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1 Introduction

Abstract

This paper presents a data mining application in metabolomics. It aims at
building an enhanced machine learning classifier that can be used for diagnosing
cachexia syndrome and identifying its involved biomarkers. To achieve this
goal, a data-driven analysis is carried out using a public dataset consisting
of TH-NMR metabolite profile. This dataset suffers from the problem of
imbalanced classes which is known to deteriorate the performance of classifiers.
It also influences its validity and generalizablity. The classification models
in this study were built using five machine learning algorithms known as
PLS-DA, MLP, SVM, C4.5 and ID3. This model is built after carrying out a
number of intensive data preprocessing procedures to tackle the problem of
imbalanced classes and improve the performance of the constructed classifiers.
These procedures involves applying data transformation, normalization,
standardization, re-sampling and data reduction procedures using a number of
variables importance scorers. The best performance was achieved by building
an MLP model that was trained and tested using five-fold cross-validation
using datasets that were re-sampled using SMOTE method and then reduced
using SVM variable importance scorer. This model was successful in classifying
samples with excellent accuracy and also in identifying the potential disease
biomarkers. The results confirm the validity of metabolomics data mining for
diagnosis of cachexia. It also emphasizes the importance of data preprocessing
procedures such as sampling and data reduction for improving data mining
results, particularly when data suffers from the problem of imbalanced classes.
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disease that is usually associated with cancer
chemotherapy or radiotherapy. It may affect the

T he muscle wasting syndrome or cachexia is a lifestyle and life-expectancy of patients. Yet, it is dif-

ficult to observe, particularly in obese or overweight
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or changes in fat mass. Current diagnosis of cachexia
involves muscle mass quantification and image analy-
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Dual-energy X-ray Absorptiometry (DXA), and
magnetic resonance imaging (MRI). These methods
are expensive, time-consuming and expose patients
to doses of radiation [1]. Hence, this research aims
at using metabolomics data mining for the purpose
of developing alternatives for the current diagnosis
techniques.

Metabolomics is defined as: "the study of all
low-molecular-weight chemicals that are involved
in metabolism as an end product, intermediate or
necessary chemicals" [2]. Metabolomics is usually
performed using four main approaches: (1) Metabo-
lite Profiling; (2) Metabolite Target Analysis; (3)
True Metabolomics; and (4) Metabolic Fingerprint-
ing [3, 4]. Data mining was used successfully in
several scientific applications[5, 6]. The original
study from which the dataset was acquired aimed at
identifying and measuring all metabolites that are
involved as biomarkers for cancer-related muscle loss
syndrome in order to develop a simple, rapid and
cheap test that can be used for screening the disease
or for providing an indication for its likelihood [1].
Metabolomics data mining was applied successfully
to health assessment, disease diagnosis and drugs
monitoring [7-9]. It can be used to identify a number
of metabolites that can be used as biomarkers for
the cachexia syndrome. This would help to develop a
rapid, cheap and robust diagnosis tool that can be
safer and more accessible than the current diagnostic
tools exposing the patient to radiation.

In this research, a data-driven and data mining
based metabolomics diagnosis is carried out using
four machine learning techniques known as Partial
Least-Square Discriminant Analysis (PLS-DA), Mul-
tilayer Preceptor (MLP), Support Vector Machines
(SVM) and Decision Trees (DT) using C4.5 and ID3
algorithms. In this research, we aim at studying the
effect of various preprocessing procedures on learning
from imbalanced classes as well at verifying, confirm-
ing and improving the results reported in earlier stud-
ies. Data preprocessing procedures were performed
mainly for the purpose of tackling the issue of imbal-
anced classes which concerns the sample’s distribution
between control and patient groups [10, 11], in addi-
tion to improving the quality of the data and enhanc-
ing the validity of the results. It covers data trans-
formation, standardization, normalization, reduction,
and sampling. The data reduction was performed us-
ing: Information Gain (IG), Random Forests (RF)
and SVM, while the sampling was performed using:
Random Re-Sampling, Under-sampling, and SMOTE
Over-sampling [12, 13]. The models were trained and
then evaluated using five-fold cross-validation in or-
der to ensure the validity of the results and assess
the performance of the created model and also to
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be consistent with the evaluation methods that were
used in the original study [1]. The champion models
which are reported in this research both: (1) achieves
the analytical objectives and (2) out-perform all the
other generated models created in this research and
the base model reported in the original study.

