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1 Introduction

1.1 Motivation, Contribution and

Organization

D ecreasing feature size and time to market, accom-

Fab-less business model in semiconductor industry has led to serious concerns
about trustworthy hardware. In untrusted foundries and manufacturing
companies, submitted layout may be analyzed and reverse engineered to steal the
information of a design or insert malicious Trojans. Understanding the netlist
topology is the ultimate goal of the reverse engineering process. In this paper,
we propose a netlist encryption mechanism to hide the interconnect topology
inside an IC. Moreover, new special standard cells (Wire Scrambling cells) are
designed to play the role of netlist encryption. Furthermore, a design flow is
proposed to insert the WS-cells inside the netlist with the aim of maximum
obfuscation and minimum overhead. It is worth noting that this mechanism
is fully automated with no need to detail information of the functionality and
structure of the design. Our proposed mechanism is implemented in an academic
physical design framework (EduCAD). Experimental results show that reverse
engineering can be hindered considerably in cost of negligible overheads by
23% in area, 3.25% in delay and 14.5% in total wire length. Reverse engineering
is evaluated by brute-force attack, and the learned information is 0% and the
Hamming distance is approximately 50%.

© 2016 ISC. All rights reserved.

With the advent of globalization, IC backend design
and fabrication processes are outsourced and the IC
supply chain is flattened and driven to specialize.
IP vendors are established to create functional units
which they license to IC designers to apply in their
ASIC designs. Also, contract foundries are emerged to

panied by demands for lower power and higher
performance ICs imposed a new paradigm shift in
semiconductor business model, called globalization.
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manage economies of scale related to their contracted
design houses and fabrication companies. Thus the
whole IC supply chain is not under authority of the
designer companies anymore [1]. On the other hand,
master engineers in the foundries and fabrication com-
panies have full access to whole technology libraries,
purchased IPs, and layout of the designs. Therefore,
this change in semiconductor industry has caused un-
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trustworthy environment with remarkable security
concerns such as reverse engineering.

Reverse engineering is practical during all stages
of design flow to extract the functionality of the chip
/IP. Adversaries may use this technique to steal the
design ideas and make fake IC/IP or to insert hard-to-
detect Trojans by obtaining comprehensive informa-
tion about the victim hardware to camouflage Trojans
[2]. In this situation, by preventing reverse engineer-
ing and hiding circuit functionality, adversaries may
not be able to access into critical confidential infor-
mation of the circuit or determine the best location
for Trojan insertion.

In this paper, our suggested technique hinders the
reverse engineering against theft and trust during the
chip fabrication. In the proposed technique, special
standard cells (Wire Scrambling cells) are designed
andinjected into the std-cell library. Then these cell-
sare inserted on the design netlist at physical level.
The duty of wire scrambling cells (WS-cells) is to en-
crypt net interconnections. In this scenario, circuit
will be incomplete without applying key to WS-cells.
In other words, original netlist topology can be real-
ized only when the correct key is applied to WS-cells.
Otherwise any incorrect key makes a different netlist
topology and causes inaccurate functionality in the
circuit.

It is obvious that reverse engineers are practically
impossible when a circuit is incomplete or it has in-
correct netlist. As will be shown, the probability of
extracting the right topology and therefore accurate
functionality with the absence of WS-cells’ correct key
is practically zero in a scrambled design. Our experi-
ments and analyses show that this technique can be
automated easily at the physical design flow with the
negligible overhead in area, power consumption and
EDA execution time. The main contributions of this
research are as follows:

e Wire scrambling cells are proposed as efficient
element for encrypting the routing topology of
netlist.

e A new netlist encryption design flow is proposed
to prevent GDSII files against IP cloning and
reverse engineering.

e An intelligent net selection criteria and heuris-
tic algorithm is provided to improve hardware
immunity with the minimum cost of overhead.

The rest of this paper is organized as follows. Threat
model is discussed in Section 2. Section 3 describes
the proposed WS-cells and in Section 4 the pro-
posed netlist scrambling algorithm is delineated. The
strength of netlist encryption mechanism against
information leakage is analyzed in Section 5. Experi-
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mental results are presented in Section 6 and finally,
Section 7 concludes the paper.

1.2 Literature Review

Extensive research has been reported to improve IC
supply chain security in the fields of theft and trust.
Most of these ideas are directly or indirectly related to
Obfuscation techniques. Obfuscation is a technique to
immunize the design against cruel reverse engineering
while its functionality remains unchanged [3] and [4].

Hardware encryption is a recent approach to prevent
against manufactured attacks and has been focused
on logic/structural encryption techniques. One group
of these techniques is specially designed for sequential
logic. They are mainly implemented in FSM locking at
RTL/gate level [4],[5],[6] and [7]. In [4], Charkraborty
et al. utilized the FSM locking as a way of Trojan
prevention. Also, in a similar manner, Koushanfar et
al. introduced an FSM locking mechanism which is
accompanied by unclonable random unique function
(RUB) to remotely control ICs activation and over-
come piracy [7]. In [8] Rajendran et al. proposed a
metric (search space) to quantify the strength of de-
signs. Also, they have provided a secure high-level
synthesis design flow that adds decoy connections to
maximize the search space. This research is dedicated
to protect sequential circuits (controller unit) and the
implemented techniques require too much information
about the design. The automation process has a great
complexity; it is not easily automatable.

