-3, we
would have a lower algebraic degree in our relations.
Second, each plain carry all of the useful differential
information in its differential relations. This is due
to the second θ’s application. This feature is useful
since in a hash/MAC function only a small number
of bits are available as output and having many bits
which carry secret information make it more likely to
discover the secret parameter. Appendix of the paper
represents the distribution of a 16 bit fault with fault
injection starting at 16th bit of the first lane, in 1.5
rounds.

5 Differential Fault Analysis of
SHA-3

In this section, the process of recovering SHA-3’s
internal state using the fault-free and faulty generated
hashes will be presented. We use a relax fault model
with the following assumptions:

• The attacker can inject faults to the input of
23rd round of the last compression function.
• The faults can occur in 1 to 6 continuous bytes.
• During the attack, the message remains fixed.

Figure 5 illustrates a simplified model for fault’s
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Table 3. Some examples of Differential Relations in χ

Input Differences Output Differential relations

i1 i2 i3 i4 i5 O1 O2 O3 O4 O5

∆S1 0 0 0 0 ∆S1 0 0 X̄5·∆S1 X2·∆S1

∆S1 ∆S2 0 0 0 X3·∆S2 ⊕ ∆S1 ∆S2 0 X̄5·∆S1
X2·∆S1 ⊕ X̄1·∆S2

⊕ ∆S1·∆S2

∆S1 0 ∆S3 0 0 X̄2·∆S3 ⊕ ∆S1 X4·∆S3 ∆S3 X̄5·∆S1 X2·∆S1

∆S1 ∆S2 ∆S3 0 0
X3·∆S2 ⊕ X̄2·∆S3 ⊕

X4·∆S3 ⊕ ∆S2 ∆S3 X̄5·∆S1
X2·∆S1 ⊕ X̄1·∆S2

⊕ ∆S2·∆S3 ⊕ ∆S1 ⊕ ∆S1·∆S2

distribution from the injection point to the output-
hash/Tag. To use a faulty hash/Tag value, the follow-
ing three processes must be performed:

(1) Half-Round Reversing
(2) Fault Detection
(3) State Bits Recovering

The rest of this section is aimed to explain how
these processes work and show their results. Also, an
overall view of these processes, that are required to
analyze a faulty hash/Tag, is presented in Figure 6.

, , , ,    , ,   , 
23

Round

Fault N

23
Recover N

24
Recover N (M)H
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Figure 5. The used model to describe injected fault’s effects
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Figure 6. Differential fault analysis of SHA-3

5.1 Half-round reverse

In Section 4, a method of calculating differential
relations of internal functions of SHA-3 was expressed.
According to the overview of attack, faults should
be injected into the input of 23rd round, meaning
that the faulty state goes through 23rd and 24th

round. Therefore, their differential relations will have
three sets of variables: injected fault, χ23 and χ24.
If we calculate these differential relations and try to
use them to determine the injected fault’s value, the
results will not be very interesting due to the high
complexity in relations.

One way to counter the complexity of relations
is to eliminate differential relation’s dependency on
χ24. Of course, χ24’s bits are dependent on χ23 bits
though inner functions, and each of its bits can be

expressed on with equations only consisting of χ23’s
bits. At the first glance, it seems using the algebraic
relation between χ23 and χ24 can be used to eliminate
differential relation’s dependency to χ24 and solve
the complexity problem. However, if we do this, each
of χ24’s bits will be replaced by a relation contains 33
bits of χ23 which make the relations more complex
than before.

Another way to reduce the complexity is to retrieve
differences at χ24’s input using fault-free and faulty
hashes. Since these differences did not pass through
χ24, they do not depend on its input. We call this
process half-round reverse which will be described
in the following.

Generated hash/Tag in SHA-3 is a part of the state
after the application of round 24. To find χ24 input
bits, one must first have input bits of the last applied
function ι24. In ι, a constant value is combined with
the first lane of the state, so one can obtain the input
of this function by re-applying the same constant
value to its output.