2 Materials and Methods

This section provides an overview of the dataset that
was used in the analysis as well as the machine learn-
ing techniques that were applied and their evaluation
mechanisms.

2.1 The Metabolomics Dataset

The data used in this paper is a publicly available
dataset that represents a 1H-NMR metabolite profile.
The profile consists of 77 samples that include a to-
tal of 63 identified and measured metabolites. About
47 samples were collected from patients with symp-
toms of cachexia, while the rest were collected from
a control healthy group. Bio-fluid urine samples were
collected from patients during their normal visits to
cancer clinics randomly during the day. The distribu-
tion of both groups was similar in term of age and
gender.

The dataset was acquired using a 1-Dimensional
spectrum using the 1st increment of standard NOESY
pulse NMR sequence at 600 MHz. Spiking was car-
ried out using Human-Metabolome reference library.
Reverse-phase HPLC was carried out on spiked sam-
ples based on Pico-Tag method. The metabolite pro-
file was created to include all the identified and quan-
tified metabolites. More details regarding the dataset
acquisition and the design of the biological study are
available in [1].

2.2 The Applied Data Mining Techniques

The data mining techniques applied in this research
covers four supervised learning techniques including
PLS-DA, MLP, SVM and Decision Trees using both
C4.5 and ID3 implementation algorithms. The na-
ture of the dataset and its size regarding the number
of samples and attributes in addition to the analyt-
ical objectives influenced the choice of the applied
machine learning techniques.

2.2.1 PLS-DA

Partial Least-Square Analysis (PLS-DA) is a super-
vised technique that is particularly useful in scoring
the importance of significant variables in data. The
important features are then used to discriminate vari-
ables for classification [14] or for dimensionality re-
duction [15]. PLS-DA assesses the influence of indi-
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vidual features on the rest of components through
calculating PLS coefficients which are called Variable
Influence on Projection (VIP). Once the VIP scores
are calculated, the model can score the importance
of each variable based on a threshold value [16, 17].

PLS-DA was used in metabolomics for identify-
ing metabolite that can be used as disease biomark-
ers. For example, PLS-DA was used for scoring the
importance of variables which lead to identifying
the biomarkers of Fulminant Hepatic Failure Disease
(FHF) using the subsequent logistic regression which
was used to predict the prognosis of FHF in mice
[14]. PLS-DA was also used for finding the metabolic
signatures of motor neuron disease [15].

2.2.2 SVM

Support Vector Machine (SVM) is a supervised learn-
ing technique that is used for both classification and
regression. It is capable of finding robust solutions
for classifications and regression applications. It has
also a wide spectrum of complex problems while us-
ing much few parameters. SVM incorporates domain
knowledge and uses kernel function to map the kernel
space to a higher dimensionality by constructing and
adjusting the linear boundaries of the support vector
in the feature space. SVM was used in metabolomics
in predicting genes functional classes and in studying
drugs toxicity for classifying samples based on their
metabolic biomarkers [18, 19].

2.2.3 MLP

Multilayer Perceptron (MLP) is an Artificial Neural
Networks (ANN) algorithm based on mimicking hu-
man brain which consists of an interconnected set of
nerve cells or neurons. The brain performs its func-
tion by using these neurons simultaneously [20, 21].
ANN depicts human brain by constructing a network
of neurons that each can be viewed as elementary
information processing unit [22]|. It organizes these
neurons into a set of hierarchical layers. Each layer
consists of an input, output, and a hidden layer [23].
Figure 1 provides an illustration of MLP input, out-
put, and hidden layers. Neurons are connected by
links associated with numerical values that simulate
long-term memory in the human brain by considering
the strength and importance of each inputs. These
values are called weights [17, 24].

The MLP back propagation algorithm uses Equa-
tions 1, 2 and 3 for updating weights.
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Figure 1. An illustration of the ANN layers.
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where W represents the neuron weight, 1 represents
the learning rate and O; represents the output cal-
culated by neuron i for the output neurons. T} rep-
resents the desired output for the neuron j in the
internal hidden layer [25].