Some approaches suggested adding XOR/XNOR,
MUX extra gates to conceal the functionality of a de-
sign and corrupt the outputs [9], [10], [11] and [12]. In
the [10] and [11], logic encryption approach is used to
encrypt the design functionality. In these papers, the
output data is protected and guaranteed maximum
invalidation in output vectors, when the wrong key
is applied to the circuit. However, the whole netlist
and layout of the circuit is available and open in the
foundry/fab. Therefore, netlist level analysis and func-
tional dependency checking for wires are still possi-
ble to find the best place for camouflage malicious
logics such as backdoors. In order to protect the de-
sign from the adversaries, more complicated protec-
tion mechanism is required than logic encryption tech-
nique in [9], [10] and [11]. Therefore, in the present
paper, we proposed a geometric encryption approach
in which netlist topology of the circuit is encrypted
to provide higher security level to protect the design
against reverse engineering during the fabrication pro-
cess. Moreover, the proposed process in [10] and [11]
is a heavy pre-process and it is handled with a dis-
crete tool from synthesis/physical design tools. Au-
tomating this method is not that much easy and is
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time-consuming. In [12] the author has used a PUF
circuit to generate the key for the logic obfuscation.
The PUF circuit guarantees a specific key for each
individual IC; therefore this mechanism provides IC-
metering as well, but at peculiar costs that should be
balanced with the value of its applications.

Authors of [13] presented a logic obfuscation which
allows the designer not to send the entire schematic of
the IP to the foundry. They divide the whole function-
ality into two parts; fixed and configurable in which
fixed parts are fabricated as ASIC and configurable
parts are implemented using LUTs and configured at
runtime. Therefore, real circuit cannot be understood
before usage. However, this partitioning needs deep
information about the design and its features such as
circuit functionality, critical nodes of the design and
whole design netlist. This information would draw the
EDA execution out and it is not automated easily.
Also, this technique needs a re-synthesize phase to
map the selected function to the LUTSs that leads to
a complicated and time-consuming design flow. In ad-
dition, manufacturing of LUTs will increase the cost
of the chip.

Netlist encryption is a novel approach in hardware
encryption as a solution against three main concerns of
IC fabrication: metering, theft and trust. As far as we
know, netlist topology encryption concept is proposed
for the first time in [14] in which the netlist topology
is obfuscated in such a way that the correct netlist
of the design cannot be generated without applying
the correct key. However, the proposed algorithm in
[14] is a uniform random selection path (partition the
circuit based on cut size and insert one WS-cell in each
partition). The security analysis also is limited to the
search space enlargement that is caused by WS-cells
insertion. However, netlist topology encryption in the
present paper is done via an intelligent algorithm. This
algorithm chooses best wires for netlist encryption to
cause minimum overheads and maximum obfuscation.
Moreover, inserting the WS-cells at the physical design
can be done with a simple netlist graph processing
(BFS) without any information about the functionality
of circuit.

Authors of [15] has combined the idea in [14] and
[13] and provide a protection scheme in which the
search space and the attack cost increase exponen-
tially, while the overhead imposed on the designer’s
side grows only linearly. However, the authors have
confined to the novel scheme. It is not clear, how the
obfuscation primitives are inserted, which part of the
circuit and to what extent is going to be chosen to
be obfuscated in LUTs. In other word, this paper is
lacking in automated design flow and it is not easy
automatable.

2 Threat Model

In this paper, Trojan insertion and IP cloning with
the use of reverse engineering are considered as the
threats for security. These malicious activities are
supposed to be carried out when the layout-level ge-
ometry is generated, during fabrication process or at
foundries. It is worth noting that our approach targets
IP-protection instead of IC-protection. In each tape-
out, the design is encrypted with a different key which
is the same for all IC instances. In other word the
proposed encryption technique guarantees the trust
of fabricated chips for each tape-out without aim of
controlling overbuilding.

The attacker is neither IP designer nor IP providers,
but competitors or ill-wishers who are skill full in
circuit design at foundries or manufacturing compa-
nies. The opponents reach valuable information like
layout detail information and test vectors with ex-
pected responses. They also possess advanced techni-
cal knowledge of IC design and fabrication and reach
to the reverse engineering, test and design tools and
also they have ability to fabricate ICs. We assume no
computational, financial and temporal limitation for
the attackers. The aim of the attacker may be knowl-
edge acquisition, taking the control of ICs or making
profit from piracy. Moreover, hard-to-detect Trojans
are considered in this paper whose insertion requires
the information gained by reverse engineering of the
circuit. In other words, the Trojans whose insertion
does not involve to functionality information of the
circuit are not target of this paper.

In this paper, proposed technique known as Netslist
topology encryption allows designer to send incom-
plete netlist to the foundry/fab and IP/IC will not be
activated or understood in the absence of legal key.
Correct key will be applied at personalization stage,
similar to personalization process of smart cards in
issuing stage. Personalizing chip by correct key is car-
ried out after all supply chain stages: foundry, fabri-
cation and shipment, right before sending the chip to
the market to be used.