Next function in the way is χ24. Based on the
functionality of χ, each output row only depends on
the same row of input. If all bits of an output row
are known, that row’s input can be simply retrieved
by a one-row I-O table. However, if some of the row’s
output bits are unknown, it is not possible to retrieve
its input in the same way. In this case, if we check
χ’s I-O table with known bits, instead of one answer,
there could be several possible answers for the row’s
input. Since there is no way to extract the correct
answer, only bits that have constant value through
all possible answers can be given as definitive input.
In the following, a toy example of this method is
presented:

Example: Suppose we are reversing a row with 4
known bits, Vo, in χ function . In this case, we will
have:
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χ-1(V o = 1001x) = {(V i1 = 10000), (V i2 = 11011)}
(14)

where χ-1 denotes the I/O lookup table with 32
lines, its ith row contains t such that χ(x) = i. The
given output, Vo, is used as a filter for table lines.
Comparing Vo with each line, if there is any mismatch
between the line’s bits and the known bits of Vo that
line will be removed from possible row’s input. The
remaining lines will be presented as the initial results,
for our example there are two rows (25−4 = 2).

In the next step, each bit is checked to see whether
it remains fixed over all input candidates:

χ-1({(V i1 = 10000), (V i2 = 11011)}) = (V i = 1x0xx)
(15)

So, for the given Vo, two input bits are retrievable.

If the expressed process applies to all rows of out-
put hash, a portion of χ24’s input can be recovered.
If a bit is known in both correct and faulty hash/Tag,
input difference on that bit can also be retrieved.
Table 4 shows the average number of correct and
differential bits recovered at the input of χ24 function
on SHA-3.

Table 4. Results of half-round reverse on SHA-3

Function Fault-free bits Differential bits

SHA-3-224 114.15 67.5

SHA-3-256 159.5 102.2

SHA-3-384 320 320

SHA-3-512 382.8 347.4

In the following, the method of using these differ-
ences to identify injected fault will be described.

5.2 Fault Detection

When an attacker injects fault to an algorithm, by
default its position and value are unknown and the
process of finding them from the available informa-
tion is called fault detection. Using the differential
relations of Section 4 and the differences that are
obtained from the previous section, we propose Algo-
rithm 1 to find all valid position-values for fault.

In this algorithm, first, we choose a position for
the fault. Then fault’s bits are set to 0 or 1, one after
another. In each step, differential relations are checked
for a contradiction between calculable table relation’s
value and real differences. If a contradiction exists, it
would be taken to effect at the next fault bit setting.

If all faulty bits are set without any contradictions,
that fault is considered as a valid fault.

Algorithm 1 Fault Detection Algorithm
Offline:
1: for each IP(Injection Point) in State do
2: Set Fsize bits as faulty
3: Calculate and store resulting differential rela-

tions
4: end for
Online:
1: for each IP in State do
2: Load (Equs , IP)
3: Update (Equs, RecoverXi23)
4: N=0, Vremain = true, Wrong = fasle
5: while Vremain do
6: New_I (I, N, Wrong)
7: if N ≥ Fsize then
8: Find_X (Equs, I, Difo )
9: else if N ≤ -1 then

10: Vremain = fasle
11: end if
12: Chek_Equ (Equs, I , Difo, Wrong)
13: end while
14: end for

If Algorithm 1 finds only one position-value for
the injected fault, the fault is considered uniquely
detected. The results of unique fault detection on
SHA-3 hash functions are presented in Figure 7. In
this figure,X-vector is the known-state-percent which
increases as the attack goes on. We can use this to
improve the attack, by reducing attack model. For
example, the attacker can inject 1-byte fault with
87% detection chance on SHA-3-224 for start and
after recovering at least 560 bits, or 35% of state bits,
inject 2-byte fault with 78% detection chance and
after that adversary uses 32-bit fault to recover the
rest of the state. A same argument can be presented
for all other members of SHA-3 hash family.

5.3 Simulation results

In Section 5.2, the method to detect fault from fault-
free and fault hash/Tag were presented. If the injected
fault is known, it is possible to recover χ23’s effec-
tive bits using the differential equations. The average
number of recovered bits on each fault is directly de-
pendent on the size of injected faults and it increases
as fault size does. To use this feature and not fall to
low fault detection chance while doing it, we can start
by injecting 8-bit fault, and after reaching a thresh-
old of known state bits, start injecting 16-bit faults
or 32-bit faults. In this simulation, for SHA-3-512,
SHA-3-384, SHA-3-256 and SHA-3-224, the thresh-
olds of the percentage of known state for injecting
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Figure 7. Fault detection probability using Algorithm 1

16-bit fault are (0, 0, 20, 30) respectively and for a
32-bit fault they are (30, 35, 65, 75) respectively. The
results are illustrated in Figure 8.