MLP is used for both supervised and unsuper-
vised learning [23, 26]. It is used for predicting cat-
egorical values in sample classifications as well as
for predicting continuous data in regressions [23]. In
metabolomics, MLP was used medical applications,
for predicting and tracking the severity of diseases
based on quantitative metabolic data [27] and in com-
bination with Principle Component Analysis (PCA)
for identifying potential disease biomarkers [28].

2.2.4 Decision Trees (DT)

Decision Trees (DT) is a popular data mining tech-
nique [20, 22] that uses ID3 [29] and C4.5 [30] algo-
rithms. Models built using decision trees are easy to
interpret as they can be expressed as a set of logical
rules and can be visualized using tree-like diagrams.
Decision trees were successful in finding significant
metabolites for diagnosis of breast cancer [31] and
finding non-linear relationships in metabolomics data
as well. In other applications, it was used for sample
classification and ranking important metabolites in
high dimensional data [27, 32].

2.3 Evaluation Methods

Five-fold cross-validation is a testing method that
was used in this research in order to evaluate the
validity of the results and assess the performance of
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the created models in addition to its ability to be
generalized using a separate dataset. In this method,
the data is split into sub-datasets and the training
(leave-one-out). The testing is repeated a number of
times so that it covers all the created subsets. Each
time, the model is trained using one sub-dataset while
the remaining subsets are used for testing. The overall
evaluation is calculated by combining the evolution
results obtained for each sub-dataset.

The error rate was also used to compare the learn-
ing performance of the classifier in this study due
to its relevance and simplicity. However, Classifica-
tion Accuracy (CA), Sensitivity and Specificity were
all used to evaluate the performance of the resulting
data mining model. Equations 4,5,6, and 7 provide
the mathematical foundation for these measures.

ErrorRate = 1 — CA (4)
CA= (TP +TN)/(CP +CN) (5)
Sensitivity = TP/CP (6)
Specificity = TN/CN (7)

where TP is the number of true-positive values and
TN is the number of true-negative values. CP is the
number of the actual positive values and CN is the
number of the actual negative values [33].

Receiver Operator Characteristics (ROC) plot was
also used as a performance measure. ROC is usually
plotted using two axes. The x-axis represents false-
positive rates while the second y-axis represents the
true-positive rate [33, 34]. Each point on the curve
represents the result of applying equation 8 and 9.

TruePositiveRate = TP/(TP+ FN)  (8)

FalsePositiveRate = FP/(TP+TN) (9)

where FN represents the number of false-negative
values and FP represents the number of false-positive
values [34]. TP and TN are as described above.

The Area Under the Receiver Operator Character-
istics (AUC) was also used as a performance measure.
It measures the performance of the machine learning
model by calculating the area under the ROC curve.

3 Results

As the analytical objectives of the data-driven analy-
sis performed in this study were set to: (1) developing
a classifier for early prediction and building a tool to
provide early diagnose of the disease and (2) identi-
fication of the significant metabolites that are more
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involved in the early stages of muscle loss. Since the
bio-samples used in this study were of a urine origin,
the chance contamination was quite high. Therefore,
data preprocessing was needed in order to normalize
the data using natural log transformation. Figure 2
on the next page shows the distribution of the data
before and after the performed data normalization.

Data exploration was also needed in order to gain
insight into the correlations between the targeted
metabolites which helps to select the appropriate data
mining technique that both suite the data and would
fulfill the defined analytical objectives. The selection
of these techniques was based on the results of data
exploration and analytical objectives. Data explo-
ration activities may include data investigation, data
understanding, and data prospecting. The data has
no missing values or significant outliers and therefore
no additional preprocessing procedures were needed.
Figure. 3 on the next page shows a heat map that
was used in data exploration. It shows all possible
correlations between all chemicals in the metabolite
concentration profile.

Four data mining techniques were selected for the
purpose of model building named as PLS-DA, MLP,
SVM, and DT using ID3 and C4.5. Each of the models
created using these techniques was evaluated using an
independent iteration in order to provide the flexibil-
ity to forward the best model to the next phases. The
performance evaluation of each model was conducted
in terms of error rate. The selected techniques were
found capable of achieving the analytical objectives
while suiting the nature and quality of the dataset.