3 Proposed Wire Scrambling Cells

As mentioned in Section 1, a new netlist obfuscation
technique is proposed to hinder the reverse engineer-
ing in ASIC design flow. In the proposed technique,
special standard WS-cells (Wire Scrambling cells) are
designed and inserted to the netlist. Nets connected
to these key-based WS-cells are scrambled at physical
level such that the circuit connections are shuffled.
The original topology will be made just after applying
the correct key to WS-cells. In the scrambled design,
probability of extracting the right topology and there-
fore true functionality with the absence of correct key
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is practically zero. Figure 1 illustrates a simple di-
agram of the proposed technique. Figure 1-a shows
original topology of 4 wires (n0, n1, n2, and n3) in the
netlist. Figure 1-b represents the symbolic view of WS-
cell and Figure 1-c represents the incorrect topology
of the scrambled nets after applying an incorrect key.
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Figure 1. (a) Original connection (b) Symbolic view of WS-cell
(c) False topology resulted by an incorrect key
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Figure 2. a) Structure of a generic WS-cell b) Mux base
WS-cells structure, Full shuffler c) Partial shuffler

A generic WS-cell can be implemented by using
multiplexers or pass transistors as shown in Figure 2-
a. In an n-bit wire scrambler, n x n bit scrambling key
is required for encoding/decoding its inputs/outputs.
However, with the same connection space, MUX-based
WS-cell shown in Figure 2-b requires (n x logan) bit
key signals; which is a beneficial alternative. Each WS-
cell may be full or partial shuffler. In the former, each
input can be connected to each output pins (Figure 2-
b) while in the latter each input can be connected to
only one sub-set of outputs (Figure 2-c). It is obvious
that full shuffling provides higher security due to the
larger provided connection space.

In WS-cells, repetition of wire connections is al-
lowable. It means each input wire of WS-cell can be
connected to more than one output wires. For exam-
ple, if we select multi-terminal net(s) as the inputs
of WS-cells, the correct key shall connect one input
to more than one output (repetitive connection). In
this case some inputs of WS-cell would not drive any
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outputs of the WS-cell when the correct key is applied.
However, these inputs of WS-cells are connected to
other standard cells through dummy wires to let WS-
cells seems full connected. We call these wires, dummy
wires, since they are connected to the netlist, but they
are not expected to have any sink terminals through
the WS-cell. Dummy wires are useful in keeping the
level of ambiguity. Figure 3 shows a simple example of
a multi-terminal net connection in a WS-cell. In this
fig, input IN(0) is connected to the multi-terminal net
and correct key connects this input to all outputs of
the WS-cell and other input pins of the WS-cell are
connected to some dummy wires. Dummy wires are
those design wires that are connected to input pins
of WS-cell and are not expected to be routed to the
WS-cell output pins. Using the dummy wires extends
the ambiguity and search space of the solution up to
n', practically.

The WS-cells are standard cells and the internal
connections would be discovered whenever the key is
applied to them. As a result, for each output there are
N possible input choices to be connected. In the case
of full-shuffling architecture, all inputs are connected
to any output through an instance of MUXnx1. Since,
each MUX has (logan) bit selector signals, WS-cell
would have (n x logan) bits selector key.

Key Key
i 8 )r 8

IN(O) m— —a OUT(0) IN(0) m—f— ;i —a OUT(0)
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Figure 3. The Multi-terminal nets connection in WS-cells

An n-input and n-output full shuffler WS-cell has
n™ different cases for connecting the input pins to the
output pins. For example, in a 4-input and 4-output
WS-cell, 4* = 256 states of scrambling can be occurred.
In a MUX-based full shuffler WS-cell, the probability
of finding the correct topology (ideal probability of
reverse engineering) is as:

IPRE = — x

3=
SEES
3

3

with m number of n x n full-shuffler WS-cell in a
design, this probability in whole design is as:
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As can be seen in Equation (2), the probability of
finding the correct netlist using 16, 4 x 4 WS-cell is
(45r) that is close zero.

We designed the WS-cells with different sizes. Ta-
ble 1 shows the designed WS-cells in which columns
I/0O width shows the number of input/outputs in a
WS-cell, respectively. The columns labeled pattern
space and guess prob. indicate the number of possible
scrambling states and probability of successful guess
in a WS-cell, respectively and finally, Power and Area
represent the estimated dynamic power (with FO4
load) and area of the cells, respectively. It should be
noted that all the standard cells in the used library
are of the same height (7.92um).

As can be observed in Table 1, large WS-cells have
considerable amount of area and power overheads that
may not be feasible in real applications. Moreover,
larger WS-cells have more number of key bits. On the
other hand, pattern space of the moderate cells is large
enough to be used in secure applications. Therefore,
it is recommended to use 4 x 4 full-shufflers WS-cells.