Figure 8. Simulation results of state recovery on SHA-3

In related work [20], with 60, 86 and 226 faults,
the attacker could recover 1500 bits of the state re-
spectively for SHA-3-512, SHA-3-384, SHA-3-256 and
SHA-3-224, which is roughly triple of the required
faults in our simulations. Although for [21] the re-
sults of the attack on SHA-3-512 and SHA-3-384 are

almost the same as our attack, however, the attack
is not efficient for SHA-3-256 and SHA-3-224 due to
very low fault detection probability (less than 0.3%).

6 Improving the Results

In this section, we propose two improvements for
the state recovery attack that was explained in the
previous section, which will be presented as below:

Reverse Difference: In this improvement, by re-
using the results of a detected faulty hash/Tag in
differential relations, more bits of χ24’s bits can be
recovered which results in a more efficient half-round
reverse for other faulty hashes/Tags.

Algebraic Relations: In the second improvement,
the algebraic relations between two state parts which
are recovered correctly during the attack will be used
to increase the rate of the state’s bit recovery.

Both of these improvements can be applied to the
attack described in Section 5. In the following, each of
these improvements is described and the simulation
results of their application are expressed.
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6.1 Reverse Difference

The fault analysis described in Section 5 was com-
posed of three phases: half-round reversing, fault de-
tection, and state recovery. In half-round reversing
phase, bits of χ24 were retrieved from the fault-free
and faulty hash/Tag. Then χ24’s input differences
are calculated where bit’s value was known in both
of them. Due to the non-linearity of function χ, this
process is much less effective on SHA-3-224 and SHA-
3-256, followed by weaker results for them.

To have a better view of the improvement at hand,
Figure 9 is provided. In this figure, one row of fault-
free and faulty hashes/Tags are being reversed with
three sets of information. It should be mentioned that
this figure’s process goes from down to up as we are
reversing the function.

Figure 9. An example of Half-Round Reverse with Reverse
Differences

In part (a), a row with four visible bits on output
is given. By applying the same method as half-round
reversing, we receive four combinations of fault-free
and differential input as initial answers. Next, by
checking for unchanged bits in them, two fault-free
and two differential bits will be retrieved from row’s
input.

In part (b), row’s output is similar to part (a)
however the value of one fault-free bit of input is also
known. By employing this new information, only two
initial answers remain valid, followed by recovering
five fault-free and three differential bits from row’s
input.

Part (c) is similar to part (a), with one known
differential bit. By applying the same process, five
fault-free and three differential bits from row’s input
can be retrieved.

As it is shown in Figure 9, finding more information
about χ24’s input can reduce the number of initial
answers for each row which increases the efficiency of
the half-round reversing process. To use this feature,
it is necessary to provide a method for finding more

fault-free or differential bits from χ24’s input, which
can be done using differential relations.

The differential relations by definition can deter-
mine the difference value of each bit in their output.
If fault value-position and effective bits of χ23 state
are given, the difference at χ24’s input can be calcu-
lated. These values are known for a faulty hash/Tag
with detected fault. So, by putting them to their dif-
ferential relations again, all differences of χ24’s in-
put are determined, some of which were previously
known. Therefore, by adding this new information
to half-round reversing, a larger part of fault-free in-
put can be obtained. Since the fault-free hash/Tag is
the same for all faulty hashes, this new information
can be used to help other faulty hashes/Tags in their
half-round reversing process. From here on, we call
this improvement reverse differences.

Figure 10 shows the number of fault-free and dif-
ferential bits recovered from χ24’s input using reverse
differences on each fault.

Figure 10. half-round reverse results with reverse differences
in use

It can be seen the rate of increase in known bit
drops after a few faults to the extent that after ana-
lyzing three detected faults, the number can almost
be considered constant. Table 5 provided detailed
values at this point. If we compare the numbers of
Table 5 with the numbers in Table 4, the biggest rel-
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ative increase is for SHA-3-224 and SHA-3-256. Since
the output of half-round reverse will be used in the
next two processes of attack, fault detection chances
will also change with this improvement. Keeping that
in mind that this improvement does not only effect
half-round reverse process, but also the fault detec-
tion, we consider the fault-free bits of Plane 0 for all 4
hash functions and Plane 1 for SHA-3-384 and SHA-
3-512 of χ24’s as known bits and reused Algorithm 1.
The new results are presented in Figure 11. In this
figure, SHA-3-224 and SHA-3-256 results are almost
the same as SHA-3-384’s results in Figure 7, which
could be a huge improvement.