However, none of the applied data mining tech-
niques performed well using the raw data. Therefore,
a number of classical preprocessing procedures were
conducted on the dataset in order to improve its qual-
ity and enhance the performance of the data mining
models built using the selected techniques. The pre-
processing procedures applied covered standardiza-
tion, normalization and log transformation. Almost
all the applied preprocessing procedures failed to im-
prove the performance of the models with the ex-
ception log transformation. It slightly improved the
performance of the MLP model. The performance of
the created data mining models that were created
using the raw and the preprocessed datasets is shown
in Table 1 on page 84 using the classification error
rate and evaluation measure that were discussed in
Section 2.3.

Yet, when the techniques were applied to the log-
transformed data, some improvement was noticed in
the performance of SVM model along with some slight
decline in the performance of the PLS-DA model.
On the other hand, the best classification accuracy
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Figure 2. A density plot shows the data distribution before and after normalization
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Figure 3. A heat map showing the correlation between metabolites: Dark colors show strong correlation, while
light colors show weaker correlation.
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Table 1. Classification error rate of the techniques over the original and the preprocessed complete dataset using: log transformation,

standardization and normalization.

Log Transformation Standardization Normalization Classification Error Rate

PLS-DA MLP SVM C4.5 ID3
No None None 30.1 34 27.3 33.8 39
No Yes None 30.1 32.2 27.3 33.8 39
No None Yes 34.6 40.5 34.3 39.7 39
No Yes Yes 34.6 35.1 84.3 39.7 39
Yes None None 30.9 27.3 343 338 39
Yes Yes None 32.2  26.5 343 33.8 39
Yes None Yes 33 26.5 40.1 37.1 39
Yes Yes Yes 34 26 41  37.1 39

of most techniques was obtained when random re-
sampling techniques were applied to the complete
dataset.

Table 2 shows the performance of the models us-
ing random re-sampling compared to under-sampling
and SMOTE over-sampling. However, despite the ex-
cellent classification accuracy achieved as shown in
Table 2 which ranged between 89% and 91%, the ran-
dom duplication of samples in the minority class may
expose the model to the danger of over-fitting as it
gives weight to some samples more than the others
and may lead to false discovery.

Table 2. The classification error rate of the complete and the
re-sampled dataset using SMOTE over-sampling, under-sam-
pling and random re-sampling methods

Sampling Classification Error Rate
PLS-DA MLP SVM C4.5 ID3
None 34.3 80.9 24.2 33.77 39
SMOTE 24 23.3 20.22 30.11 60
Under- 35.6 32.9 279 8321 63
sampling
Random Re- 9.4 11.4 10.7 16.62 /3
sampling

Further data preprocessing procedures were de-
cided in order to improve the results, which included
data normalization: (1) Normalization by creatinine
concentration [35], (2) Normalization by total peak
area [36] and (3) Normalization by probability quo-
tient [37]. However, none succeeded in improving the
performance of the applied techniques. This is quite
in line with the result of the earlier study.

More data exploration procedures were conducted
in order to investigate the reduction of the classi-
fier performance which led to identifying two issues
with the data: (1) low ratio between the numbers
of samples compared to the numbers of variables
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(2) the imbalanced distribution of the samples over
the prediction classes. The number of samples in the
cachexic class was 47, while in the control class was
30. The handling of the first issue involved reducing
the number of variables to a narrower set of informa-
tive variables using IG, RF [38, 39] and SVM [40].
Two datasets were created for each data reduction
method; one for the 30 most important variables and
one for 13 most important metabolites (variables with
significant SVM weight).

The sampling techniques were then applied to both:
the complete and the reduced dataset as shown in
Table 3 on the 85. The handling of the second issue
involved applying three different re-sampling meth-
ods: Random Re-sampling, SMOTE Over-sampling
and Under-sampling [13, 41|. Random resembling in-
volves duplicating samples in the minority class in
order to match the number of samples majority class.
However, this may cause over-fitting particularly. Ap-
plying random re-sampling to the log-transformed
dataset improved the performance of most techniques
up to two folds except ID3 algorithm which perfor-
mance declined slightly. Nevertheless, it was found
that reducing the data to the most important 13 and
30 variables had only limited influence on the perfor-
mance of the classifiers.