Table 1. Characteristics of designed wire scrambling cells

WS I/0 Search Guess Power Area
Name width Space Prob. (% (um?)
ws2 2x2 4 0.25 8 125.45
WS4 4x4 256 3.90E-03 48 501.80
wss 8x8 16.77E+6  5.96E-08 224 2007.25
WsS16 16x16  1.845E+19 5.42E-20 480 8028.98

4 Proposed Wire Encryption Process

In the proposed technique, netlist topology is en-
crypted using WS-cells and during the foundry pro-
cess, manufacturing and shipment the design is trans-
ferred without key transmission. This incomplete tape
out of design (tape-out without key transmission) has
two advantages as follows:

e First no key management is required during the
fabrication process to avoid the complicated pro-
cess and extra implementation costs of key man-
agement. It is worth noting that on-chip key stor-
age techniques such as fuse-based ROMs, tamper-
resistant memories, unreadable VLSI masks, us-
ing special sensors and so on lead to huge com-
plexity and cost in design, manufacturing and test
process of the chip. Moreover, key transmission
protocols between design house and foundry/fab
have considerable security side-effect and costs
that are avoided in the proposed methodology.

e Second, there is lower chance to leaks design
information to adversaries at untrusted foundry
and manufacturing companies.

In our strategy, key is applied at personalization stage
which is after foundry, fabrication and shipment pro-
cess, thus the attackers at foundry stage do not reach
to the key and have no information about the circuit
functionality. This mechanism is similar to the per-
sonalization process of smart cards at issuing stage in
which chips become active by chip-provider/end-user
before using the chip. Consequently, customers would
be sure that each fabricated design party is protected
during fabrication. In high-secure applications, netlist
encryption keys can be changed for each tape-out. It
is worth to note that the key can be applied serially
(similar to test scan chain) to meet pin constraints.

An important point is that post-wafer testing at
chip fabrication stage does not require the correct key,
necessarily. Because the chip designers knows the be-
havior of the chip when an incorrect key is applied.
Hence, they can give the benchmarks to fab for testing
the chip comprising an incorrect key. Consequently,
no information about the key and real topology of
design transmits/leaks to the fab. The rest of this sec-
tion describes the proposed algorithm which selects
the suitable nets to be scrambled through WS-cell re-
sources. The metrics and conditions of the nominated
nets are mentioned as well.

4.1 Wire selection metrics and Netlist
encryption algorithm

Net Selection for assigning to the WS-cells is very
important in increasing the efficiency of WS-cells and
reducing the overheads.

4.1.1 Wire selection metrics
There are some significant criteria in net selection:

e Number of terminals: multi-terminal nets are
more suitable than two terminal nets. Since the
more terminal numbers a selected net has, the
more pins would be disconnected from the netlist
and ambiguity will spread in the design.

e Toggle rate: Toggle Rate is the rate at which a net
or logic element switches, in comparison with its
input(s). Toggle rate is expressed as a percentage
[16] and [17]. In case that, the nets involved in en-
cryption have high toggle rate, wrong key (wrong
connection) may cause more output variation in
the WS-cell.

e Observability and controllability: controllability
is defined as possibility of setting the value of a
certain netlist node and observability is defined
as possibility of observing the changed value of
a net on a primary output [17]. Due to the less
probability of Trojan activation and detection,
nets with low observability/ controllability are
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more desirable for insertion of hard-to-detect Tro-
jans [2]. On the other hand, low controllable/ob-
servable nets are less testable and discovering the
key of WS-cells would be more difficult. The nets
near the primary outputs are highly observable
and nets near the primary inputs are highly con-
trollable. The nodes in the middle of the network
blend both controllability and observability, help-
ing to increase the attacker’s burden. Some sim-
ulation and analyses have been reported in the
literature as [13] and [17] that supports this claim.
Therefore, the nets at the middle of the DAG (Di-
rected Acyclic Graph) graph are best candidates
to be used in the net-obfuscation. DAG graph is
an acyclic graph, N = (V, E), where N is a logic
network, V' is a set of nodes, and FE is the set of
edges. The nodes in V represent a standard cell
(logic gates), and the interconnections represent
the pre-routed nets.

Also, below complementary conditions are applied
during net selection process:

e The WS-cells should not be inserted on the critical
path. It is obvious that inserting WS-cells on the
critical path would have a great side effect in the
performance of the circuit.

e Select a net only one time. This condition is
important since standing two or more back to
back WS-cells, will increase the delay with no
improve in security level.

e Separate nets should be selected. Two nets are
called separate if, they do not belong to the same
path from primary inputs to primary outputs. By
selecting separate nets no two WS-cells would
be located one after the other along the path,
therefore the delay caused by WS-cells does not
grow, and timing constraints of the host circuit
will not be violated.

Meeting above complementary conditions indicates
the avoidance of inefficient WS-cell insertion that may
cause timing side-effects or loosing obfuscation gain.

4.1.2 Netlist encryption algorithm

WS-cell insertion process is taking place at the early
stages of physical design. In this step the circuit has
been synthesized and the final netlist has been ex-
tracted. However, placement step is not carried out
yet. Therefore, this stage is the best time for modify-
ing netlist by WS-cells since the characteristic of nets
is specified completely and after WS-cell insertion reg-
ular placement tools can determine the best locations
of the WS-cells as well as other standard cells.