Table 5. Results of half-round reverse with reverse differences
in use

Function Fault-free bits Differential bits

SHA-3-224 319.3 318.9

SHA-3-256 320 319.1

SHA-3-384 638 633

SHA-3-512 639.8 637.2

Figure 11. Fault detection when reverse differences strategy
is used

6.2 Algebraic Resolution

In our fault analysis, the differences at χ24’s input
are used to form differential equations which then are
used to detect fault and recover χ23’s bits. But the
differences are not the only information that the at-
tacker have, a number of χ24’s fault-free bits had also
bean recovered during half-round reversing process.
As mentioned before, χ23’s and χ24’s bits have an
algebraic relation though SHA-3’s round functions:

χ24 = π ◦ ρ ◦ θ ◦ ι23 ◦ χ(χ23) (16)

This algebraic relations between these two fault-
free states can be used to form more valid equations
on the target state, i.e. χ23. Therefore, it is expected
to increase the rate of state recovery. This improve-
ment works very well with the initial attack. As can
be seen in Figure 8, the average number of recovered
bits with DFA decreases as the attack goes on; this
is due to the reappearance of repetitive χ23’s bits
in differential relation, while algebraic relations, on
the other hand, become more effective with attack’s
progress. Since as the attack goes on, extra informa-
tion are provided for the solver, which reduces the
problem solving complexity and more likely to return
an unique answer.

We did 1000 simulations for DFA while using al-
gebraic equations and without using the algebraic
equations. The results show that the difference in the
number of recovered bits, i.e. the recovered bits of χ23

when algebraic equations are used, is almost equal to
the number of known fault-free bits of χ24.

6.3 Simulation results

In this section, the simulation results of DFA on SHA-
3 using improvements 6.1 and 6.2 will be provided.
This simulation uses of 16, 32 and 48-bit faults in
the same manner as the simulation described in Sec-
tion 5.2 were using. The threshold of the percentage
of the known state for 32-bit faults has been set to
30, 30, 10 and 10 for SHA-3-224, SHA-3-256, SHA-3-
384, and SHA-3-512 respectively, and for 48-bit faults,
the threshold has been set as 60, 60, 50 and 50 re-
spectively. Also for SHA-3-224 and SHA-3-256 hash
members one 8-bit fault is injected as the first fault.

Figure 12 and Table 6 show the results of this
simulation. It’s worth-noting that Figure 11 shows
the results of this simulations as well.

To compare with the related works, the related
works [19] and [20] SHA-3-385 and SHA-3-512’s state
can be recovered respectively with 125 and in with
80 faulty messages. Also, in [20], the chance of fault
detection of SHA-3-224 and SHA-3-256 was 30.67%
and 66.61% respectively and with an improvement of
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Table 6. Details of our final results

Hash Faults 16-bit 32-bit 16-bit Faults 32-bit Faults 48-bit Faults

Function Required Faults Faults Detection Chance Detection Chance Detection Chance

SHA-3-224 7 - 8 3.79 2.13 99.1% 100% 88.4%

SHA-3-256 7 3.2 2.6 99.7% 100% 91.4%

SHA-3-384 5 - 6 2.41 1.76 100% 100% 96.2%

SHA-3-512 5 - 6 2 2.2 100% 100% 98.7%

Figure 12. Final state recovery results

49.12% and 78.73%, in cost of injecting several faults
to the 24th round. In [21], state recovery of SHA-3-
512 and SHA-3-384 would require 60 faults and for
SHA-3-256 and SHA-3-224 only 1-byte fault based
model was possible and it pretty close to the results
of [20] with 110 and 220 faults respectively.

We run our simulations also without 48-bit fault
threshold and the number of faults required to recover
state did not show a big change. For example in SHA-
3-384, it went from 5.76 to 5.84. This means that one
can recover the state with the given fault number by
injecting 16 and 32-bit faults. We believe that this
is due to the usage of algebraic resolution and its
overshadowing of DFA in recovering state bit in the
later faults. The next part of this section is dedicated
to studying the process and results of paper [22].

