1 Computers and Control Engineering Department, Tanta University, Tanta, Egypt

2 Information Technology Dept., College of Computers, Qassim University, KSA


Time Saving and energy consumption has become a vital issue that attracts the attention of researchers in Underwater Wireless Sensor Networks (UWSNs) fields. According to that, there is a strong need to improve MAC protocols performance in UWSNs, particularly enhancing the effectiveness of ALOHA Protocol. In this paper, a time-saving Aloha protocol with slotted carrier sense proposed which we called, ST-Slotted-CS-ALOHA protocol. The results of the
simulation demonstrate that our proposed protocol can save time and decrease the average delay when it compared with the other protocols. Moreover, it decreased energy consumption and raised the ratio of throughput. However, the number of dropped nodes does not give better results compared to other protocols.


[1] Ibrahim D. M., Fahmy M. M., ElTobely T. E., and Sallam E. A. Enhancing the vector-based forwarding routing protocol for underwater wireless sensor networks: A clustering approach. In  International Conference on Wireless and Mobile

Communications (ICWMC2014), pages 98–104, 2014.
[2] Ibrahim D. M., ElTobely T. E., Sallam E. A., and Fahmy M. M. Bounded side-based clustering vbf routing protocol in underwater wireless sensor networks. International Journal on Advances in Networks and Services, 8:130–138, 2015.
[3] Pompili D. and Akyildiz I. F. Overview of networking protocols for underwater wireless communications. IEEE Communication International Magazine, pages 97–102, 2009.
[4] Shah G. A. A survey on medium access control in underwater acoustic sensor networks. In Proceedings International Conference on Advance Information Networking and Application Workshops (WAINA’09), pages 1179–1183, 2009.
[5] Diamant R. and Lampe L. A hybrid spatial reuse mac protocol for ad-hoc underwater acoustic communication networks. In Proceedings of Communications Workshops, pages 1–5, 2010.
[6] Baig I. Ayaz M., Abdullah A., and Faye I. A survey on routing techniques in underwater wireless sensor networks. International Journal of Network and Computer Applications, 3:1908–1927, 2010.
[7] Volkan R. and Park M. K. Uwan-mac: An energyefficient mac protocol for underwater acoustic wireless sensor networks. IEEE/MTS International Journal of Oceanic Engineering, 32:710–720, 2007.
[8] Peleato B. and Stojanovic M. A mac protocol for ad hoc underwater acoustic sensor networks. In Proceedings of ACM International Workshop Under-Water Networks, pages 113–115, 2006.
[9] De S., Mandal P., and Chakraborty S. S. On the characterization of aloha in underwater wireless networks. International Journal on Mathematical and Computer Modelling, 53:2093–2107, 2011.
[10] Petrioli C., Petroccia R., and Stojanovic M. A comparative performance evaluation of mac protocols for underwater sensor networks. In Proceedings of MTS/IEEE OCEANS’08, pages 1–10, 2008.
[11] Keyu C., Ma M., Cheng E., Yuan F., and Su W. A survey on mac protocol for underwater wireless sensor networks. In IEEE International Conference on Communication Surveys and Tutorials, pages 1433–1447, 2014.
[12] Seo J. and Jin H. Optimally controlled pure aloha systems for wireless sensor networks. IEEE International Journal on Communication Letters, 21:2460–2463, 2017.
[13] Wong D. T., Chen Q., Peng X., and Chin F.Multi-channel pure collective aloha mac protocol with de-collision algorithm for satellite uplink. In IEEE International Conference on IoT, pages 251–256, 2018.
[14] Baiocchi A. and Ricciato F. Analysis of pure and slotted aloha with multi-packet reception and variable packet size. IEEE International Journal on Communication Letters, 22:1482–1485, 2018.
[15] Polonelli T., Brunelli D., and Benini L. Slotted aloha overlay on lorawan: a distributed synchronization approach. In Proceedings of the 16th IEEE International Conference on Embedded and Ubiquitous Computing (EUC 2018), pages 1–7, 2018.
[16] Ahn J. and Krishnamachari B. Performance of propagation delay tolerant aloha protocol for underwater wireless networks. In Proceedings of Intternational Conference Distributed Computing in Sensor Systems (DCOSS), pages 1–16, 2008.
[17] Basagni S., Petrioli C., Petroccia R., and Stojanovic M. Choosing the packet size in multihop underwater networks. In Proceedings of Oceans’10, pages 1–9, 2010.
[18] Yao N., Peng Z., Z. M., and Cui J-H. Improving aloha via back off tuning in underwater sensor networks. In Proceedings of Communication and Networks (CHINACOM), pages 1038–1043, 2011.
[19] Chirdchoo N., Soh W. S., and Chua K. C. Alohabased mac protocols with collision avoidance for underwater acoustic networks. In Proceedings of INFOCOM’07, pages 2271–2275, 2007.
[20] Petrioli C., Petroccia R., and Potter J. Performance evaluation of underwater mac protocols: From simulation to at-sea testing. In Proceedings of MTS/IEEE OCEANS’11, pages 1–10, 2011.
[21] Khater E. M., Ibrahim D. M., and Faheem M. T. Contention-based mac protocol in uwsns: Slotted_cs_aloha proposed protocol. In The 11th IEEE International Conference on Computer Engineering and Systems (ICCES’14), pages 73–78,
[22] Yunus F., Ariffin S., and Zahedi Y. A survey of existing medium access control (mac) for underwater wireless sensor networks (uwsn). In Proceedings of Mathematical/Analytical Modeling and Computer Simulation (AMS), pages 544–
549, 2010.
[23] Ns2 network simulator. nsnam/ns. Accessed: 2018-12-30.
[24] Linkquest underwater acoustic modem. Accessed: 2018-12-30.