The proposed algorithm is a bi-partition based al-
gorithm that cuts the circuit into two separate sub-
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graphs trough, which all paths from primary inputs to
primary outputs are crossed. WS-cells are inserted on
the cut edges. Nets in the middle of the DAG graph
are candidate as low controllable/observable nets, so
the best place for this cut is nets around middle of
the DAG graph. Figure 4 is a simple example that
illustrates the process of WS-cell insertion in a small
circuit. Figure 4-a shows the original circuit, in Fig-
ure 4-b the DAG graph of the circuit has been ex-
tracted and the edges which are located in the middle
of graph are highlighted (dark arrows) as cut-list. The
WS-cells (with the size of 2x2) are connected to the
cut-nets. The dashed net is a dummy wire.

Finding the middle of the DAG graph is a 2-
directional BFS algorithm that traverses the graph
from primary inputs/outputs toward center of the
graph simultaneously. It means that we traverse
toward the center of the graph, hub by hub in both
directions in turn. The cut line would be formed at
the confluence of these two traverses.

Key
y 2

00
2x2 ry
WS-cell

o1

%2
WS-cell 5

Yo
Key

(a) (b) (c)

Figure 4. a) Original circuit b) Cut-nets in the DAG graph
¢) Encrypted netlist in the circuit

It is possible to change the height of the cut in very
few steps toward the primary outputs/inputs. In this
regard we would give high priority to most toggle rate
nets and those with more terminals. The nets whose
toggle rates are in the range of 10% of most transaction
rates are labeled as most toggle rate. Figure 5 shows
the proposed algorithm for net selection and WS-cell
standard cells insertion. In the following paragraphs,

Physical design flow consists intelligent WS-cell insertion algorithm

Step 1: Extract graph from synthesized netlist.

Step 2: Intelligent WS-cell insertion algorithm

Step 2-1: Calculate the height of each net in the DAG graph.

Step 2-2: Obtain nets in the middle of graph

Step 2-3: Refinement cut-list

Step 2-3-1: Move at most two Hub toward primary inputs/primary
outputs

Step 2-3-2: For each movement: if new movement is more efficient

Step 2-3-3: Replace (new-list — cut-list);

Step 2-3-4: Report the best list as cut-list;

Step 2-4: Connect cut-nets to WS-cells: CALL "Key generation
algorithm"

Step 3: Canonical Placement.

Step 4: Canonical Routing.

Figure 5. Physical design flow consisting of the WS-cell
insertion algorithm

details of this algorithm is described.
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Step 1: At the first step, the synthesized netlist
which is generated by the standard synthesis tools
(design compiler Synopsys tool) is parsed and DAG
graph is created.

Step 2: In this stage of the flow, the suitable nets
are selected and list as cut-list.

Step 2-1: The distance of each net from primary
inputs and primary outputs are calculated.

Step 2-2: Those nets that have equal distance both
from primary outputs and primary inputs, would be
selected as cut-list.

Step 2-3: A refinement process is done. During this
process, movements with maximum two hubs toward
primary inputs/outputs are done; and check which
one of these movements is more efficient than present
cut-list. Finally, the refinement process reports the
best list.

Step 2-3-1 to 2-3-4: For each movement, the
total terminal numbers of nets are calculated
(5" terminal#) and the net numbers which are la-
beled as most toggle rate are counted. The movement
that has the most amounts of these variables would
be the nominated list.

Step 2-4: Call key generation algorithm to connect
nets of cut-list to WS-cells.

Steps 3 and 4: After WS-cells insertion, rest of
the canonical physical design flow (e.g. placement
and routing) is performed. Placement and routing
algorithms consider WS-cells as standard cells.

The explained algorithm satisfies the complemen-
tary conditions, which are mentioned above. First if
a net in cut-list is on the critical path, this net will
not be connected to the WS-cells. Secondly, before
reporting cut-list the WS-cell insertion algorithm will
remove any redundant net in the cut-list and there
would not be any chance to have more than one WS-
cell on one net. Finally, since DAG graph is an acyclic
graph and all nets in cut-list are in the same height in
the DAG graph, there would not be any two nets that
are belong to a same path. As mentioned before, sat-
isfying above complementary conditions shows that
with a specified number of WS-cells, the best obfus-
cation gain with minimum performance overhead has
been obtained.

4.2 Key Generation algorithm

Each WS-cell has 8-bits key and the total key of the
circuit is generated by concatenation of these 8 bits.
Therefore, the length of total key is equal to 8 x number
of WS-cells. Every WS-cell has a randomly generated
key and they are independent of each other. Key can

be applied to the chip in personalization phase after
fabrication. Figure 6 demonstrates key generation
algorithm in details.

Key Generation Algorithm

Fragment cut-list to 4 member subsets. (According

Stepl: .
to the capacity of WS cell).
Step2: Choose one subset and connect nets to the WS-cells.
Step2-1: Loop if all 4 nets in the subset are not processed.
Concatenate the key of present WS-cell with
Step3: .
previous ones to make the total key.
Step4: If all sets are not processed go to Step 2.

Figure 6. Description of key generation process

Stepl: First we fragment the cut-list to the sub-
sets of nets with 4 members (4=n the size of WS-cell).
The nets with the same source terminal should be
grouped in one sub-set.