Under-sampling involves reducing the number of
samples in the majority class so that the number
of observation becomes equal to those in the minor-
ity classes which in fact increase the sensitivity of
a classifier to the minority class. A decline in the
performance of most techniques was observed when
the techniques were applied to the under-sampled
data. This decline was quite more severe with ID3
algorithm. However, the performance of PLS-DA and
MLP improved somehow when these techniques were
applied to the dataset that was reduced to 13 vari-
ables using SVM scorer. The selection of these vari-
ables was based on an assumed cutoff.
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Table 3. The classification error rate of the models using the re-sampled and reduced datasets

Re-sampling Method Variables  Scorer Classification Error Rate

PLS-DA SVM MLP C4.5 IDS3

None 13 IG 31.4 26.5 30.9 36.88 39

None 13 RF 28.6 26.5 29.1 34.81 39

None 13 SVM 31.4 26.5 80.7 36.88 39

None 30 IG 37.4 26 28.8 36.62 39

None 30 RF 35.8 23.4 29.9 3558 39

None 30 SVM 20.3  24.2 20.3 34.55 39

Random Re-sampling 13 IG 26.8 22.83 22.8 18.96 43

Random Re-sampling 13 RF 22.6 22.6 22.6 18.7 43

Random Re-sampling 13 SVM 23.1 24.2 239 27.01 43

Random Re-sampling 30 IG 26.8 22.8 20.8 18.96 43

Random Re-sampling 30 RF 25.5 21.8 24.7 18.7 43

Random Re-sampling 30 SVvM 24.2 21.3 21 16.62 43
Under-sampling 13 IG 32.5 28.9 30.7 34.64 62.9
Under-sampling 13 RF 36.1 27.5 82.2 27.5 62.9
Under-sampling 13 SVM 21.1 206.1 25.4 24.29 62.9
Under-sampling 30 IG 43.9 29.6 35.4 31.43 62.9
Under-sampling 30 RF 42.5 27.5 31 82.5 62.9
Under-sampling 30 SVM 30.7 27.5 28.2 80.71 62.9
SMOTE 13 IG 24.8 23.3 23.7 28.57 59.6
SMOTE 13 RF 27.7 24.2 27.3 29.45 59.6
SMOTE 13 SVM 25.8 25.9 14.9 28.57 59.6
SMOTE 30 IG 32.8 21.1 24.8 80.99 59.6
SMOTE 30 RF 29.5 22.4 23.5 29.89 59.6
SMOTE 30 SVM 32.3 21.1 27.3 30.99 59.6

Over-sampling involves increasing the number of
samples in the minority class to match their num-
bers in the majority class. Over-sampling was per-
formed using SMOTE method [13] which involves
the construction of a number of synthesized samples.
SMOTE was successful in improving the performance
classifiers prediction [10]. Over-sampling improved
the performance of almost all techniques when the
data was reduced to 13 and 30 variables apart from
ID3 algorithm whose performance declined by one
third and also when the data was reduced to 30 vari-
ables using SVM scorer. However, over-sampling had
minor or no influence when the data was reduced us-
ing information gain and random forests techniques.
Applying the rest of the data mining techniques to the
reduced data decreased the performance of almost all
the models regardless of the number of the reduced
variables and the variable importance scorer used.

The confusion matrix in Table 4 shows a balanced
distribution of true-positive and false-positive samples

over both cachexia and control classes. Both classes
scored the same accuracy. In addition, the ROC chart
in Figure 4 demonstrated good model sensitivity as
the ratio between true-positive and false-positive val-
ues was excellent. The model scored 92.6% in AUC
performance measurement based on the ROC chart.
Table 5 on page 87 shows the 30 important metabo-
lites scored by SVM. Nearly half of the metabolites
scored important in this research have been found
consistent with those reported by the earlier study.
These metabolites are underlined in the table. The
SVM scorer agrees with 47% of the 30 important
metabolites ranked by the bivariate analysis carried
out in the earlier study. However, this percentage rises
to 62% when considering the 21 important metabo-
lites and fall back to 53% when it comes to the 13
most important metabolites.
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4 Results and Discussion

Despite the fact that transformation, data reduction
and sampling were successful in improving the per-
formance of PLS-DA, SVM, MLP and C4.5, the best
performance was achieved using PLS-DA model when
applied to randomly re-sampled data as it scored
90.4% classification accuracy. However, this result
was excluded as random res-sampling may expose the
model to over-fitting by giving some samples more
weight than others. The second best performance was
achieved by MLP applied to over-sampled data us-
ing SMOTE. In addition to that most sampling tech-
niques were successful in improving the performance
of almost all classifiers except ID3, the best perfor-
mance has been achieved using SMOTE method. On
the other hand, normalization and standardization
failed to improve the performance of any of the mod-
els, while log transformation made some slight im-
provement.