Discussion

The latest paper related to fault analysis of SHA-3
is [22] and here we’re going to briefly describe it and
make a comparison between it and our work. In [22]
a SAT solver is used with the following equations:


H = ι24 ◦ χ ◦ π ◦ ρ ◦ θ ◦ ι23 ◦ χ(χ23)

H ′ = ι24 ◦ χ ◦ π ◦ ρ ◦ θ ◦ ι23 ◦ χ(χ23 ⊕∆χ23)

∆χ23 = π ◦ ρ ◦ θ(∆θ23)

(17)

where ∆θ23 have a limitation on how many faulty
bytes it can have, similar to Fsize in Algorithm 1.

Then fault-free and faulty hash/Tag (H, H ′) would
be given to the solver to find all possible answers for
χ23. For each answer, state bits are checked. If a bit
have the same value as previous answers or it was not
recovered before, that bit would be set as recovered;
if not, that bit would be removed from recovered bits
set.

That works shares some similarities with the cur-
rent work which can be described as follows:

{
H = ι24 ◦ χ(χ24 = π ◦ ... ◦ χ(χ23))

H ⊕H ′ = ι24 ◦ χ(∆χ24 = π ◦ ... ◦ χ(χ23,∆χ23))

(18)
after half-round reverse:

(18)

{
χ24 = A.R.(χ23)

∆χ24 = D.R.(χ23,∆θ23)
(19)

while we benefit from reverse differences, half-round
reverse and bigger fault sizes as advantages of our
work. In addition, the bellow equation could acceler-
ate our attack procedure:

k′ = a′ · b′ = ((a⊕∆a) · (b⊕∆b)) (20)

k′ = a · b⊕ a ·∆b⊕∆a · b⊕∆a ·∆b = k ⊕∆a×∆b
(21)

In the above equation, k′ is the value of a faulty bit
after the application of an AND operator on it. What
Equation 21 shows is that in the faulty bit’s relation,
e.g. k′, the value of a fault-free bit is present right
next to (XORed to) what we described as differential
relations. If we calculate the faulty bit’s relations of
any function including χ, we will see this separation
exists as well. This means that in [22]’s relations, it’s
almost impossible to find an equation that can be
calculated only by fault value (This was the main
feature we used in Algorithm 1 to detect fault value).
So the possibility of finding fault value without χ23

will not be significant, except maybe for small fault
sizes like 1-byte faults. We believe that this was the
foundation for the change in the solver’s target from
their previous work [21] to [22].
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In addition, we take advantage of the possibility of
separating H ′ to H⊕D.R., which allow us to improve
the attack with not just better solvers, but with
known state bits and use larger faults in our attack.
This separation was also the reason we were able to
calculate and use reverse differences to improve our
attack.

As the final results 6, 45, 12 and 27 faults are
needed for state recovery respectively in SHA-3-512,
SHA-3-384, SHA-3-256 and SHA-3-224 which in our
work are 6, 6, 7 and 8 faults.

7 Conclusion and future works

In this paper, we used the low algebraic degree of
1.5 round differential relations of SHA-3 as a basis to
apply an effective fault analysis in its hash members.
Doing so resulted in state recovery, with 22-53 faults,
of different members of the SHA-3 family. Next, we
used differential relations again to improve attack
even further and also used algebraic relations of SHA-
3 to increase the rate of state’s bits recovery. Com-
bination of those approaches formed an attack that
can recover state with 5-8 faults, with a high chance
of fault detection.

If we compare the results of this paper with the
results of the related works in literature, it shows a
significant improvement in decreasing the number of
required faults and increasing fault detection chance.

In our simulations, it was seen that analyzing faults
larger than 32-bit, e.g. 48-bit faults, does not increase
the attack efficiency. So it may be possible to use
other approaches to also use those information to
improve the attack further. One way to do this is
to study differential relations to find a better way
to solve them, given that many of our differential
relations have similar faulty bits and state bits in
them. Another way to change the analysis is to add a
linear solver to the attack. This linear solver could be
used to find θ24’s faulty input from known differences
on its output, ∆χ24. Since for each injection point,
there are a limited number of active differences on
θ24’s input, this would be a fast process and the result
could be used to check if a fault and state exist to
create it. Also differences on θ24’s active bits have a
bias to be 0 (because of the AND operation) which
possibly useful in finding a valid θ24’s input faster.
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