Step2: V sub-set C cut-list, connect this sub-set
to a WS-cell. The nets of the sub-set are randomly
connected to the input/output pins of the WS-cell.
The connection of each net (xi) to the WS-cell specifies
two bits of the key.

Step 2-1: The above process is repeated until all
xi € sub-set are connected to the WS-cell.

Step 3: When the key of the WS-cell is generated,
it is concatenated with other keys to make the whole
key of the IP.

Step 4: Check if there is any net belong to cut-list
that are not connected to a WS-cell.

As mentioned before, the circuit will be send incom-
plete to foundry and fab (without sending the key) in
our proposed technique. Therefore, any key confiden-
tiality management does not require. Key confiden-
tiality is an important challenge in current IP/IC pro-
tection solutions. Therefore, a secure framework must
be established to protect the key inside an IP/IC.

5 Analysis of Netlist Encryption
Mechanism

Multiple attacks have been presented against logic ob-
fuscation techniques with objective of key extraction.
In all these attacks the attacker is looking for a way to
get use of leaked information to minimize the search
space in brute force attack. Although all these attacks
are implemented to extract key in logic obfuscation
technique proposed in [11], their strategies are appli-
cable against any other obfuscation method as well.
In this section, we analyze the strengths of netlist en-
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cryption mechanism against these information leakage
attacks.

5.1 Logic Cone Attack

The idea is that brute force can be applied first to
the logic cone containing the fewest number of key
inputs, (the least secure logic cone) then the secret
key is recovered by employing brute force attack (all
combinations of key inputs can be tried to identify
for which combinations of values the simulated netlist
output for that logic cone matches the functional IC
output)[18]. The process is then repeated for the re-
maining logic cones in the circuit, sorted in an increas-
ing order in the logic cone size. The existing overlaps
among logic cones would provide more information
and also help attacker to break the puzzle in smaller
parts. However, in our approach the circuit is cut into
two separate parts. It is worth noting that all paths
from inputs to outputs are cut. It means that it is not
possible to specify the size of logic cones and separate
them to simulate individually (Figure 7). Also, the
WS cells are inserted where the nets have minimum
controllability and observability. Therefore, the logic
value of wires in inputs and outputs of WS cells will
be uncertain. The above explanations are illustrated
in the Figure 7. In this figure the clouds represent
sub-circuits and WS-cells show the wire scramblers
inserted on cut wires.

In [18] the author has suggested to insert MUX
gates in such a way to scramble the logic cones to
improve the strength of logic obfuscation against this
attack. These MUXes as explained in [11] are 2-input
MUXes that are simulating XOR gates and two nets
with almost opposite logic values should be connected
to them. As shown in [11] it is not easy to guarantee
there are enough nets with this condition in any cir-
cuit. However, this condition is not necessary for our
proposed idea in this paper.

D

Figure 7. WS cell insertion in circuit topology
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5.2 Boolean Satisfiability (SAT) Attack

In this attack the Boolean function of outputs are
generated based on the key inputs that would be
applied to them [19]. Also, it is assumed that the
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correct test vectors are available or attacker access to
an activated IC to apply input patterns and observe
outputs. In this attack, there are some assumption
that are not valid in our proposed threat model.

(1) The key inputs are involved in the logic value
of the output signals and key gates play the
role of inventor or buffer. However, the WS cells
associate all functions together. The Boolean
function of each output net of WS cell is a com-
bination of all input functions this fact leads to
equations with many unknowns.

(2) In our threat model we have suggested to re-
insert the WS cells in each tape out, it would
prevent attackers to reach activated IC.

5.3 WS Removal Attack

In this kind of attack, adversary tries to remove WS-
cells by applying random keys. Actually, this attack
is not practicable in the proposed mechanism (netlist
encryption). It means that WS cells cannot remove
from the circuit except applying the correct key. The
WS cells act somewhat similar to switch boxes in
FPGAs. They are programmed with the key bits. As
routing is incomplete without configuration of the
switch boxes, in netlist encryption also the routing of
the IC would be completed when the correct bits are
applied to WS cells.

5.4 Retrieving Good Input-output Pairs

An attacker can buy a working IC from the market.
Thereby, he will have access to good input-output
pairs of the IC. This attack is more intelligent than
brute force attack and would have smaller search space.
The attacker also accesses to the layout information
of a circuit, she can analyze the weak and strength
points of the circuit (like where the keys are masked,
in which sub-circuit a constant value is often gener-
ated and etc.). These analyses help attacker to select
some special test vectors which lead to meaningful be-
havior in the circuit. Also she can suggest good points
in the circuit that controlling their logic values (writ-
ing or reading) would help to discover useful informa-
tion for key extraction. These special logic values are
called good inputs-outputs pairs. Good inputs /out-
puts may include both primary and pseudo inputs/
outputs (flip flops are also considered as pseudo inputs
Joutputs)[11]. However, when the IC’s manufacturing
process is finished the designer disables the scan test
access port of the IC [20] so these internal flip flops are
not available from outside. The activated IC act as a
black box and just provides the primary input-output
pairs. In this case retrieving good input-output pairs
would downgrade to brute force attack.
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5.5 Brute Force Attack

In this attack, an attacker tries all possible key com-
binations until he finds the correct key. In the ex-
perimental result section, a large number of input-
output pairs are applied to the circuit. The pairs are
selected and applied randomly. As mentioned before
in manufacturing stage the attacker does not reach
all input-output pairs of the circuit. Also, the post-
wafer testing process would be done with incorrect key
and their related test vectors. Therefore, not enough
true input-output pairs are available to attack the cir-
cuit. However, this attack has been analyzed in the
experimental results just to estimate the strength of
the proposed mechanism (inserting WS cells on low
controllable and low observable nets).