The performance of almost all classifiers improved
when the dataset was reduced to the 30 and 13 most
important variables using IG, RF and SV scorers ex-
cept when ID3 was applied. Therefore, the SVM-MLP
was selected as the champion and was then evaluated
using five folds cross-validation. Half of the biomark-
ers were found identical to those reported in the ear-
lier study, while the rest were also consistent with a
lesser extent. In addition, the model was able to clas-
sify samples with 85.1% accuracy which outperforms
all the models reported in the earlier study in almost
every measure including: Error Rate, Classification
Accuracy, Sensitivity, Specify, AUC and ROC.

In addition, the results reported in this research
provide more insight and justification regarding the
applied techniques. It also addresses the issue of im-
balanced classes which was in fact, neglected in the
original study. These improvements were achieved by
applying a number of data transformation, prepro-
cessing, sampling and data reduction procedures that
were used in order to tackle the problem of imbal-
anced classes.

5 Conclusion

A data-driven analysis was carried out in this research
focusing on analyzing the effect of preprocessing var-
ious procedures on the performance of the machine
learning algorithms that were applied to a metabolite
profile with imbalanced classes. An enhanced classi-
fier was created in this research by combining SVM
variable importance scoring with MLP classifier. The
SVM-MLP model scored 85.2% classification accu-
racy and 85.1% in sensitivity and in recall measure
which is an improvement when compared to the per-
formance reported in the earlier study.
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The study was successful in identifying a number
of potential biomarkers for cachexia. The SVM-MLP
model can be used clinically for developing an early
clinical diagnosis method which can help to narrow
down the laboratory analysis by targeting a smaller
group of metabolites, which save time and reduced
the diagnosis cost. The model is deployable using
either in PMML or XML format and it can then be
embedded in diagnosis software for the purpose of
disease screening. The biomarkers identified can also
be used for developing a heap and safe laboratory
screening test before conducting the current more
expensive and unsafe diagnosis procedures.

Table 4. The Confusion Matrix for the MLP Model

Cachexic Control Total
Cachexic 85.10% 14.90% 47
Control 14.90% 85.10% 47
Total 47 47 94

Predicted class: cachexic

TP Rate (Sensitivity)
=
m

o 01 02 03 04 05 06 07 08 09 1
FP Rate (1-Specificity)

Figure 4. ROC Chart showing the relationship be-
tween true positive and false positive rate




Table 5. SVM Variable importance score using the re-sampled dataset. The underlined metabolites are those that were ranked
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important in this and the previous study

Variable Importance Score Metabolite SVM Weight
1 3-Aminoisobutyrate 1.238
2 Uracil 1.163
3 4-Hydroxyphenylacetate 1.065
4 Glutamine 0.999
5 Glucose 0.98
6 Pantothenate 0.947
7 Citrate 0.873
8 Creatine 0.846
9 Leucine 0.818
10 1-Methylnicotinamide 0.802
11 Quinolinate 0.791
12 Glycine 0.764
13 Succinate 0.744

- 14 Hypoxanthine 0.679
15 Isoleucine 0.625
16 Tyrosine 0.612
17 myo-Inositol 0.522
18 Adipate 0.464
19 Methylamine 0.452
20 Trigonelline 0.407
21 Alanine 0.39/
22 2-Aminobutyrate 0.329
23 3-Hydroxybutyrate 0.319
24 3-Indoxylsulfate 0.304
25 Acetate 0.302
26 cis-Aconitate 0.294
27 Carnitine 0.266
28 Ethanolamine 0.251
29 1-6-Anhydro-beta-D-glucose 0.251
30 Lysine 0.236
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