6 Experimental Results

We implemented the proposed wire scrambling algo-
rithm in the EduCAD framework [21], a Linux-based
educational physical design platform, on an Intel 2.7
GHZ Quad Core CPU with 4GB RAM. Eight circuits
from TWLS [22] benchmark suite are selected to eval-
uate the proposed method. Table 2 represents the
specifications of attempted benchmarks. In this table
columns #Cells, #Nets and #Pins show the number
of instances, nets and primary pins of the benchmarks,
respectively.

As described before, a wire selection and WS-cell
insertion algorithm is presented in this paper in which
the suitable wires for obfuscation and the location
of WS-cells are determined according to special met-
rics enumerated in Section 4. These metrics help us
to obtain maximum obfuscation with minimum over-
head. We have implemented a random WS-cell inser-
tion algorithm to compare its results with those of
intelligent algorithm, to estimate the effectiveness of
the proposed approach in terms of benefit (output
Hamming Distance) and cost (delay overhead). These
experiments are presented in the following section.

Table 2. Statistical characteristics of attempted benchmarks

Benchmark #cell #Net #pin
spi 1539 1637 92
des_area 1994 2234 304
mem_ctrl 389 426 32
ac97_ctrl 5503 5739 132
usb_funct 7042 7850 249
pci_bridge32 3112 3726 827
aes_core 13426 13775 388
wb_conmax 19098 20516 2546

6.1 Security Improvement

Security improvement in our proposed technique is
equivalent to the statement that how much the re-
verse engineering process is hindered. The most popu-
lar method for this measurement is to calculate the
size of search space. In other word it should be con-
sidered that there is a brute-force attacker who ran-
domly applies keys and knows the expected outputs for
his/her applied input test vectors. The difficulty level
of his/her attack can be reported as the probability
in which he/she would be able to find the correct key.
This parameter is equal to ideal probability of reverse
engineering, IPRFE, which is calculated in Equation
2. In Table 3, this parameter is calculated for each
benchmark circuit to show the immunity improve-
ment of the attempted benchmarks against reverse
engineering when their wires are scrambled with the
proposed technique. In this table, column #WS-cell
shows the number of WS-cells that are inserted and
columns #Net and #DN represent the total number
of nets and number of scrambled nets, respectively.
Column SN% represents the percentage of scrambled
nets and the last column is IPRE that represents ideal
probability of reverse engineering.

Table 3 shows that almost less than 10% nets of a
design is required to be scrambled to make a great
search space against adversaries. In other word, brute-
force attack for finding secrete key is not practical and
the probability of finding secret key is almost zero.
However, there may be some situations that despite
applying wrong key, correct values are generated at
output vectors. These cases help reverse engineers to
learn about circuit’s functionality and exclude some
input patterns in the brute-force attack to compact
the search space. We count this kind of records and
report them as learned information. Another factor
that is suitable for evaluating the security level is the
number of deviated bits from original output bits when
wrong-key is applied (output hamming distance).

We designed an experiment to show how much
information may be extracted from output pins to
bypass the brute force attack. In this experiment, we
simulated a circuit with large number of random input
vectors and calculated the learned information and
Hamming distance. We repeated this experiment with
different wrong-keys vary in wrong bits from 60%-90%.
It is worth noting that there would be no considerable
chance for reverse engineers when learned information
is zero or/and output Hamming distance is close to
50%. Table 4 shows the experiments results for SPI
benchmark. Each row of this table is dedicated to a
range of incorrect key bits. Learned information and
HD are calculated for these ranges.

As can be seen in Table 4, hamming distance of
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Table 3. Experimental results in terms of immunity improvement

Benchmark  #WS-cell #Net #DN SN (%) IPRE

spi 39 1637 156 10% 1.20e-94
des_area 31 2234 124 6% 2.21e-75
mem_ctrl 5 426 20 5% 9.09e-13
ac97_ctrl 173 5739 692 12% 2.37e-417
usb_funct 217 7850 868 11% 2.58e-523
pci_bridge32 126 3726 504 14% 3.65e-304
aes_core 279 13775 1116 8% 1.26e-672
wb_conmax 380 20516 1520 7% 7.39e-916

Table 4. Experimental results in terms of resilient to attacks

Incorrect Bits of Learned Output HD
Key Information  (incorrect bit #)
60%-70% 0% 32%
70%-80% 0% 39.1%
80%-90% 0% 40.8%

outputs is more than 40% when most bits of the applied
key are incorrect. Moreover, the learned information is
absolutely zero. In this situation, percentage of leaked
information to output is zero, practically.

An important point is that the output Hamming
distance can be improved (closer to 50%) with more
of inserted WS-cells. Therefore, designers can improve
the immunity of the design based on the required level
of security in their application. Moreover, the Ham-
ming distance will be closer to 50% for larger circuits
because they have longer paths with more number of
WS-cells. Consequently, the proposed technique makes
a scalable and configurable solution for designers to
make a reasonable trade-off between trust and cost.

In the best case, the output Hamming distance in in
random Ws-cell insertion algorithm is 30% while the
Hamming distance in intelligent algorithm is about
40%. This fact shows that the security level obtained
from random algorithm is less than the security level
through intelligent algorithm with a same amount of
WS-cells inserted in the circuit.

6.2 Overheads

As mentioned before, protecting the design against
reverse engineering is possible in cost of area, power
and total wire length of the design. Table 5 shows the
experimental results in terms of the overheads. In this
table, columns Area, THPWL and Delay represent
the overheads before and after the wire scrambling
methodology, respectively. Finally, columns WO, DO
and AO represent wire length, delay and area over-
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heads in percentage.

As can be seen in this table, overheads are not sig-
nificant and the proposed method is completely rea-
sonable for regular circuits. We have mentioned before
that we avoid inserting WS-cells on critical nets to
prevent performance drop. Therefore, the overhead of
delay is negligible. It is expected that adding the WS-
cells increases the area, total wire length and delay
of the benchmarks. However, the placement phase is
based on a stochastic algorithm and the results may
be improved after placement of the circuit comprising
of the WS-cells. In some rows, delay overheads are neg-
ative that shows the placement results in that run are
better and overhead amounts are less than improve-
ment margin of placement phase. It also confirms that
the WS-cells are not on critical path.

Table 6 shows the comparison between random and
intelligent algorithm in delay overhead. In these two
implementation for each test bench the number of WS-
cells are equal; however, the location of the WS-cells in
the netlist is different. Since WS-cells are not inserted
on the critical path, delay overhead is expected to be
the same in these two implementation. Nonetheless,
WS-cells inserted in random implementation may be
located back-to-back in a same path and increase the
path delay. The delay of entire chip would be influ-
enced if the altered path is a near critical path. As
shown in Table 6 with the same number of WS-cells,
delay overhead in random implementation would be
increased more than twice, compared with intelligent
implementation. In this table, column Befor SP rep-
resents the delay of the circuit before any WS-cell is
inserted and columns DIn and DR show delay of the
design when WS-cells are inserted through intelligent
and random algorithm, respectively. Finally, columns
In-R and R-BSP indicate delay differences of random
implementation with intelligent implementation and
original circuit, respectively.
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Table 5. Experimental results in terms of overheads

TWL (um) Delay(ps) Areaum? WO (%) DO (%) AO (%)
Before After Before After Before After
spi 1.7e8 1.8e8 3.11e3 3.03e3 4.75e04 5.75e04 6.00 -3.00 21
des_area 1.96e8 2.20e8 3.74e3 3.65e3 4.75e04 5.75e04 12.24 -2.00 21
mem_ctrl 4.13e7 4.33e7 8.85e2 8.84e2 1.68e04 1.83e04 5.00 0.00 9
ac97_ctrl 9.1e8 9.96e8 2.50e3 2.82e3 2.50e05 3.05e05 9.00 13 22
usb_funct 1.18e9 1.38€e9 5.30e3 5.57e3 2.35e05 3.00e05 17.00 5.00 28
pci_bridge32 5.18e8 5.84e8 5.64e3 5.71e3 1.93e05 2.35e05 13.00 1.00 22
aes_core 1.96e9 2.70e9 2.59e3 2.94e3 2.90e05 3.78e05 37 14.00 30
wb_conmax  2.68e9 3.13e9 4.92e3 5.02e3 3.95e05 5.18e05 17.00 -2.00 31
Average 14.5% 3.25% 23%
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Table 6. Compare delay overhead in random and intelligent algorithm implementation

After SP Delta
Before SP
DIn DR In-R% R-BSP%
spi 3.11e03 3.03e03 3.03e03 0 -3.00
des_area 3.74e03 3.65e03 3.85e03 5.45 2.90
mem_ctrl 8.85e02 8.84e02 9.62e02 8.86 8.74
ac97_ctrl 2.50e03 2.82e03 2.82e03 0 13
usb_funct 5.30e03 5.57€03 6.24e03 12.04 17.74
pci_bridge32 5.64e03 5.71e03 5.79¢03 1.42 2.68
aes_core 2.59e03 2.94e03 2.94e03 0 14.00
wb_conmax 4.92e03 5.02e03 5.02e3 0 -2.00
Average 3.5% 7.13%

7 Conclusion and Future Work

We proposed a mechanism for hindering the reverse
engineering in automatic ASIC design flow. We de-
signed special standard cells (Wire Scrambling cells)
to scramble the design netlist and then, proposed a
physical design methodology in which wiring topology
of the circuit is scrambled automatically using the
wire scrambling cells. The main feature of this mech-
anism is that it can be performed without detailed
information about the functionality and structure of
the netlist and can be automated easily. The proposed
technique allows the designers to make a reasonable
trade-off between trust and cost.
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